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Non-Gaussian Membrane Potential Dynamics Imply Sparse,
Synchronous Activity in Auditory Cortex

Michael R. DeWeese and Anthony M. Zador
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724

Many models of cortical dynamics have focused on the high-firing regime, in which neurons are driven near their maximal rate. Here we
consider the responses of neurons in auditory cortex under typical low-firing rate conditions, when stimuli have not been optimized to
drive neurons maximally. We used whole-cell patch-clamp recording in vivo to measure subthreshold membrane potential fluctuations
in rat primary auditory cortex in both the anesthetized and awake preparations. By analyzing the subthreshold membrane potential
dynamics on single trials, we made inferences about the underlying population activity. We found that, during both spontaneous and
evoked responses, membrane potential was highly non-Gaussian, with dynamics consisting of occasional large excursions (sometimes
tens of millivolts), much larger than the small fluctuations predicted by most random walk models that predict a Gaussian distribution of
membrane potential. Thus, presynaptic inputs under these conditions are organized into quiescent periods punctuated by brief highly
synchronous volleys, or “bumps.” These bumps were typically so brief that they could not be well characterized as “up states” or “down
states.” We estimate that hundreds, perhaps thousands, of presynaptic neurons participate in the largest volleys. These dynamics suggest
a computational scheme in which spike timing is controlled by concerted firing among input neurons rather than by small fluctuations in
a sea of background activity.
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Introduction
Most of what we know about the dynamics of neuronal popula-
tion activity in the cortex comes from recording neurons individ-
ually or in small groups. However, what is most relevant to any
particular neuron is not the activity of randomly chosen nearby
neurons or the activity of the entire cortical population; rather, it
is the activity of the specific subpopulation that provides input to
that neuron. A typical cortical neuron receives input from
�10,000 other neurons (Braitenberg and Schuz, 1998), distrib-
uted within the same cortical column as well as much more distal
parts of cortex and elsewhere. Identifying and simultaneously
recording from even a modest fraction of these numerous and
widely dispersed neurons would be a daunting task using conven-
tional techniques. A more practical approach is to infer the activ-
ity of this subpopulation by recording the membrane potential of
a single neuron within the intact cortex. Specifically, the dynam-
ics of the membrane potential on individual trials places con-
straints on the degree to which the presynaptic subpopulation
cooperates in driving the recorded neuron to fire.

What can we infer about population activity from the dynam-
ics of the subthreshold membrane potential? One can imagine
two extreme limiting cases. At one extreme, the input to the

neuron consists of many small uncorrelated postsynaptic poten-
tials (PSPs) summed together; in this case, the membrane poten-
tial is Gaussian distributed and follows a “random walk.” Such
models have been widely used to describe the inputs to cortical
neurons in both theoretical (Gerstein and Mandelbrot, 1964;
Calvin and Stevens, 1967; Softky and Koch, 1993; Shadlen and
Newsome, 1994; Shadlen and Newsome, 1995; Tsodyks, 1995;
van Vreeswijk and Sompolinsky, 1998; Song et al., 2000; Fellous
et al., 2003; Rudolph and Destexhe, 2003) and experimental
(Destexhe et al., 2003; Carandini, 2004) studies but have yet to be
experimentally tested in auditory cortex. At the other extreme,
the presynaptic population is highly correlated; neurons might be
silent most of the time, except during brief moments when large
groups of them fire in a concerted manner, which would elicit
rare large excursions (or “bumps”) of the membrane potential of
the postsynaptic neuron.

One cannot distinguish between even these two extreme mod-
els by observing the output spike train alone: either model could
account for essentially any observed spike train. We therefore
used whole-cell patch-clamp recording techniques in both anes-
thetized and awake animals to measure directly the dynamics of
the membrane potential of auditory cortical neurons on a single-
trial basis. We focused on neural responses recorded under the
low-firing rate conditions typically seen in the awake state (Evans
and Whitfield, 1964), when stimuli have not been optimized to
drive neurons maximally. We found that membrane potential
dynamics were very similar across neurons: under all stimulation
conditions tested, fluctuations suggested the second model, in
which highly correlated firing within the population of presyn-
aptic afferents manifested as bumps in the postsynaptic voltage.
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These dynamics are compatible with computational schemes in
which spike timing is precisely controlled by concerted firing in
other neurons.

Materials and Methods
To study the single-trial dynamics of membrane potential fluctuations in
auditory cortex, we presented brief pure-tone pips as well as long pure
tones of different frequencies and fixed intensity while recording from
neurons in the auditory cortex of rats; silent epochs were analyzed as well.
As described previously (DeWeese and Zador, 2004), we used in vivo
whole-cell patch-clamp methods (Ferster and Jagadeesh, 1992; Mether-
ate and Ashe, 1993; Nelson et al., 1994; Hirsch et al., 1995; Borg-Graham
et al., 1998; Moore and Nelson 1998; Zhu and Connors, 1999) to record
the PSPs in the intact animal. The main analyses are based on n � 35
neurons recorded in anesthetized animals; in addition, we recorded n �
5 neurons in awake animals.

Quantifying bump duration
We quantified the duration of bumps in the membrane potential by
measuring the width at half-maximum for every bump that was at least
10 mV tall as measured relative to the rest potential. For the “short-tone
protocol,” the rest potential for each trace was estimated by first taking
the mean of the membrane potential during the 15 ms preceding each
tone onset and then taking the median across all of these pre-tone values.
For the “long-tone protocol” and the “silent protocol,” we estimated the
rest potential for each 4 s trace by taking the fifth percentile value of the
membrane potential across the trace. Before computing bump statistics
for the long-tone data, we excised the initial 250 ms from each trace to
ensure that they reflected the steady-state behavior of the neuron during
prolonged tone presentation rather than the transient stimulus onset
response; trials concluded at tone termination so that OFF responses
were also excluded from the long-tone protocol. We distinguished be-
tween “tone-evoked” and “spontaneous” bumps within the short-tone
protocol by designating as “tone-evoked” all bumps crossing threshold
between 10 and 100 ms after the onset of any of the 25-ms-duration
tones.

The number reported in the text is the maximum bump width for each
neuron, averaged across neurons from all four stimulus conditions
(maximum width of bumps, 54.6 � 3.3 ms; n � 30 neurons, 2 stimulus
conditions per neuron; all quantities are mean � SE unless otherwise
specified). Broken down by stimulation protocol, the maximum width of
tone-evoked bumps during the short-tone protocol was 37 � 4 ms, n �
16 cells; spontaneous bumps during the short-tone protocol was 48 � 8
ms, n � 16 cells; the long-tone protocol was 71 � 5 ms, n � 14 cells; and
the silent protocol was 66 � 5 ms, n � 14.

Random walk model
We made use of three variants of a “random walk model” that integrated
unitary inputs to produce an output voltage trace.

Excitation only model. The input for the simplest of these variants (see
Fig. 5b) consisted of purely excitatory (i.e., positive) unitary events, with
a time course qsyn(t); the arrival time of each of these unitary events was
statistically independent of all the others, and they occurred at a constant
rate so that they obeyed a homogeneous Poisson process. We can write
the time-dependent voltage, v(t), generated by this model as follows:

v � qsyn � z,

where z(t) is an instantiation of a homogeneous Poisson process with rate
�e, and � denotes convolution,

v�t� � � qsyn���z�t � ��d�.

The excitatory event rate, �e, is the only free parameter in this model,
which we fit to the difference between the mean voltage of the data trace
and the rest potential of the neuron. (We used the voltage corresponding
to the fifth percentile of the membrane potential histogram as the rest
potential of the neuron, although the results were insensitive to this

choice for all variants of the random walk model.) For the instantiation of
the model shown in Figure 5b, we used unitary events [miniature EPSPs
(mEPSPs)] that were 0.4 mV at the peak, with a 10 ms exponential decay.
Therefore, each event contributed a finite area of 4 (millivolts) � (milli-
seconds) to the resulting output voltage trace. Thus, to fit the 1.3 mV
mean of the recorded trace, we set the event rate to �0.33 events/ms.

Excitation and inhibition model. We next considered a model that in-
cluded both excitatory inputs and inhibitory inputs (see Figs. 5c, 6a,b):

v � qsyn � ze � qsyn � zi ,

where ze(t) and zi(t) are instantiations of point processes drawn form
Poisson processes with the mean rate given by the excitatory and inhib-
itory event rates, �e and �i, respectively.

For a Poisson process, the mean of the number of events per time bin
is equal to the variance in the event count in the same bin, and we chose
inhibitory events that were the same magnitude as the excitatory events
but opposite in sign. Thus, we could simultaneously fit the mean, �, of
the data trace, which was proportional to the difference between the
event rates:

� � ��e � �i�q

and the variance of the trace, � 2, which was proportional to the sum of
the event rates:

�2 � ��e � �i�q
2,

where q is the integrated contribution from one unitary event, qsyn, di-
vided by the unit time step. Note that the mean and variance of the
measured whole-cell records were measured across time for each trace
rather than across trials.

Rate modulated excitation and inhibition model. Finally, we allowed the
Poisson rate parameters �e and �i to vary with time (with the timescale, �,
specified) (see Fig. 5d,e). Essentially, we fit this rate-modulated random
walk model to the measured voltage traces by fitting both rate parameters
at every time point to the mean and variance of a short segment (of length
�) of the trace centered on that time point. However, occasionally, the
variance for a segment was less than what the “excitation only model”
would give once the mean was fit perfectly; adding inhibitory events can
only decrease the mean and increase the variance, so in these cases, we set
the inhibitory rate to 0.

For Figure 5, d and e, we wanted to fit the model as well as possible to
the features in the data, so the algorithm was modified to perform some-
thing very close to a proper deconvolution. Specifically, as the algorithm
stepped from time point to time point, it accounted for the contribution
to the mean of the model trace resulting from the tails of unitary events
that began before the current segment, and it discounted the contribu-
tion to the mean resulting from the loss of tails passing out of the current
segment. Unfortunately, there are (well known) oscillatory instabilities
that arise during convolution when an algorithm attempts to correct for
mistakes made on previous time steps attributable to overfitting features
of the data that are much finer than the unitary events in the model. To
avoid this, we only added inhibitory events when the actual mean value
(i.e., the mean value before accounting for the contributions to the model
trace from tails of events occurring before the current segment) was
negative or when the variance of the current segment was greater than the
best fit of the excitation only model.

Kurtosis analysis
We quantified the agreement between the excitation and inhibition
(E&I) variant of the random walk model and each 4 s voltage trace from
our dataset by computing the kurtosis of each trace; specifically, we com-
puted the “sample kurtosis excess,” defined as the ratio of the fourth
central moment divided by the fourth power of the SD, minus three (the
value expected for a Gaussian distribution):

kurtosis � n �
i

n�vi � vmean�
4/��

i

n�vi � vmean�
2�2 � 3,

where n is the number of sample points in the trace, vi is the voltage
measured at the ith sample point, and vmean is the mean value of the
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voltage across the trace. Before computing the kurtosis of the long-tone
data, we excised the initial 250 ms from each trace to ensure that the
kurtosis reflected the steady-state behavior of the neuron during pro-
longed tone presentation rather than the transient stimulus onset re-
sponse; trials concluded at tone termination so that OFF responses were
also excluded from the long-tone protocol.

Within each stimulation protocol, many factors contributed to the
variability in the measured kurtosis form one trace to the next. Unsur-
prisingly, the predominant source of this variability was whether or not a
large, spontaneous bump appeared during that 4 s period. Accordingly,
kurtosis rose with increasing trace length, which increased the probabil-
ity of the occurrence of a large event on any given trace (short tones,
kurtosis of 23.6 � 5.8, n � 17 neurons, 8 s traces; silent epochs, kurtosis
of 25.7 � 4.7, n � 18 neurons, 9 s traces; all quantities are mean � SE
unless otherwise specified). Note that longer records were more suscep-
tible to slow-change electrode drift, slow movement artifacts attributable
to pulmonary and cardiac pulsations, recording instabilities, etc., which
typically have the effect of decreasing the kurtosis, because they smear out
the strong peak in the mean of the voltage histogram near the resting
potential of the cell.

Estimation of the presynaptic firing rate
We will make an order-of-magnitude estimate of the number of presyn-
aptic neurons responsible for a typical synchronous volley (see Fig. 7).
This procedure will involve four steps. First, based on previous voltage-
clamp measurements from a similar population of neurons (Wehr and
Zador, 2003, their Fig. 1d), we will model the relationship between the
recorded membrane potential and the waveforms of the (unobserved)
underlying excitatory and inhibitory conductances. To a first approxi-
mation, conductance and voltage follow very similar time courses, with a
conversion factor of �1 nS/mV for both the excitatory and inhibitory
contributions; a minor refinement is to delay the onset of the inhibitory
conductance by �2.5 ms and slightly hasten the decay of each curve
relative to the voltage trace, but these subtleties will not affect our order-
of-magnitude estimates. Thus, accepting this relationship by fiat, we can
estimate the hidden time course of both excitatory and inhibitory con-
ductances based on our present measurements of membrane potential.

Second, we must model the canonical waveform for each unitary syn-
aptic event. In one study (Stevens and Zador, 1998), spontaneous min-
iature EPSCs (mEPSCs) recorded in cortical neurons had a mean value of
6.4 pA, consistent with other in vitro (Gil et al., 1999) and in vivo (DeW-
eese and Zador, 2004) studies. Accordingly, we will assume mEPSCs to be
6 pA tall, with a 3 ms exponential decay. Note that recording spontaneous
mEPSCs in tetrodotoxin (TTX) tends to undercount the number of very
small mEPSCs, which fall below the detection threshold and into the
noise, suggesting that the actual number of active synapses might be
greater than our estimate.

Third, we need a way to relate our conductance waveforms to our
canonical mEPSC. For a holding potential of �60 mV, the mean size of
an mEPSC is close to 6 pA (Stevens and Zador, 1998; Gil et al., 1999),
corresponding to a conductance change of approximately (6 pA)/(60
mV) � 0.1 nS:

I � �V � E� gsyn

� ��60 � 0�gsyn

� �6 pA,

where I is the value of the current at the peak of the mEPSC. We now use
this conversion factor, (0.1 nS)/(6 pA), to rescale our canonical mEPSC
waveform from units of current to units of conductance.

Finally, we compute the number of unitary events required at every
time step to sum to our estimate for the full excitatory conductance time
course. To convert this to a firing rate of presynaptic neurons, we need to
choose a value for the probability of release, p, which is the probability
that a synapse will release neurotransmitter given that an action potential
has invaded the nerve terminal. We chose p � 1 for Figure 7b and all
numerical estimates in the text, which is likely to cause us to underesti-
mate the number of active presynaptic fibers given the much lower values

for p that are often reported at neocortical (Castro-Alamancos and Con-
nors, 1997) and hippocampal (Dobrunz and Stevens, 1997; Huang and
Stevens 1997; Murthy et al., 1997) (see also Castro-Alamancos and Con-
nors, 1996) synapses. Release probability is different at different syn-
apses, with most synapses showing very low probability, particularly dur-
ing periods of high firing that elicit synaptic depression. In addition, our
estimate for the size of the mean mEPSC is probably an overestimate
attributable to the difficulty in observing the smallest events, which
would also lead to an underestimate of the number of neurons partici-
pating in a synchronous volley. It should be noted that our methods
cannot distinguish whether input synchrony arises from correlated firing
across distinct presynaptic neurons or across synapses driven by a single
presynaptic neuron making many contacts, as at the neuromuscular
junction. However, connections in cortex are often quite weak (Atzori et
al., 2001), although in layer 5 especially, strong connections are not un-
common (Markram et al., 1997; Song et al., 2005).

Stimuli
Stimulus delivery followed essentially the same protocol as described
previously (DeWeese et al., 2003; DeWeese and Zador, 2004), with the
exception that here we presented tones of two different durations; we also
analyzed silent epochs in the present study. The stimuli used for the
short-tone protocol consisted of 25 ms pure-tone pips of 32 different
frequencies (logarithmically spaced between 2 kHz and 46731 Hz) with 5
ms 0 –100% cosine-squared ramps applied to the onset and termination
of each pip. All 32 tones were repeatedly presented at 65 dB in a fixed
pseudorandom order at a rate of 2 tones/s. The long-tone protocol con-
sisted of 4-s-duration pure tones of 56 different frequencies (logarithmi-
cally spaced between 1 kHz and 45255 Hz) with 5 ms 10 –90% cosine-
squared ramps applied to tone onsets and terminations. All 56 tones were
presented in a pseudorandom order with silent gaps of either 1 or 13 s
duration between them; 4-s-duration periods that occurred at least 1 s
after the termination of a tone were used for the “silent” kurtosis analysis.
All experiments were conducted in a double-walled sound booth (Indus-
trial Acoustics Company, Bronx, NY). Free-field stimuli were presented
using a System II (Tucker-Davis Technologies, Gainesville, FL) running
on a host personal computer connected to an amplifier (Stax SRM 313),
which drove a calibrated electrostatic speaker (Stax SR303). The speaker
was placed 6 cm to the right of, and at the same elevation as, the rat’s
head. The head was rotated to the right by an angle between 60 and 90°
about the rostrocaudal axis, so that the plane of the craniotomy was
nearly horizontal. For the unanesthetized recording shown in Figure 2c,
the rat’s head was held upright, so that the animal’s right ear directly
faced the speaker, which was placed 6 cm away from the head; for this
recording, the stimuli followed the short-tone protocol, except that the
tones were 100 ms in duration.

Surgery
Sprague Dawley rats (17–25 d old) were anesthetized in strict accordance
with the National Institutes of Health guidelines as approved by the Cold
Spring Harbor Laboratory Animal Care and Use Committee. Pentobar-
bital (65 mg/kg) was used for the six neurons (from five animals) re-
corded after TTX application (see below, TTX application) and for the 17
neurons (from nine animals) recorded during the short-tone protocol.
Diazepam (5 mg/kg) was also used in three of the later cases, but it did not
make a statistically significant difference in the measured kurtosis (pen-
tobarbital with diazepam, kurtosis of 12.1 � 10.4, n � 3 neurons; pen-
tobarbital without diazepam, 26.1 � 6.6, n � 14 neurons). We therefore
pooled these data for the group statistics. For the 18 neurons (from five
animals) recorded during silence and the long-tone protocol, recordings
were performed under ketamine (60 mg/kg) and medetomedine (0.50
mg/kg). We found no significant difference between the kurtosis mea-
sured during the three protocols not involving TTX (pentobarbital/short
tones, kurtosis of 15.2 � 3.5, n � 17 neurons; ketamine/long tones,
kurtosis of 9.5 � 2.2, n � 18 neurons; ketamine/silence, kurtosis of
14.4 � 3.0, n � 18 neurons).

After the animal was deeply anesthetized, it was placed in a custom
naso-orbital restraint that left the ears free and clear. Local anesthetic was
applied to the scalp, and a 1 � 2 mm craniotomy and duratomy were
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performed above the left auditory cortex. A cisternal drain was per-
formed before the craniotomy. Before the introduction of electrodes, the
cortex was covered with physiological buffer (in mM: 127 NaCl, 25
Na2CO3, 1.25 NaH2PO4, 2.5 KCl, 1 MgCl2, and 25 glucose) mixed with
1.5% agar. Temperature was monitored rectally and maintained at 37°C
using a feedback-controlled blanket (Harvard Apparatus, Holliston,
MA). Breathing and response to noxious stimuli were monitored
throughout the experiment, and supplemental dosages of pentobarbital
or ketamine were provided when required.

For the cell shown in Figure 2c, which was recorded in the awake
condition, a craniotomy and duratomy were performed under ketamine
and medetomedine as described above, except that no stereotaxic frame
was used. The area surrounding the craniotomy was then protected with
a plastic well with removable screw cap, and the cortical surface was
covered with Kwik-Cast (World Precision Instruments, Sarasota, FL)
between recording sessions. An aluminum head post was attached to the
skull with Relyx Luting Cement (3M ESPE, St. Paul, MN). A silver chlo-
ride ground wire was implanted subcutaneously on the back of the ani-
mal. The rat was allowed at least 24 h of recovery time before the first
recording session. During the recording session, the head post was fixed
in the head-post holder and the animal was standing inside a hard plastic
tube, which provided a loose restraint for body movements. The plastic
cap and Kwik-Cast were removed, and the cortex was covered with phys-
iological buffer as for the anesthetized recordings. Recording sessions
lasted for a maximum of 4 h. During the recording sessions, the animal
stood fairly motionless some of the time and occasionally moved its
limbs, whisked, groomed, etc.

Whole-cell patch-clamp recording
We used standard blind whole-cell patch-clamp recording techniques,
modified from brain slice recordings (Stevens and Zador, 1998). Mem-
brane potential was sampled at either 4 or 10 kHz in current-clamp mode
(I � 0) using an Axopatch 200B amplifier (Molecular Devices, Palo Alto,
CA) with no on-line series resistance compensation. Data were acquired
using either an Igor (WaveMetrics, Lake Oswego, OR)-based system
written by Dr. Bernardo Sabatini (Harvard Medical School, Boston, MA)
or a Matlab (MathWorks, Natick, MA)-based system, controlling a Na-
tional Instruments (Austin, TX) card on a Dell personal computer (Dell
Computer Company, Round Rock, TX). For some whole-cell recordings,
recording pipettes were filled with an internal solution consisting of the
following: 10 mM KCl, 140 mM K-gluconate, 10 mM HEPES, 2 mM MgCl2,
0.05 mM CaCl2, 4 mM Mg-ATP, 0.4 mM Na2-GTP, 10 mM Na2-
phosphocreatine, 10 mM BAPTA, and 1% biocytin, pH 7.25, diluted to
290 mOsm. The remaining recordings had an additional 1% biocytin but
did not include the 10 mM KCl. The fast sodium channel blocker QX-314
[5 mM; N-(2,6-dimethylphenyl)-3,3-diethylpentamide], which also
blocks some other activity-evoked conductances, was added to the intra-
cellular solution to block sodium channels and therefore prevent spiking.
Consequently, spiking was rare in these neurons; when a spike did occur,
the 7 ms waveform beginning 1 ms before the onset of the spike was
removed from the full record before the kurtosis was calculated. QX-314
was not used for the recordings after TTX application, nor was it used for
the unanesthetized recording shown in Figure 2c. Electrodes were pulled
from filamented, thin-walled borosilicate glass (1.5 mm outer diameter,
1.17 mm inner diameter; World Precision Instruments) on a vertical
Narishige (Tokyo, Japan) two-stage puller. Resistance to bath was 3–5
M� before seal formation. Recordings were performed throughout au-
ditory cortex at electrode depths ranging from 140 to 834 �m below the
cortical surface.

Of the 43 neurons recorded for the kurtosis analysis, 35 (from 14
animals) passed our criteria for inclusion: recordings had to be very
stable for at least one 8 s trial; trials affected by electrode drift or appre-
ciable motion artifacts resulting from pulmonary or cardiac pulsations
were not included in the analysis; and the resting potential had to be at or
below �55 mV, corrected for the liquid junction potential, which we
calculated to be 12 mV for our internal solution. Of the 21 neurons
recorded after TTX application, six recordings (from five animals) had
sufficiently low recording noise to allow unambiguous detection of
mEPSPs.

TTX application
For the recordings performed after the pharmacological removal of pre-
synaptic input correlations, a standing pool of 1.0 mM TTX in a physio-
logical buffer (see above, Surgery) was applied to the surface of the cortex
while playing 65 dB stimuli (short-tone stimulation protocol; see above,
Stimuli) and monitoring the local field potential (LFP) recorded with a
patch electrode �700 �m below the cortical surface. Whole-cell record-
ings were only attempted after complete abolition of all evoked and
spontaneous LFP responses. As is commonly done when measuring min-
iature PSPs in vitro, we used TTX to prevent spiking in any of the pre-
synaptic fibers of the neuron. Subsequently, the only PSPs we observed
were attributable to the stochastic, spontaneous release of individual
synaptic vesicles. Spontaneous release events are statistically indepen-
dent; thus, if the collective spontaneous event rate is high enough across
the population of synapses, fluctuations in the membrane potential at-
tributable to the simultaneous release of multiple vesicles results in a
random walk, with a Gaussian distributed histogram of membrane po-
tential values.

Results
Random walk models
The inputs that provide the synaptic drive to any given cortical
neuron arise mainly from the spiking outputs of other cortical
neurons. In theoretical work, it is often assumed that the statisti-
cal properties of these cortical inputs are identical. The appeal of
this simple assumption is that it can give rise to analytically trac-
table models that make quantitative and testable predictions.
Specifically, a broad class of such models predict that many small
postsynaptic potentials summate to give rise to membrane trajec-
tories that follow a random walk (Tuckwell, 1988; Softky and
Koch, 1993).

To make these ideas concrete, consider a simple model of a
neuron integrating synaptic inputs from a large population of
other neurons. In this model, responses from individual presyn-
aptic inputs are summed together to produce the membrane po-
tential at that moment, as illustrated in Figure 1a for a pair of
inputs. How might this look when many inputs are simulta-
neously active? One can imagine two extreme limiting cases. In
the first case, the activity of the presynaptic subpopulation is
completely uncorrelated (i.e., Poisson) both in time and across
neurons; the timing of synaptic events in this case would resem-
ble the ticks of a Geiger counter. This situation would result in a
highly variable (Gaussian) membrane potential that undergoes a
random walk (Fig. 1b) (Tuckwell, 1988), provided that the syn-
aptic event rate is sufficiently high for the conditions of the cen-
tral limit theorem to be met, as would likely be the case if the
random fluctuations were sufficiently large to cause spiking. This
model and close variants have been widely used to describe the
inputs to cortical neurons in both theoretical (Gerstein and Man-
delbrot, 1964; Calvin and Stevens, 1967; Softky and Koch, 1993;
Shadlen and Newsome, 1994, 1995; Tsodyks 1995; van Vreeswijk
and Sompolinsky, 1998; Song et al., 2000; Fellous et al., 2003;
Rudolph and Destexhe, 2003) and experimental (Destexhe et al.,
2003; Carandini, 2004) studies, but it has yet to be experimentally
tested in auditory cortex.

At the other extreme is the possibility that the presynaptic
population is highly correlated: neurons might be silent most of
the time, except during brief moments when large groups of them
fire in a concerted manner, as schematized in Figure 1c. In this
case, the postsynaptic membrane potential would sit at rest ex-
cept for those brief moments of synchronous presynaptic activity
that would elicit large excursions (or bumps) of the membrane
potential of the postsynaptic neuron. Of course, it may be that
auditory cortex operates in an intermediate regime that does not
fit neatly into either of these categories.
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Previous studies have compared the spike trains predicted
from these models with the spike trains observed in the cortex,
particularly in the visual cortex (Softky and Koch, 1993; Shadlen
and Newsome, 1995, 1998; Troyer and Miller 1997). In the sim-
plest random walk model (see Materials and Methods, Excitation
only model), all inputs are assumed to be excitatory neurons.
However, the spiking statistics predicted by the excitation only
model are inconsistent with the observed statistics in middle tem-
poral area MT and in other brain areas (Softky and Koch, 1993;
Shadlen and Newsome, 1998). This inconsistency lead to variant
models in which inputs consist of both excitatory and inhibitory
synapses (Shadlen and Newsome, 1994, 1995; Bell et al., 1995;
Troyer and Miller, 1997) (see Materials and Methods, Excitation
and inhibition model); the addition of inhibitory inputs permit-
ted the model to fit the observed low-order spike statistics. In one

common variant, excitatory and inhibitory inputs are “bal-
anced,” so that the membrane potential hovers just below thresh-
old (van Vreeswijk and Sompolinsky 1996; Chance et al., 2002;
Hertz et al., 2003).

Spiking data provide only an indirect means to assess such
models, because, by definition, the spike-generating mechanism
discards all of the information about the subthreshold membrane
potential preceding the spike. The fact that a particular simple
random walk model is compatible with an observed spike train is
suggestive but not conclusive; many subthreshold trajectories are
compatible with the same observed spike train (Fig. 1b,c). Distin-
guishing among different models thus requires other methods
(Azouz and Gray, 1999; Carandini, 2004)

Subthreshold recordings in auditory cortex
To gain insight into the network activity driving individual cor-
tical neurons, we used in vivo whole-cell patch-clamp methods to
record the membrane potential from neurons in the rat auditory
cortex. Because we were interested in the synaptic inputs to the
neuron under study rather than its spiking output, we blocked
action potentials in the target neuron, but not other neurons in
the circuit, by adding the sodium channel blocker QX-314 to the
recording pipette. We considered both spontaneous and sound-
evoked activity. To study the activity of the network on a single
trial rather than just its mean activity, we analyzed traces from
individual trials rather than averaging across multiple stimulus
presentations.

We began by recording responses to a series of short tones,
consisting of 25-ms-duration pure tones presented twice per sec-
ond (see Materials and Methods, Stimuli). As expected from pre-
vious results (Wehr and Zador, 2003; Zhang et al., 2003; DeWeese
and Zador, 2004; Tan et al., 2004; Las et al., 2005), tone-evoked
responses were brief and often occurred with a short latency im-
mediately after the tone (Figs. 2a1, 3a). The response was well
characterized as essentially flat, except for infrequent, but sub-
stantial, bumps. The overall response was consistent with a pic-
ture in which the neurons were typically silent except for specific
moments when many inputs became active at once. We pre-
sumed that these moments of activity represented mainly some
combination of thalamocortical and intracortical inputs.

We wondered whether the structure we observed (occasional
bumps superimposed on a quiet background) was merely the
result of the pulsatile stimulus protocol we had tested, which
consisted of brief infrequent tone pips. We therefore tested two
other stimulus protocols (see Materials and Methods, Stimuli):
long tones (Figs. 2a2, 3b), consisting of 4-s-duration pure tones,
and silence (Figs. 2a3, 3c). The resulting traces looked qualita-
tively similar to the responses elicited by brief tone pips. Specifi-
cally, they often contained well isolated bumps that rose slightly
less steeply than the short-tone-evoked bumps but which were
comparable in height. Thus, bumps were not solely attributable
to stimulus transients but rather appeared to represent some
manifestation of network dynamics.

We interpret these bumps as arising mainly from a concerted
barrage of presynaptic activity rather than from postsynaptic
nonlinearities such as dendritic sodium or calcium spikes, for at
least three reasons. First, in many neurons, previous work has
demonstrated that the synaptic current–voltage relationship is
linear, and the inferred synaptic conductance can be used to pre-
dict the observed membrane voltage (Wehr and Zador, 2003).
Second, the presence of QX-314 in the internal solution blocked
not only the fast sodium channels but possibly other voltage-
sensitive channels as well (Talbot and Sayer, 1996; Deisz et al.,

Figure 1. The dynamics of the membrane potential of a given cortical neuron in vivo pro-
vides a way of inferring activity among the network of neurons presynaptic to that neuron. a, In
this simplified example, action potentials arriving at two synapses on the dendritic arbor of the
recorded neuron each result in synaptic transmission, which in turn evokes a pair of unitary
postsynaptic potentials. To a first approximation, the membrane potential of the cell is the sum
of these two events, along with any other events that may have occurred. If the two synaptic
events are nearly simultaneous, they can add and be seen as a single large event, whereas if they
occurred at different times, they would be seen as two separate events. More generally, the
degree to which spiking activity of the network of presynaptic afferents is correlated may be
reflected in the dynamics of the recorded membrane potential. b, c, The same spike train can
result from very dissimilar membrane potential dynamics. In b, the timing of each of the five
spikes (top, gray) is determined by random, threshold-crossing fluctuations in the membrane
potential (top, black) as it follows a highly stochastic, random walk that hovers just below the
spike threshold, as one might expect if the synaptic inputs to the neuron are statistically inde-
pendent of one another (bottom). In c, each spike from an identical spike train as in b results
from tall bumps in the membrane potential, which would result if the synaptic inputs to the
neuron were highly correlated in their activity (bottom).
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1997), presumably reducing the contribution of postsynaptic
nonlinearities, but bumps were observed whether or not QX-314
was present. Finally, the bumps recorded intracellularly often
co-occur with large network events, as confirmed previously by
simultaneously recording the local field potential far (�0.5 mm)
from the whole-cell recording site (DeWeese and Zador, 2004).

For all three protocols, the duration of bumps was consis-
tently brief. We quantified this by thresholding the membrane
potential at 10 mV above resting potential and measuring the
width at half the peak value for every bump that crossed thresh-
old. The longest bump duration for every neuron was typically on
the order of tens of milliseconds (maximum width of bumps,
54.6 � 3.3 ms; n � 30 neurons; all quantities are mean � SE
unless otherwise specified) (see Materials and Methods, Quanti-
fying bump duration). Thus, these auditory cortex neurons did
not show the bistable “two-state” behavior reported in other ar-
eas (Steriade et al., 1994; Wilson and Kawaguchi, 1996; Anderson

Figure 2. Membrane potential dynamics in auditory cortex do not resemble a random walk.
a1, This 4 s example of a whole-cell patch-clamp recording from an auditory cortical neuron in
vivo clearly exhibits the bumpy appearance ubiquitous in our dataset; QX-314, an intracellular
fast sodium-channel blocker, was included in the patch pipette to prevent spiking as well as
some other nonlinearities that can distort the relationship between synaptic activity and mem-
brane potential. Throughout the trace, steeply rising peaks in the postsynaptic potentials follow
most of the 65 dB, 25 ms tone pips (gray hash marks below the voltage trace; for stimulus
protocol, see Materials and Methods), consistent with the occurrence of synchronous volleys of
synaptic input. Aside from these narrow bumps, the membrane voltage remained close to the
resting potential of the neuron. a2, These large excursions from rest were not restricted to
stimulus transients. The stimulus here consisted of a 4-s-duration tone (gray bar beneath volt-
age trace), which began 15 ms following the far left of the trace. a3, Even in the absence of any
auditory stimulation, the membrane potential displayed the same bumpy appearance, even
long after the onset of the tone. b, As a control, we repeated these experiments after the topical
application of TTX, a fast sodium channel blocker, to the cortical surface so as to abolish all
presynaptic spiking and thus ensure the independence of synaptic events (see Materials and
Methods, TTX application). As the expanded view of the trace demonstrates (bottom), the
membrane potential does resemble a random walk in the absence of input correlations. We
indicated two putative mEPSPs with asterisks. c, An example trace from an unanesthetized,
head-restrained rat shows the same bumpy appearance as the records from anesthetized ani-
mals. The stimulus consisted of 100-ms-duration pure tones of 65 dB presented every 500 ms
(gray hash marks below the voltage trace). Because QX-314 was not included in the patch
pipette for this recording, the neuron sometimes fired action potentials. To allow comparison
with the previous figures, we therefore median filtered [filter duration of 3 ms (Jagadeesh et al.,
1997)] the trace to remove three spikes.

Figure 3. Throughout the neuronal population, membrane potential time courses looked
“bumpy” under all stimulus conditions tested. Four-second-duration whole-cell records ob-
tained during the presentation of 25-ms-duration tones (a, gray hash marks below traces),
4-s-duration tones (b; gray bar below traces), and silence (c) all display well isolated bumps
superimposed on otherwise flat traces sitting at the resting potential of each neuron. For each
record, the frequency histogram of membrane potential appears to the right of the correspond-
ing trace; histograms are normalized to unit height, and the membrane potential values are
uncorrected for the junction potential. Note the long tail and sharp peak of every distribution.
Each of the 12 traces was recorded from a different neuron.
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et al., 2000; Sanchez-Vives and McCormick, 2000; Cossart et al.,
2003; Petersen et al., 2003).

In addition to being brief, the shapes of stimulus-evoked
bumps were surprisingly similar to those of spontaneous bumps
in the same neuron. Mean tone-evoked and spontaneous bumps
were nearly identical in several neurons (Fig. 4a). Across the pop-
ulation, the shapes of evoked and spontaneous bumps were
highly correlated within neurons (Fig. 4b).

As a control for the possibility that the apparent bumpiness of
these records was attributable to some artifact of our recording
methodology rather than a reflection of network dynamics, we
repeated these experiments under conditions in which synaptic
events were guaranteed to be uncorrelated. Specifically, we re-

corded the membrane potential after topical application of TTX
to the cortical surface (Fig. 2b) (see Materials and Methods, TTX
application). TTX is an extracellular fast sodium channel blocker
that prevents spike propagation in axons, thus ensuring that each
unitary synaptic input to the neuron was attributable to the spon-
taneous release of a synaptic vesicle, independent of the activity of
all the other synapses. (Note that spontaneous synaptic release,
unlike spontaneous spiking activity, is independent of action po-
tentials.) In contrast to the first three examples, the time course of
this trace (Fig. 2b, expanded view) closely resembles a random
walk, as one would expect once correlations among different syn-
aptic inputs have been pharmacologically removed.

Most of our recordings were obtained from anesthetized ani-
mals. However, in a few cases (n � 5 neurons), we obtained
whole-cell recordings from the auditory cortex of head-fixed un-
anesthetized animals. An example of a response from an unanes-
thetized animal (Fig. 2c) shows bumps that are qualitatively sim-
ilar to those observed in the anesthetized preparation. Because
intracellular recording in unanesthetized animals is more techni-
cally challenging (Wilson and Groves, 1981; Covey et al., 1996;
Fee, 2000; Steriade et al., 2001; Margrie et al., 2002), and because
sound-evoked responses in auditory cortex show more heteroge-
neity in the unanesthetized preparation (Evans and Whitfield,
1964), these recordings must be considered anecdotal; although
the majority (four of five) of neurons showed bumps, we cannot
yet make any definitive statement about the prevalence of such
responses in the unanesthetized animal. Although in this small
sample we did not encounter neurons that responded with high
firing rates to the pure-tone stimuli we used, such responses do
exist in the unanesthetized preparation (Evans and Whitfield,
1964; Wang et al., 2005) and may show different subthreshold
membrane dynamics. Nevertheless, we conclude from these re-
cordings that the bumpiness of the membrane potential we ob-
served is not solely an anesthesia artifact.

Up and down states
Interestingly, subthreshold dynamics seem to be qualitatively less
bumpy, and more like a random walk, in some studies of non-
auditory cortical areas (Ferster and Jagadeesh, 1992; Destexhe et
al., 2003; Carandini, 2004). In many cases, subthreshold dynam-
ics have been characterized as two state, in which the membrane
potential toggles back and fourth between a “down” state and an
“up” state. During the down state, the neuron sits quietly at its
rest potential, whereas in the up, state it is depolarized, with
fluctuations resembling the random walk behavior depicted in
Figure 1b. Each state can last for periods as long as several sec-
onds. These two-state dynamics have been observed in a wide
range of in vivo preparations, including the visual cortex (Ander-
son et al., 2000), other cortical areas (Steriade et al., 1994; Des-
texhe and Pare, 1999; Petersen et al., 2003; Leger et al., 2005), the
neostriatum (Wilson and Groves, 1981; Wilson and Kawaguchi,
1996), in some (Petersen et al., 2003) but not other (Wilent and
Contreras, 2005; Bruno and Sakmann, 2006) barrel cortex re-
cordings, as well as in vitro (Sanchez-Vives and McCormick,
2000; Cossart et al., 2003).

It is unclear why we did not observe up states in the auditory
cortex in vivo. One possibility is that the issue is merely one of
nomenclature and that the synchronized volleys of activity we
observed in auditory cortex represent extremely brief up states. In
this view, the duration of up states can range over two orders of
magnitude, from the tens of milliseconds we typically observed
(maximum bump duration, 54.6 � 3.3 ms) to seconds, but arise
from similar network mechanisms. Indeed, it has been suggested

Figure 4. Stimulus-evoked postsynaptic potentials (or bumps) were very similar in shape to
bumps that occurred spontaneously. a1, For this neuron, each trace corresponds to the mem-
brane potential averaged across either stimulus-evoked (gray traces) or spontaneous (black
traces) bumps with peak heights falling between 5 and 10 mV (bottom pair of traces), 10 and 20
mV (second from bottom), 20 and 30 mV (third from bottom), or 30 and 40 mV (top pair of
traces). The gray and black traces are nearly identical for each of the four pairs. Bumps were
identified as every excursion of the membrane potential exceeding a 5 mV threshold above the
resting potential of a neuron. Bumps with peaks occurring between 10 and 100 ms after stim-
ulus onset were classified as stimulus evoked, and all others were classified as spontaneous; this
neuron was recorded during the short-tone protocol, which consisted of 25-ms-duration tone
pips. Bumps were aligned horizontally based on the times of their peaks. a2, a3, Same format
as a1 for two other neurons. b, For each neuron in the population, stimulus-evoked bumps were
similar in shape to spontaneous bumps, as indicated by the high correlation between the ratio
of height to width (full-width at half-maximum) of spontaneous versus tone-evoked bumps
(correlation coefficient of 0.94), and the fact that all points lie close to the diagonal line indicat-
ing equality. Each point in the scatter plot corresponds to 1 of 17 neurons and 1 of the 4 peak
height categories defined in a1 [n � (17 neurons)(1– 4 peak height categories) � 44 points]
For any given neuron, only those peak height categories containing at least one spontaneous
and at least one tone-evoked bump were included in the analysis.
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(Benucci et al., 2004) that the existence of pairwise correlations
among neurons can facilitate up-state stability, despite the ran-
dom walk appearance of the membrane potential during pro-
longed up states. However, the network dynamics responsible for
bumps and for up states have not yet been fully elucidated, so it
remains an open question whether or not their underlying mech-
anisms are the same.

Comparison between observed subthreshold fluctuations and
random walk models
The large excursions in membrane potential seen in the data are
grossly incompatible with the simplest excitation only or E&I
random walk models. To illustrate this, we computed the best fit
of each model to a representative trace shown in Figure 2a1 (see
Materials and Methods, Random walk model). For the excitation
only model, there was only one free parameter, the rate �e at
which excitatory presynaptic events arrived; this parameter was
used to fit the mean membrane potential. For the E&I model,
there were two free parameters �e and �i, corresponding the ar-
rival rate of excitatory and inhibitory events, respectively; these
were used to fit the mean and variance of the membrane poten-
tial. The excitation model is thus a special case of the E&I model.
Other model parameters, such as the resting potential of the neu-
ron, were measured directly from the recording.

Simulated sample traces generated from these models bear
little resemblance to the sample trace to which they were fit (Fig.
5a). For the excitation only model (Fig. 5b), fluctuations were
small and steady, reminiscent of (but larger than) the minute
fluctuations arising from spontaneous synaptic vesicle release
seen in the TTX control experiment, in which all spiking input
was blocked (Fig. 2b). For the E&I model (Fig. 5c), fluctuations
were larger, but, as expected, the fluctuations are steady and do
not resemble the large, well isolated bumps so prominent in the
data. These simulated traces illustrate that an uncorrelated steady
mixture of excitation and inhibition is unable to account for the
observed fluctuations in membrane potential, consistent with
previous in vitro results (Stevens and Zador, 1998).

Time-varying random walk models
Why did the E&I model fail? As noted above, even casual inspec-
tion of the sample traces in Figure 2a reveals large, infrequent
bumps in membrane potential. Because these bumps occur only
rarely, any model must fail to account for these data if it predicts
that membrane potential fluctuations arise from a constant rain
of excitatory and inhibitory inputs. The problem, then, rests in
the assumption of time invariance, or stationarity.

We can attempt to salvage the random walk models by gener-
alizing them, at the cost of extra parameters, to include time-
varying inputs. We therefore tested a model in which the excita-
tory and inhibitory event rates varied with time, on a timescale �,
thus inducing correlations among the different synaptic inputs
(see Materials and Methods, Rate modulated excitation and in-
hibition model). To fit this model, the mean and variance at each
point in time were fit to a window of length � centered at that
time, to produce time-varying population rates �e(t) and �i(t),
respectively.

For long windows (� � 200 ms) corresponding to a relatively
slowly varying input, the model fit remained poor (Fig. 5d). Not
surprisingly, the fit improved as the window length decreased;
decreasing the window length corresponds to increasing the
number of model degrees of freedom. For sufficiently fast mod-
ulations (� � 10 ms) (Fig. 5e) of the excitatory and inhibitory
event rates, the model was quite good; however, despite the effec-

tive addition of a new pair of free parameters every 10 ms, the
model still made qualitative errors, especially near abrupt
changes in membrane potential such as occur at the onsets of
bumps at which the model often made large negative swings (Fig.
5e, expanded view). To fix this, we would need to impose addi-
tional correlations between the excitatory and inhibitory inputs
so that excitation leads inhibition by a few milliseconds during
sharp increases in synaptic activity, as has previously been shown
experimentally for these neurons (Wehr and Zador, 2003).

We conclude that, although it is true that we can improve the
fit to data with the addition of an ever increasing number of free
parameters, the time-varying E&I model does not capture the
essence of the measured membrane potential unless we fit it to
the data on such a fine timescale that it no longer follows anything
resembling a random walk trajectory. These extra parameters are
manifestations of correlations among the population of presyn-
aptic inputs feeding into the recorded neuron. Unlike a random
walk, which crosses threshold at random times determined by the
chance coincidence of many small uncorrelated events, the mea-
sured membrane potential is only great enough to reach thresh-
old at specific moments when many correlated synaptic inputs
are active at once. Thus, the time-varying random walk model,

Figure 5. The random walk model does not capture the key features of the data unless we
introduce correlations among the presynaptic inputs. b shows an example trace generated by
the excitation only model (see text and Materials and Methods, Random walk model) that takes
only excitatory input that is fit to the mean of the data trace shown in a (replotted from Fig.
2a1). The model trace looks nothing like the original. c, By including inhibitory inputs to the
model (E&I model), we can fit both the mean and the variance of the data trace, but the
fluctuations in the model do not have the same bumpy character as the data. d, Allowing the
model parameters to slowly vary on a 200 ms timescale (Rate Modulated E&I model) still does
not capture the structure evident in the data. e, Fitting the mean and variance of the model to
the data trace on a fast, 10 ms timescale greatly improves the performance of the model, but it
still makes errors during abrupt changes in the membrane potential, such as the downward
swings that often occur at the onsets of steeply rising bumps in the data (expanded view,
bottom), unless we impose additional correlations between the inhibitory and excitatory inputs
(data not shown).
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although formally adequate, does not appear to be as useful a
description as our initial characterization that activity consists of
extended periods of silence punctuated by brief synchronous
bouts of activity (bumps).

Kurtosis of membrane potential distribution
The simple time-varying models we considered represent a qual-
itative improvement over time-invariant models. Their success
stems from the correlations induced among the inputs by the
time-varying population rate; these correlations give rise to the
relatively infrequent periods of elevated firing required to drive
the membrane potential to tens of millivolts above its resting
level. However, these simple models represent only a small subset
of the large class of models in which the input neurons have
correlations. There are many possible ways in which the input
neuron activity could be correlated. Just as the spiking output
places constraints on (but does not fully specify) the underlying
subthreshold membrane potential (Fig. 1b,c), so too do sub-
threshold membrane potential fluctuations constrain (without
fully specifying) the network input to the neuron. The mean and
the variance of the membrane potential, used above to fit the
simple time-invariant models, represent two such constraints.

If the distribution of membrane potential were Gaussian, the
mean and the variance would fully characterize the distribution.
Because these two parameters fully specify the time-invariant
models, they determine how good a fit the excitation only and
E&I random walk models provide to the data. To relate the ob-
served distribution with a Gaussian, we considered the entire
distribution of membrane potentials from each full trace. Figure
6a compares the membrane potential histogram for the sample
data trace and the E&I model from Figure 5c. When the synaptic
event rate is high enough to match the experimentally observed
membrane potential mean, the E&I model generates distribu-
tions of membrane potentials that are nearly Gaussian, as ex-
pected from the central limit theorem (Fig. 6a, gray line). In
contrast, the experimentally observed distribution is far from
Gaussian (Fig. 6a, black line; note logarithmic scale); the data
have many more small values (near the resting potential of the
neuron) and many more large values (attributable to the tall
bumps) than expected from the Gaussian. The poor fit of the
Gaussian to the observed distribution provides additional intu-
ition about the failure of the random walk models.

This overrepresentation of outliers in the data are a hallmark
of sparseness. Sparse signals have received much attention re-
cently in the signal processing and natural scenes community
(Simoncelli and Olshausen, 2001). A convenient way to quantify
sparsity is the kurtosis, a function of the fourth central moment of
a distribution (see Materials and Methods, Kurtosis). The kurto-
sis is a measure of the shape of a distribution compared with a
Gaussian; it is greater for distributions with more outliers, or
more values very close to the mean, making it well suited for
quantifying the “bumpiness” of a trace.

The kurtosis provides a convenient way to characterize the
sparseness of the data across the population (Fig. 6b). When ap-
plied to our data, we found that the kurtosis was high for all
conditions (short tones, 15.2 � 3.5, n � 17 neurons; long tones,
9.5 � 2.2, n � 18 neurons; silence, 14.4 � 3.0, n � 18 neurons);
as expected, only the recordings performed after the application
of TTX to block presynaptic spiking (included as a control) had a
low kurtosis (kurtosis, 0.2 � 0.3; n � 6 neurons). Thus, the high
kurtosis observed experimentally is inconsistent with the most
basic random walk models and consistent with a time-varying

extension of the model only when the model parameters vary on
a fast (� of approximately tens of milliseconds) timescale.

Estimating the number of synaptic inputs participating in
a bump
Because we are searching for a simple and compact model of the
data, we neglected the impact of many potentially important bio-
physical phenomena, including dendritic integration and synap-
tic saturation (Reyes, 2001; Benucci et al., 2004; Kuhn et al., 2004;

Figure 6. The random walk model is inconsistent with membrane potential dynamics across
the neural population. a, A histogram of membrane potential values (black line) taken from the
example trace shown in Figures 2a1 and 5a exhibits much more weight both at its peak (ap-
proximately �60 mV) and in its tail (more than approximately �50 mV) than the Gaussian-
distributed histogram (thick gray line) corresponding to the example trace plotted in Figure 5c
generated by the E&I model fit to the same mean and variance (note the logarithmic scale of the
ordinate). We quantified the difference in histogram shape with the kurtosis (see Materials and
Methods, Kurtosis), which is always 0 for the E&I model, and 	0 for otherwise flat traces
containing tall, well isolated bumps. For this example, the data trace has a kurtosis of 30.7,
whereas for traces drawn from the random walk model, kurtosis was 0.0 � 0.2 (mean � SD).
b, Across the population of 17 neurons responding to the short-tone protocol, the kurtoses of
individual traces (black points) were large and positive (note logarithmic scale) compared with
the range of values corresponding to the random walk model; the gray line indicates 1 SD above
0, which is the mean value for the model. c, Across the population, the kurtosis was high for
short tones (15.2 � 3.5; n � 17 neurons; all quantities are mean � SE unless otherwise
specified), long tones (9.5 � 2.2; n � 18 neurons), and even silence (14.4 � 3.0; n � 18
neurons), but it was consistent with the random walk model when input correlations were
removed through the application of TTX to the cortical surface (kurtosis of 0.2 � 0.3; n � 6
neurons; asterisks denote mean values significantly different from zero according to a single
sample Student’s t test for p 
 0.01) (see Materials and Methods, TTX application).
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Rudolph et al., 2004), all of which would be expected to influence
the observed distribution of membrane potential. Moreover, we
stress that the particular time-varying model we considered is by
no means uniquely specified by the data. We therefore return
here to our central, robust finding, evident in all of the sample
traces and indeed in all of the neurons from which we recorded:
fluctuations are dominated by stereotyped bumps reflecting an
abrupt, synchronized increase in network activity. It thus seems
natural to focus on the structure of the bumps themselves.

How many unitary synaptic events participate in a bump? In
previous experiments using voltage-clamp methods, the excita-
tory and inhibitory conductance changes underlying a typical 15
mV stimulus-evoked event were estimated to be comparable,
each rising �15 nS at their peaks (Wehr and Zador, 2003), with
each following a time course similar to the resulting membrane
potential. Using a rough estimate of 0.1 nS per synaptic vesicle
(Stevens and Zador, 1998; Gil et al., 1999), we estimate that un-
derlying a typical 15 mV bump are at least 1000 EPSPs and 1000
IPSPs, concentrated over a brief period and arriving at a peak rate
of at least 50 PSPs/ms (Fig. 7) (for details of this calculation, see
Materials and Methods, Estimation of the presynaptic firing
rate). This suggests that a substantial fraction of the synaptic
inputs to a neuron may participate in each network event.

Discussion
We used single-trial records of spontaneous and evoked fluctua-
tions of membrane potential in auditory cortex neurons to make
inferences about network dynamics underling spikes. Membrane
potential fluctuations were characterized by occasional large ex-
cursions (bumps, sometimes tens of millivolts high) that were
much larger than the small fluctuations predicted by simple ran-
dom walk models. We infer that these bumps are the manifesta-
tion of large synchronized volleys of action potentials from the
presynaptic population, with �1000 PSPs contributing to the
larger events. These dynamics suggest that spike timing is con-
trolled by concerted firing among input neurons rather than by
small fluctuations in a sea of background activity.

Membrane potential dynamics in the auditory cortex of intact
animals have been examined previously by several groups (De
Ribaupierre et al., 1972; Volkov and Galazyuk 1992; Ojima and
Murakami, 2002; Wehr and Zador, 2003; Zhang et al., 2003;
DeWeese and Zador, 2004; Tan et al., 2004; Las et al., 2005), and
the present data appear consistent with that body of work. In
particular, examples of subthreshold activity presented in those
reports typically appeared to consist of brief excursions from rest,
similar to the bumps that dominate the dynamics we observed.
The subthreshold dynamics we see also appear consistent with at
least some data from barrel cortex (Wilson and Groves, 1981;
Ferster and Jagadeesh, 1992; Steriade et al., 1994; Wilson and
Kawaguchi, 1996; Destexhe and Pare, 1999; Anderson et al., 2000;
Sanchez-Vives and McCormick, 2000; Cossart et al., 2003; Destexhe
et al., 2003; Petersen et al., 2003; Benucci et al., 2004; Carandini,
2004; Leger et al., 2005; Wilent and Contreras, 2005)

Sparse firing regime
Much of the previous work on cortical dynamics has focused on
the high-firing regime (Shadlen and Newsome, 1998), or high-
conductance regime (Destexhe et al., 2003), in which neurons fire
at a high rate and the input conductance of a neuron is dominated
by synaptic inputs. Under the conditions of our recordings, how-
ever, firing rates in auditory cortex are low to moderate (De-
Weese et al., 2003); we refer to this as the “sparse-firing regime.”

The present results reflect the mechanisms of the underlying cor-
tical networks in vivo operating in this regime.

How relevant are neurons in the sparse-firing regime to per-
ception and behavior? One might question their relevance for at
least two reasons. First, our data were recorded mainly in anes-
thetized animals. It has long been known that, in the unanesthe-
tized auditory cortex, spiking responses can be either sustained or
transient (Evans and Whitfield, 1964), whereas under anesthesia,
transient responses dominate. Anesthesia does not, however,
simply cause a gross reduction of activity; in the awake prepara-
tion, the typical firing rate for neurons not driven by optimal
stimuli is �2– 4 spikes/s (Wang et al., 2005), comparable with
that observed under anesthesia. Indeed, direct comparison of the
same neurons before and after anesthesia reveals only a modest
anesthesia-induced decrease in spontaneous firing rate (Talwar
and Gerstein, 2001). Thus, the low typical firing rates observed in
our preparation are not restricted solely to the anesthetized con-

Figure 7. How many presynaptic action potentials give rise to a typical synchronous volley?
To get an order-of-magnitude estimate of the collective firing rate of the presynaptic popula-
tion, we used a simple model that relied on previous measurements of the relationship between
membrane potential and synaptic conductance (Wehr and Zador, 2003) and mEPSC size
(Stevens and Zador 1998; Gil et al., 1999) (see Materials and Methods, Estimation of the pre-
synaptic firing rate). To a first approximation, we estimate that the collective firing rate of the
excitatory presynaptic population approximately follows the same time course as the recorded
membrane potential itself, with �3.3 mEPSCs occurring every millisecond for every millivolt
above rest in the whole-cell record. For example, the 15-mV-tall bump in the membrane po-
tential (a; same trace as in Figs. 2a1, 5a) occurring �1.5 s before the end of the trace, corre-
sponds to �50 mEPSCs per millisecond at its peak. Assuming that the probability of vesicle
release, p, is close to 1, this is consistent with �50 spikes/ms from excitatory presynaptic fibers,
which corresponds to �1000 spikes over the entire volley. Assuming that these spikes are
equally distributed across 10,000 presynaptic neurons (Braitenberg and Schuz, 1998), we sim-
ulated spike rasters for 1000 of these neurons (b, top) and plotted the peristimulus time histo-
gram (PSTH) for the full population (bottom). Note that this does not include any inhibitory
inputs, which play as significant a role as the excitatory inputs near the peaks of the larger
bumps (Wehr and Zador, 2003), and that these estimated spike rates may well be underesti-
mates if p is actually 
1, as it is often reported to be (Castro-Alamancos and Connors, 1997;
Dobrunz and Stevens, 1997; Huang and Stevens, 1997; Murthy et al., 1997).
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dition. Moreover, similar behavior was observed among the few
recordings obtained in unanesthetized animals.

The second concern is more subtle. In the awake animal, it is
sometimes possible to find the “optimal stimulus” that maxi-
mizes the firing rate of a particular neuron (deCharms et al., 1998;
Barbour and Wang, 2003; Wang et al., 2005). Although the stim-
uli we used, pure tones, are not optimal for most neurons in the
primary auditory cortex, one might imagine that it is precisely the
small subpopulation of highly activated neurons (those for which
these tones are the optimal stimuli) that drives perception and
behavior, as has been suggested for decisions about visual motion
direction in area MT (Britten et al., 1996). A strong interpretation
of this view would maintain that only those stimuli capable of
driving at least some neurons optimally can be perceived or acted
on. Although this strong interpretation cannot be ruled out on
first principles, it has not been proven either; given how large the
space of possible auditory stimuli is and how difficult it is to drive
neurons in auditory cortex optimally, it is not clear that for every
auditory stimulus capable of eliciting a behavioral response there
exist well driven neurons. Thus, we provisionally adopt a conser-
vative position and remain open to the possibility that neurons in
the sparse-firing regime may play some role in perception and
behavior. It is clear that additional experiments, beyond the scope
of the present study, will be needed to understand the relative
importance to behavior of sparse- and high-firing regimes under
various conditions.

Computing with bumps
We have shown that what drives auditory cortical neurons to
spike in the sparse-firing regime is a tightly synchronized volley of
inputs. What does the existence of such events tell us about cor-
tical computation? Previous studies have shown that, at least un-
der some conditions, stimulus transients can trigger spikes with a
precision of a few milliseconds [visual cortex (Bair and Koch,
1996; Buracas et al., 1998)] or even one millisecond [auditory
cortex (DeWeese et al., 2003; Heil 2004)]. This was demonstrated
by measuring spike timing jitter across multiple presentations of
the same stimulus. Experimental observations of patterned neu-
ral activity involving synchronous spiking have now been made
in a variety of cortical preparations (Schwartz et al., 1998; Ikegaya
et al., 2004). However, the fact that an experimenter can extract
information about a stimulus from the precise timing or pattern
of spikes (Bialek et al., 1991; Buracas et al., 1998; Furukawa and
Middlebrooks, 2002) does not necessarily imply that this timing
is used by the organism to encode stimulus features or perform
computations. Moreover, it is uncertain whether such precisely
timed spikes are exclusively stimulus locked (e.g., to stimulus
transients) or whether such precision can occur in response to
internally generated events such as inputs from another (nonsen-
sory) cortical region.

One might suppose that the strong correlations we infer from
membrane potential dynamics would be evident from paired ex-
tracellular recordings (Eggermont and Smith, 1995). However,
such elevated correlations across even a few percentage of neu-
rons might not be detectable, particularly if the correlations were
transient, as might be expected if activity were organized into
“cell assemblies” (Hebb, 1949; Harris et al., 2003). Perhaps we
can detect these synchronized volleys because, by recording in-
tracellularly, we are sampling just the relevant subpopulation that
contributes to the cell assembly. Moreover, by simultaneously
recording the local field potential with a second electrode, we
have shown previously (DeWeese et al., 2003) that fluctuations in
the whole-cell record are correlated with the collective synaptic

activity shared by large groups of distant (�0.5 mm) auditory
cortical neurons.

From a computational point of view, it might seem puzzling
that cortical neurons should behave in such a correlated manner.
Indeed, a literal reading of the diagram in which all inputs fire at
once during every volley (Fig. 1c) would seem to have little prom-
ise for computations beyond merely transmitting an exact copy
of the spike train shared by the full presynaptic subpopulation to
the next stage of processing. Fortunately, with up to 10,000 exci-
tatory inputs feeding into a typical cortical neuron (Braitenberg
and Schuz, 1998), an enormous number of distinct subsets of
synapses could potentially be responsible for spike production on
different volleys, so that the output spike train of the neuron need
not be an exact copy of a spike train from any of its presynaptic
inputs.

Our observations suggest that the same network dynamics
responsible for laying down stimulus-evoked spikes with high
temporal precision underlie other spikes as well. This raises the
possibility that, in the sparse-firing regime, precise spike timing
may play a role in computation. It is sometimes suggested that
computational schemes that depend on precise spike timing must
necessarily be sensitive to noise. Our data do not, however, sug-
gest that “every spike matters,” because the synchronous inputs
underlying each spike consist of hundreds or thousands of PSPs.
The timing of spikes is thus robust to the addition or loss of
presynaptic inputs.

Our study raises a number of questions. For example, what
network properties could give rise to such dynamics? Theoretical
work has shown that synchronized bursts of activity across the
network (Tsodyks et al., 2000) and even concerted volleys of
activity propagating from one subpopulation to the next (Litvak
et al., 2003) might be necessary consequences of cortical connec-
tivity. Additionally, specific proposals for how cortical processing
could proceed with these synchronized volleys have been ad-
vanced (Aertsen et al., 1996; Diesmann et al., 1999; Loebel and
Tsodyks, 2002; Beggs and Plenz, 2003; Reyes, 2003; Shu et al.,
2003). In future work, it will be interesting to test whether mem-
brane potential dynamics measured in the awake auditory cortex
show the same degree of input correlation as we found in both
our anesthetized population and our preliminary recordings
from unanesthetized animals. Most exciting will be to observe
membrane potential dynamics within the context of well con-
trolled behavioral paradigms, so that we may determine how
these input correlations depend on task contingencies and atten-
tional state.
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