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Abstract

We describe a directed bilinear model that learns higher-
order groupings among features of natural images. The
model represents images in terms of two sets of latent vari-
ables: one set of variables represents which feature groups
are active, while the other specifies the relative activity
within groups. Such a factorized representation is bene-
ficial because it is stable in response to small variations
in the placement of features while still preserving informa-
tion about relative spatial relationships. When trained on
MNIST digits, the resulting representation provides state of
the art performance in classification using a simple classi-
fier. When trained on natural images, the model learns to
group features according to proximity in position, orienta-
tion, and scale. The model achieves high log-likelihood (-94
nats), surpassing the current state of the art for natural im-
ages achievable with an mcRBM model.

1. Introduction
Many image analysis and classification tasks depend on

having a good representation of the data. In recent years,
significant effort has been devoted to learning these repre-
sentations from the statistics of natural images. In partic-
ular, sparse coding models have been shown to yield fea-
tures that match the properties of neurons in the visual cor-
tex and also yield improved performance at image analysis
and classification tasks [38, 1, 39, 16, 30, 19, 18, 28, 26].
However, the coefficients resulting from sparse coding typ-
ically exhibit strong statistical dependencies and can change
abruptly in response to even small changes in the input. Pre-
sumably, methods that capture these dependencies and more
explicitly represent the group structure among coefficients
should provide more stable representations and hence bet-
ter performance in classification. One approach to modeling
these dependencies is based on subspace models, which im-
pose a prescribed group structure on the coefficients by pe-
nalizing activations of groups rather than individual mem-
bers within a group [13, 3, 9]. However, this approach is

still unsatisfying because the group structure is not learned.
Recent attempts to learn the group structure have been made
in undirected models [17, 30, 31, 6]. Here, we do the same
in a directed model.

Previous work on modeling image transformations [21,
25, 22], separating content and style [7, 10, 11], and cap-
turing higher-order dependencies in natural images [14, 15,
27], draws upon a simple but powerful bilinear model, in
which an observation x is described by a mixture of basis
elements with pairs of multiplicative coefficients c and d:

xl =
∑
jk

Γjkl cj dk . (1)

This model was shown to be capable of separating an ob-
ject’s identity (or ‘content’) from its pose (‘style’) with
some success [7]. In [7], Equation 1 is fit using an itera-
tive, alternating optimization method based on SVD. The
authors do not describe a probabilistic interpretation, but if
Gaussian priors are assumed then their technique can be un-
derstood as a variational (MAP) EM based algorithm; sim-
ilar approaches have also been investigated with sparse pri-
ors [10, 3, 8, 14, 9].

Using a probabilistic (Monte Carlo) method, we fit bi-
linear models to the MNIST handwritten digit database
and image patches drawn from natural scenes. In MNIST,
we show that improvements in the model likelihood under
hold-out data correlate with improvements in a classifica-
tion task. In natural scenes, the parameters learn sensible
group dependency structures, and samples from the mod-
els capture several salient statistical properties of natural
image patches, including their contrast variance and long-
range correlations (phase alignments of edges).

2. Model
The model is formulated in terms of two layers of rep-

resentation, as illustrated in Figure 1. The first layer rep-
resents the image data in terms of a set of features using a
linear generative model:

x = Φ a + n , (2)
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Figure 1. The bilinear model is formulated in terms of two layers
of representation. The first layer represents the image data in terms
of a set of features Φ. The second layer factorizes the first layer
representation in terms of feature groups (Ψ) represented by latent
variables d, and their relative activations (Θ) represented by latent
variables c.

where x ∈ RL is a vector representing the image data, such
as pixels, or PCA coefficients. Φ ∈ RL×M is a matrix of
features, and n ∈ RL is Gaussian noise with variance σ2,
n ∼ N (Φ a, σ2 I). The second layer is a factored represen-
tation of a:

a = Θ c � Ψ d , (3)

with Θ ∈ RM×J , Ψ ∈ RM×K , and � denoting an
element-wise product. The prior distributions on the latent
variables c and d impose a functional asymmetry between
what is learned by Θ and Ψ. The intention is for Ψ to
learn how groups of features co-activate (their presence or
absence), while Θ learns the relative amplitudes of features
after the part modeled by Ψ d has been factored out. The d
variables should represent patterns of co-activation that are
invariant to local perturbations of shape in the image, while
the variations in shape are represented by the c variables.

The c variables are encouraged to explain variability by
the use of an isotropic Gaussian prior, which is rotationally
invariant and non-sparse:

c ∼ N (0, I) . (4)

The Ψ matrix is encouraged to learn meaningful, frequently
occurring patterns in the image feature activations by se-
lecting a prior distribution for the d variables that prefers
directions aligned with the coordinate axes. The following
choices are explored:

d ∼ E(I) (5)
d ∼ L(I) (6)

log d ∼ N (0, I) (7)

log d ∼ N (0,Ω ΩT) (8)

where E(I) and L(I) denote factorial exponential and
Laplace distributions with rate parameter one.

This two-layer hierarchical structure can also be viewed
as a factorization of the parameter tensor Γ from Equation 1

into the product of three matrices,

Γjkl =
∑
m

Φlm Ψmj Θmk . (9)

This factorization reduces the number of model parameters
from JKL to M(J + K + L), where L is the number of
values in the image data, J is the number of content dimen-
sions, K is the number of style dimensions, and M is the
number of factors coupling each l, j, and k. This technique
has recently been used successfully by [22, 31] to find re-
duced dimensionality parameterizations that are reasonably
matched to structure in the data being modeled.

Finally, note that if Ψ = I and Θ = I, this model takes
the form of a Gaussian scale mixture [36].

3. Model estimation and evaluation
Since c and d are latent, we use Expectation Maximiza-

tion (EM) to fit model parameters Λ ≡ {Φ,Ψ,Θ,Ω}. In
the E-step we update samples from the posterior distribu-
tion computed at the previous time step Q(t)(c,d|x) using
a Hamiltonian Monte Carlo sampler, described in the next
section. In the M-step, maximization is performed using
L-BFGS [2].

3.1. Sampling from the posterior

P (c,d|x,Λ) is sampled using a variation on a Langevin
dynamics sampler with partial momentum refreshment. The
underlying technique is introduced in [12], and is clearly
presented in [24] (Sections 5.2 and 5.3). The momentum
refreshment rate β is set such that half the momentum power
is replaced per unit simulation time. Thus, the update to the
momentum p, applied after every leapfrog step, is given by

p′ = −
√

1− β p +
√
β r, (10)

β = 1− exp (ε log (1/2)) , (11)

where p′ is the new momentum, r ∼ N (0, I), and ε is the
length of each leapfrog simulation step.

Rather than sampling from the posterior repeatedly for
each item, an entire batch of data is loaded into memory, and
one particle for each data item is evolved simultaneously.
This avoids a significant number of burn-in steps that would
be required if the particles were initialized with randomized
positions and momenta on each iteration of E-M. Instead,
the sampling algorithm is initialized once, at the beginning
of learning, by loading a large set of data {xb}b=1..B , allo-
cating space for one particle (represented by a position and
momentum) per data item, and initializing the position and
momentum by drawing from their respective priors. The po-
sition consists of the c and d together. The sampling time-
step ε and the number of sampling iterations τ between M
steps are chosen at the beginning of learning and held fixed.
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With ε = 0.01, only a slight discretization error is in-
curred, and nearly all update steps are accepted. We there-
fore skip the rejection step entirely, reducing the computa-
tions per update step. We measure the likelihood of the so-
lutions we obtain [33], and have confirmed that this approx-
imation does not reduce the quality of the learned model,
and sometimes decreases the number of learning steps re-
quired as well as the time per learning step. When samples
are far from equilibrium, even rare momentum reversals can
slow their approach to the equilibrium distribution.

Since the exponential distribution is defined only over
the positive real interval, there remains the practical matter
of handling the constraint at zero, which we accomplish by
negating the position and momentum for d variables when
their position becomes negative after running a step in the
dynamics, as described in [24] (Section 5.1 and Figure 8).

3.2. Maximization with respect to Λ

Maximizing the lower bound L(Q,Λ) w.r.t. Λ amounts
to maximizing

∫
Q(c,d|x) logP (x, c,d|Λ) dc dd. This is

equivalent to minimizing the energy, E, averaged over the
samples arg minΛ

1
B

∑B
b=1E(qb), which is accomplished

using L-BFGS [2].

3.3. Likelihood measurement

Separately, we have developed a practical, robust method
for log likelihood estimation, Hamiltonian Annealed Impor-
tance Sampling [33], which is based on Hamiltonian Monte
Carlo and annealed importance sampling [23]. We use this
technique to evaluate the log likelihood of several image
models for comparison purposes.

4. Model recovery

This E-M learning algorithm can recover model param-
eters used to generate artificial data. We demonstrate re-
covery for model parameters chosen as follows. Φ = I,
entries in Θ drawn randomly from a Laplace distribution
with scale parameter one, and Ψ set to have a non-trivial
overlapping group structure: with half as many d variables
as c variables, each d variable was coupled to three layer-
one features by activating three entries of each Ψ column,
and setting the rest to zero. The rows of Ψ were given
unit norm. These parameter settings are illustrated in the
first column of Figure 2. 2,000 training samples were gen-
erated using this model and Equation 2, with σ = 0.1,
L = M = J = 16, and K = 8.

Next, the model parameters were optimized using the E-
M procedure described above, starting from the following
random initialization: the columns of Φ were set to random
unit length vectors, Θ to I, and all the entries of Ψ were
set to 1/

√
K. Since there is a multiplicative degeneracy be-

tween the length of the columns of Φ and the rows of Ψ and
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Figure 2. Model recovery. 2,000 data samples were generated from
the model by setting the parameters as shown in the ‘True’ column,
drawing from the priors for c, d, and n, then generating x samples
via Equation 2. The model parameters were then estimated by our
E-M algorithm, from random initial conditions. The ‘Estimated’
column shows the parameters after 10,000 learning iterations. The
‘Difference’ column shows the difference between true and esti-
mated parameters.

Θ, after every M-step we multiplied by the appropriate fac-
tors to maintain unit norm in the columns of Φ and the rows
of Ψ. Figure 2 shows the parameters recovered after 10,000
iterations of E-M in the ‘Estimated’ column. (Most of the
correct structure is apparent after only 1,000 iterations.)

5. Experiments on handwritten digits
A widely accepted hypothesis in the vision community

is that improvements to statistical models of images will
lead to improvements in classification tasks, object recog-
nition tasks, and other applications such as denoising and
in-painting. Though performance on the fully supervised
MNIST problem is near perfect, there is no algorithm that
can classify digits with as few labeled examples as a hu-
man. For this reason the MNIST dataset is well suited to
demonstrate the utility of unsupervised learning for classifi-
cation. Here we show that increasing the log likelihood, and
complexity, of a probabilistic model of digits also increases
classification accuracy.

5.1. Training

The MNIST handwritten digit recognition problem con-
sists of 60,000 training and 10,000 testing examples, each
a 784 dimensional (28x28 pixels) binary vector. Our ap-
proach to classification is to first use the 60,000 training
examples – without their labels – to estimate the model pa-
rameters. The learned model should then function to fac-
tor the pixels into latent variables that better represent the
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causal structure of the data. Assuming that the model effec-
tively carries out this task, the learned representation may
improve accuracy in a classification task, even though the
goal of classification did not play a role in the parameter
estimation process.

We train one-vs-all classifiers for each of the digits, 0-
9, and compute class probabilities based on the distance of
a point from the margin; points are assigned to the class
with the highest probability. The C-SVM formulation [5] is
used, where the parameter C establishes the cost of turning
on support vectors to achieve separability; C = 10 for all of
the experiments described in this paper. Using a modified
version of LIBSVM [4] that incorporates the fast approxi-
mate intersection kernel [20], we solve the SVM optimiza-
tion problem, inputting the model’s latent representation for
each digit.

5.2. Results

First, a model with σ =
√

0.1, L = 784, J = 200,
K = 200, and M = 200 is applied to the MNIST bench-
mark task. Each digit is preprocessed by subtracting the
mean, and scaling the resulting real valued vector to have
unit norm. Next, 10,000 iterations of E-M are run to learn
the model parameters using d ∼ E(I), which takes about
one day on an eight core machine. When only Φ is learned,
and Ψ and Θ are set to the identity, basis functions in Φ
developed large-scale spatial structure, sometimes tracing
out entire digits. When Ψ and Θ are subsequently learned
along with Φ, these more global structures disappear com-
pletely, accompanied by the emergence of non-zero off-
diagonal entries learned in Ψ and Θ. After learning, MAP
estimates for all of the training and testing examples are
computed using L-BFGS. The representation used for clas-
sification is a concatenation of the c and d variables (i.e.,
400 coordinates per digit).

Using the RBF kernel, this procedure achieves state of
the art performance for knowledge-free methods: 0.96% er-
ror. During evaluation, the order of complexity of a support
vector machine classifier is in general a monotonically in-
creasing function of the product of the number of support
vectors and the number of coordinates in the representation.
However, certain kernels, such as the linear kernel and the
fast approximate intersection kernel, have run-time com-
plexities that depend only on the number of coordinates and
are thus advantageous. For this reason, it is also worth not-
ing that our representation achieves 1.72% error using the
fast intersection kernel, superior to [40] in terms of accu-
racy, with the added benefit of requiring fewer coordinates.

Finally, three separate models are trained on a more dif-
ficult variation of the MNIST task, where the digits are rep-
resented by only 128 PCA components, and only 2,500 la-
beled training examples are utilized. This experiment re-
veals a correlation between average log-likelihood on the

Model Size Avg. log likelihood Accuracy

factorial 144 −161.52± 6.76 81.90%
full 144 −107.16± 4.34 92.50%
full 256 −92.23± 5.74 93.99%

Table 1. MNIST classification accuracy by model using a linear
kernel with only 2,500 training labels and the first 128 PCs.

test set and classification performance. We probe the rela-
tionship between likelihood and classification in two ways:
first, in the context of changing from a factorial prior to a
non-factorial prior; second, in the context of dimensionality
expansion (from 144 to 256). For these models, we perform
different preprocessing than for the benchmark task. Here,
we subtract the mean from each digit, then project onto the
top 128 PCA components (of the training set), which retains
95.19% of the variance of the original digits, then whiten
by rescaling each dimension to unit norm. All three mod-
els have L = 128, σ = 0.1, and J = K = M ; thus, the
model size can be specified by a single number. The first
model has size 144, but only Φ is learned – Ψ and Θ are
set to I. The second model is identical to the first, but Φ,Ψ
and Θ are all learned. The third model has size 256 and all
parameters are learned. Table 1 shows the log likelihood of
each of these three models averaged over 100 random dig-
its from the test set. Model one has the lowest average log
likelihood, and the worst classification performance. When
a non-factorial prior is learned, the average log-likelihood
improves by 54 nats, and classification accuracy improves
by 10.6%. When the size of the model is expanded slightly
from 144 to 256, the corresponding improvements are 15
nats and 1.49%.

6. Experiments on natural images
Four bilinear models are trained on 100,000 16x16 pixel

image patches taken at random from 4,112 linearized im-
ages of natural scenes from the van Hateren dataset [35].
The extracted image patches are first logged, and then mean
subtracted. They are then projected onto the top 100 PCA
components, which retains 97.11% of the variance of the
original patches, and whitened by rescaling each dimension
to unit norm. For all models, L = 100 (the number of PCA
components), and J = K = M . We set σ to 0.1, initialize
Ψ and Θ to I, and Φ to random with unit norm columns,
then run 40,000 iterations of E-M using τ = 10, ε = 0.01,
and 8 iterations of L-BFGS in the M-step. This takes about
two days on an eight core machine.

6.1. Comparison to the mcRBM

The mean and covariance restricted Boltzmann machine
(mcRBM) [29] is an undirected analogue of our directed
bilinear model. The high quality of the samples produced
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Model Size 〈log likelihood〉
linear, a ∼ L(I) 100 −122.80± 2.43
bilinear, d ∼ L(I) 100 −117.27± 2.66
bilinear, d ∼ L(I) 400 −99.52± 2.73
bilinear, log d ∼ N (0, I) 100 −98.95± 2.28
student-t POE 400 −97.60± 2.55
mcRBM 400 −97.58± 2.67
bilinear, log d ∼ N (0,Ω ΩT) 100 −94.62± 2.44

Table 2. Model quality comparison. Average log-likelihood is
measured on a hold-out set of 1000 image patches.

by the mcRBM has motivated the exploration of similar
models [6], and for these reasons it is a particularly rele-
vant comparison. We define the mcRBM model using the
marginal energy function EmcRBM implemented in the re-
leased code, which differs slightly from the version given in
[29]:

EmcRBM(x) = −
K∑
k=1

log

(
1 + e

1
2

PL
l=1 Plk

(Clx)2

||x||22+ 1
2

+bc
k

)

−
J∑
j=1

log
(

1 + eWjx+bm
j

)
+

1
2σ2

xTx− xTbv , (12)

with parameters: P ∈ RL×K , C ∈ RL×M , W ∈ RJ×M ,
bm ∈ RJ , bc ∈ RK , bv ∈ RK , σ ∈ R. We trained two
mcRBM models, both with L = 100. For the smaller model
we use K = 100, M = 100; for the larger, K = 400, M =
400. Training was performed using several techniques: CD-
1, CD-5, Persistent CD, Fast Persistent CD [34], and Persis-
tent MPF [32]. The model estimated using Persistent MPF
had the highest log likelihood, and is the one presented.

6.2. Comparison to the Product of Student’s t-test
model

The Product of Student’s t [37] is a linear, undirected
model for natural image patches, which performs signifi-
cantly better than any current competing linear models. It
takes the form:

P (x) ∝
∏
j

1(
1 + (Wjx)2

)αj
, (13)

where W ∈ RJ×L and α ∈ RJ+. It was trained via Persis-
tent MPF, with J = 400.

6.3. Results

The average log-likelihood of several models of natural
image patches is compared in Table 2. When the correct
prior is selected for the d variables, the bilinear model ex-
ceeds the performance of the mcRBM. The learned param-

eters for a bilinear model with d ∼ E(I) are shown in Fig-
ures 3 and 4. (The other priors produce qualitatively simi-
lar results.) Each column of Figure 3(a) shows 10 columns
of Φ, organized into groups and sorted according to the
strength of the corresponding weight in a column of Ψ. The
columns of Φ learn to be oriented, bandpass functions. Sim-
ilar to what happens with digits, in natural images we find
that the spatial extent of each Φ basis element shrinks when
the marginal over a is allowed to be non-factorial. Since a
single d variable can then control a whole group of func-
tions, the model learns to link together edges with similar
orientation to form elongated structures. This is evident in
Figure 3(b), where the image component controlled by sev-
eral of the d variables is shown to produce an elongated
structure, and one that is significantly more complex than a
Gabor (if Θ c is set to be a vector of all ones, the averaged
group activations shown in Figure 3(b) are the image com-
ponents contributed by a single d variable). Notice there is
significant variety among these groups, and that they cap-
ture several properties of natural image patches, such as
elongated structures across the entire patch, and different
types of oriented and non-oriented textures.

The coupling structure encoded by Θ can be visual-
ized by displaying the columns of Φ that correspond to the
largest entries in each column of Σ = Θ ΘT, which gives
the covariance of the variable f = Θ c – a useful way to in-
terpret Θ. In Figure 4, each displayed column corresponds
to a column in Σ, with the upper squares holding the bases
with the strongest corresponding Σ entries. In Figure 5,
samples from several bilinear models are provided for vi-
sual comparison.
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the model according to equation 2. (b) Ψ and Θ were also learned. (c) Bilinear model with log d ∼ N (0, Ω ΩT). (d) Natural image
patches from the training set.
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