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ABSTRACT

Sparse coding networks, which utilize unsupervised learning to
maximize coding efficiency, have successfully reproduced response
properties found in primary visual cortex [1]. However, conven-
tional sparse coding models require that the coding circuit can fully
sample the sensory data in a one-to-one fashion, a requirement not
supported by experimental data from the thalamo-cortical projec-
tion. To relieve these strict wiring requirements, we propose a sparse
coding network constructed by introducing synaptic learning in the
framework of compressed sensing. We demonstrate a new model
that evolves biologically realistic, spatially smooth receptive fields
despite the fact that the feedforward connectivity subsamples the
input and thus the learning must rely on an impoverished and dis-
torted account of the original visual data. Further, we demonstrate
that the model could form a general scheme of cortical communica-
tion: it can form meaningful representations in a secondary sensory
area, which receives input from the primary sensory area through a
“compressing” cortico-cortical projection. Finally, we prove that our
model belongs to a new class of sparse coding algorithms in which
recurrent connections are essential in forming the spatial receptive
fields.

Index Terms— adaptive coding, biological system modeling,
random codes, image coding, nonlinear circuits

1. INTRODUCTION

Guided by the early ideas on efficient sensory coding [2, 3], self-
organizing network models for sparse coding have been critical in
understanding how essential response properties, such as orientation
selectivity, are formed in sensory areas through development and
experience [1, 4]. There is now a wealth of such models, all based on
a set of similar connectivity patterns: a neuron receives feedforward
drive from the afferent input and competes with other neurons in the
network through mainly inhibitory lateral connections, see [5, 1, 6,
7, 8]. Some of these models are capable of reproducing the response
properties in primary visual cortex quantitatively, for instance, the
network model proposed in [6] that implements an algorithm called
optimized orthogonal matching pursuit [9].

While these models match physiological data quite impres-
sively, their correspondence to the anatomical connectivity in cortex
is problematic. According to the models, the neurons must have
access to the full data, for instance, to all pixels of an image patch.
Many models even suggest that each neuron has the feedforward
wiring in place so that the synaptic structure in the feedforward path
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can match the receptive field exactly. It is unclear if the develop-
ment of the thalamic projections into V1 can reach such connection
density and microscopic precision – even though thalamic receptive
fields do match the receptive fields of monosynaptically connected
V1 cells with some precision [10, 11]. Here, we explore learning
schemes for neural representations that relieve these requirements
on the feedforward wiring. In addition, we assess the ability of these
learning schemes to account for learning in cortico-cortical projec-
tions, for which it has been established that only a fraction of local
cells in the origin area send fibers to a target area [12]. Therefore,
conventional sparse coding at the receiver end can not work.

To construct sparse coding networks with less restrictive wiring
conditions we build on compressed sensing or compressed sampling,
a method originally developed for data compression by subsampling.
The decompression step in these algorithms has a close similarity to
sparse coding models and thus these methods can form a framework
for developing a new class of neural networks for self-organizing
neural representations in cortical areas. Specifically, we explore the
hypothesis of a generic scheme of cortical communication in which
each cortical area unwraps subsampled input data into a sparse code
to perform local computations and then sends a subsampled version
of its local representation to other cortical areas.

2. ADAPTIVE COMPRESSED SENSING

Conventional sparse coding is governed by the objective function

E(x,a,Ψ) =
1

2
||x−Ψa||2 + S(a). (1)

Here x ∈ Rm is the input data, Ψ is a real m × n matrix whose
columns form a dictionary for constructing the input, and a is a co-
efficient vector for this reconstruction: x̃ = Ψa. The function S(a)
is a sparseness constraint that penalizes neural activity and forces the
coefficient vector to be sparse.

For a given input x, the sparse coding operation is given by an
energy minimization

a(x) := arg min
a
E(x,a,Ψ) ∈ Rn. (2)

We adapt the dictionary to the data by minimizing E(x,a(x),Ψ)
from Eq. 1 and Eq. 2 with respect to Ψ. Using gradient descent
for the adaptation yields a Hebbian synaptic learning rule for the Ψ
components [1, 6].

Compressed sensing is a technique for data compression using a
random projection matrix Φ to compress the data x ∈ Rm to Φx ∈
Rk with k < m. The decompression uses energy minimization (2)
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(a) Feedforward weights and receptive fields of sparse
coding circuit [6]. The patterns look indistinguishable to
the eye and can be proven to be the same (see Thm 1).

ACS FF ACS RF ACS (2nd stage)  RF

(b) Feedforward weights (ACS FF) and receptive fields (ACS RF) of adaptive com-
pressed sensing circuit. The plot “ACS (2nd stage) RF” depicts receptive fields learned
in a cascaded secondary sensory area receiving Φ2a(x) as the input.

Fig. 1. Comparison of Feedforward weights (FF) and Receptive Fields (RF) of various models.

of an error-based energy function similar to Eq. 1:

E(x,a,Φ) =
1

2
||Φx−ΦΨa||2 + S(a). (3)

The original data is reconstructed as x̃ = Ψ a(Φx). In conventional
compressed sensing, a fixed dictionary Ψ is chosen. The decompres-
sion can be shown to work if (i) a dictionary Ψ is used in which the
data can be sparsely represented, (ii) matrices Φ and Ψ are incoher-
ent, and (iii) the dimension of data compression k is larger than the
sparsity of the data [13, 14].

Building on a model by Rehn and Sommer [6], we introduce
adaptive compressed sensing (ACS), an adaptive version of com-
pressed sensing governed by:

E(x,a,Φ,Θ) =
1

2
||Φx−Θa||2 + λ||a||L0 (4)

= −x>Φ>Θa +
1

2
a>Θ>Θa + λ||a||L0 + const.

Learning is executed by gradient descent on Θ in exactly the same
fashion as in conventional sparse coding, e.g. [1, 6]. Note, however,
the difference between ACS and conventional sparse coding. The
new algorithm (4) forms a dictionary of the compressed data, the k×
n matrix Θ, whereas conventional sparse coding forms a dictionary
of the original data, an m × n matrix. Although we use the L0-
sparseness constraint to penalize the number of active units, S(a) =
λ||a||L0, similar schemes of adaptive compressed sensing can be
realized with other types of sparseness constraints.

Network implementation of ACS: Analogous to earlier models
of sparse coding, coding in ACS can be implemented in a network
where each neuron i computes the gradient of the two differentiable
terms in Eq. 4 as

∂E′

∂ai
= −(x>Φ>Θ)i + (Θ>Θa)i, (5)

see [6] for further detail. In the neural network for the ACS method
the feedforward weights are FF := Φ>Θ and the competitive feed-
back weights are FB := −Θ>Θ. Note that if Φ is the identity
matrix, ACS coincides with conventional sparse coding for which
the corresponding neural network would be defined by FF = Ψ
and FB = −FF>FF [1, 6]. The important difference between
the two wiring schemes is that the feedforward weights of ACS sub-
sample and mix the original data. Thus, coding and weight adapata-
tion in ACS lack the full access to the original data that is available
to conventional sparse coding. Remarkably, the simulation experi-
ments described in the next section demonstrate that the neurons in

the ACS network still develop biologically realistic receptive fields,
despite the limited exposure to the original data.

3. SIMULATION EXPERIMENTS WITH ADAPTIVE
COMPRESSED SENSING

We compared the ability of networks described in section 2 to code
patches of natural scene images and form receptive fields. The im-
ages were preprocessed by “whitening,” as described in [1]. The
coding circuits encoded patches of 12 × 12 pixels, making the di-
mension of the data m = 144. For ACS, we used a sampling matrix
Φ that downsampled the original data to k = 60 dimensions. All
coding circuits contained n = 432 neurons, thereby producing rep-
resentations of the original data a ∈ Rn that were three times over-
complete. In addition to image coding in a primary sensory area, we
also tested whether the ACS model could be used by a secondary
sensory area (2nd stage). Our model of the 2nd stage receives a sub-
sampled version of the sparse code generated in the primary visual
area Φ2a(x) ∈ Rk and produces a sparse code a2 ∈ Rn, again
with k = 60 and n = 432. Models used a coefficient λ = 0.1 in the
sparseness constraint of Eq. 4.

Since the ACS model learns a dictionary of the compressed data
rather than the original data, the original image cannot be recon-
structed from the adapted Θ matrix. Note that computing the data
dictionary from Θ requires an ill-posed step of matrix factorization:
Θ = ΦΨ. Therefore, to assess the quality of the emerging codes
in the ACS model, we measured receptive fields in the trained cir-
cuit (as physiologists do from the responses of real neurons). We
compute the receptive fields for a set I of visual stimuli x ∈ Rm as

RF :=
1

|I|
∑
x∈I

x · a(x)>. (6)

Notice thatRF is anm×n real matrix, the i-th column representing
the receptive field of the i-th neuron.

Figure 2 shows the feedforward weights and the receptive fields
of the different coding circuits. While the feedforward weights and
receptive fields in Fig 1(a) are very similar for sparse coding, they
are markedly different for ACS in Fig 1(b). Interestingly, while sub-
sampling makes the feedforward weights somewhat amorphous and
noisy, the resulting receptive fields of ACS are smooth and resemble
the receptive fields of sparse coding. When used in a secondary sen-
sory area (2nd stage), ACS forms response properties that are similar
to those in the primary sensory area, though the response properties
differ on a neuron-by-neuron basis.



Original Sparse Coding Conventional CS ACS ACS (2nd stage)

Fig. 2. Original image and reconstruction using the different methods on 12 by 12 image patches. For reconstructing the images from the
representations formed by ACS (in the first and 2nd stage), we used the receptive fields.

To assess how well the sparse codes describe the original input,
we computed image reconstructions. For sparse coding, we used the
basis functions Ψ; for ACS, the receptive fields RF . Fig 2 shows
that ACS forms representations in the primary and secondary area
that can be used for reconstruction, although the quality of recon-
structions obtained from conventional sparse coding is not achieved.

Fig 3 compares the reconstruction quality of conventional com-
pressed sensing (using the basis functions that were adapted to the
original data) and adaptive compressed sensing. The mean recon-
struction qualities do not differ, though ACS performs with lower
variance over the set of input patches we tested.

These simulation results suggest that ACS is able to form repre-
sentations of sensory data that convey its essential structure although
the coding network receives only a subsampled version of the data.
In the next section, we investigate the mathematical differences be-
tween conventional sparse coding and adaptive compressed sensing.
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Fig. 3. Left: Signal-to-noise ratio (mean and range of standard devi-
ation) in reconstructions with conventional compressed sensing (red)
and ACS (blue). Means do not differ significantly, but the perfor-
mance of ACS has smaller variance. Right: Histograms of the num-
ber of neurons used per reconstruction are similar for both methods.

4. DIFFERENCES BETWEEN ACS AND CONVENTIONAL
SPARSE CODING MODELS

In this section we derive two theorems to establish that ACS defines
a class of sparse coding algorithms whose properties differ qualita-
tively from those of conventional sparse coding models.

4.1. Receptive fields and feedforward weights coincide in con-
ventional sparse coding networks

Assuming that x is a column vector of random variables on a mea-
sure space Ω with probability measure µ, the matrix RF will be an
approximation to the correlation of x and a(x) (which is assumed to
have zero mean): Cor(x,a) =

∫
xa(x)>dµ.

The strong law of large numbers guarantees that given enough
samples, the matrix RF will be close to the integral above. For this
reason, we will assume that RF = Cor(x,a). We are interested in
calculating the necessary relationships between the quantities RF ,
FF , FB, Φ, and Θ. (Recall: FF = Φ>Θ and FB = −Θ>Θ.)

In our setup, the data x are assumed to come from a sparse num-
ber k of independent causes (nonzero values in a). Moreover, the
method of recovering a(x) from a particular x is assumed to be ex-
act (or near exact) in solving Eq. 2 and independently distributed;
that is, Φx = Θ a(x) and we have: D =

∫
a(x)a(x)>dµ, in

which D is an n× n diagonal matrix. One now calculates:

ΦRF =

∫
Φx a(x)>dµ = Θ

∫
a(x)a(x)>dµ = ΘD. (7)

In particular, this implies the following.

Theorem 1 If Φ is the identity, then the receptive fields are scalar
multiples of the feedforward weights.

4.2. Feedback co-shapes receptive fields in the ACS model

In the compressive sensing regime, the matrix Φ is no longer the
identity but instead a compressive sampling matrix. In this case, the
receptive fields are almost never scalar multiples of the feedforward
weights. A precise analytic relationship is given by the following
theorem. As an important consequence, we obtain the qualitative
interpretation found in Theorem 4 below. We omit here the proofs.

Theorem 2 If FF , Φ, and Θ are nonzero and ΘΘ> is invertible,
then with C = |tr(RF>FF )|

||FF ||2·||Φ||·||Θ>(ΘΘ>)−1|| , we have:

min
t
||RF − tFF || ≥ C ·min

t
||tI −ΦΦ>||,

What is important here is not the technical statement of Theorem
2, but rather the following qualitative versions.

Corollary 1 If ΦΦ> is not (close to) a scalar multiple of the iden-
tity, then RF is not (close to) a scalar multiple of FF .

Theorem 3 If the feedback weights are not a scalar multiple of
FF>FF , then RF is not a scalar multiple of FF.

Finally, we remark that in the compressive sensing regime k �
n and Φ is a random matrix; thus, the hypothesis of the previous
results are satisfied generically:

Theorem 4 In adaptive compressed sensing, the receptive fields are
almost surely not scalar multiples of the feedforward weights.



5. DISCUSSION AND CONCLUSIONS

We have proposed adaptive compressed sensing (ACS), a new
scheme of learning under compressed sensing that forms a dic-
tionary adapted to represent the compressed data optimally. The
coding and learning scheme of ACS can be formulated as a neural
network, building on an earlier sparse coding model [6]. Our model
learns in the weights of the coding circuit while keeping the ran-
dom projection fixed, as opposed to a previous suggestion which
optimizes the compression performance by learning in the random
projection [15].

Our study focuses on the application of ACS to understand how
cortical regions in ascending sensory pathways can analyze and
represent signals they receive through thalamo-cortical or cortico-
cortical connections. Conventional sparse coding theories were
succcessful in reproducing physiological responses in primary sen-
sory regions but they require exact matches between feedforward
connections and receptive field patterns of cortical neurons (see The-
orem 1 and Fig 1(a) for an example). Although it has been shown
that thalamocortical wiring is to some extent specific [10, 11], ex-
act matches between feedforward circuitry and receptive fields are
not supported by experimental data. In addition, a recent quantita-
tive study of cortico-cortical projections suggests that the number
of fibers reaching a target area can only be a fraction of the local
neurons in the area of origin [12].

We have tested if ACS could serve as a computational model
for how cortical areas can form a representation of data received
through afferent projections that subsample the activity pattern in
the previous stage. We demonstrate that ACS can form represen-
tation of visual data, though, unlike in conventional sparse coding
models, the coding circuit receives only a subsampled version of the
original data. Further, we have demonstrated that the algorithm is
stackable in a hierarchy. The sparse code formed by ACS in a pri-
mary sensory area, when sent through another compressing projec-
tion can be decoded in a secondary sensory area into another mean-
ingful visual representation. The simulation results proof the con-
cept that the ACS model can serve as a generic building block in
a communication scheme between cortical areas. The scheme con-
sists of repeated cycles of compression and expansion. Specifically,
a sparse local representations is compressed, sent through cortico-
cortical projections and expanded to sparse local representations at
the receiver end, reminiscent to Braitenberg’s idea of the pump of
thought [18]. The scheme of ACS suggests that representations in
the brain can be sparse [19, 20] and dense [21, 22], with the type of
code being lamina-specific. Regarding the still debated role of recur-
rent circuitry in producing orientation selectivity (e.g., [23, 24, 25]),
ACS suggests that if the input subsamples the data then feedback in
shaping the receptive fields becomes essential for coding efficiency.
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