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Learning Sparse Codes for Hyperspectral Imagery
Adam S. Charles, Bruno A. Olshausen, and Christopher J. Rozell

Abstract—The spectral features in hyperspectral imagery (HSI)
contain significant structure that, if properly characterized, could
enable more efficient data acquisition and improved data analysis.
Because most pixels contain reflectances of just a few materials, we
propose that a sparse coding model is well-matched to HSI data.
Sparsity models consider each pixel as a combination of just a few
elements from a larger dictionary, and this approach has proven
effective in a wide range of applications. Furthermore, previous
work has shown that optimal sparse coding dictionaries can be
learned from a dataset with no other a priori information (in con-
trast to many HSI “endmember” discovery algorithms that assume
the presence of pure spectra or side information). We modified an
existing unsupervised learning approach and applied it to HSI data
(with significant ground truth labeling) to learn an optimal sparse
coding dictionary. Using this learned dictionary, we demonstrate
three main findings: 1) the sparse coding model learns spectral sig-
natures of materials in the scene and locally approximates non-
linear manifolds for individual materials; 2) this learned dictionary
can be used to infer HSI-resolution data with very high accuracy
from simulated imagery collected at multispectral-level resolution,
and 3) this learned dictionary improves the performance of a super-
vised classification algorithm, both in terms of the classifier com-
plexity and generalization from very small training sets.

Index Terms—Deblurring, dictionary learning, hyperspectral
imagery (HSI), inverse problems, material classification, multi-
spectral imagery, remote sensing, sparse coding.

I. INTRODUCTION

H YPERSPECTRAL imagery (HSI) is a spectral imaging
modality that obtains environmental and geographical

information by imaging ground locations from airborne or
spaceborne platforms. While multispectral imagery (MSI)
acquires data over just a few (e.g., 3–10) irregularly spaced
spectral bands, HSI typically uses hundreds of contiguous
bands that are regularly spaced from infrared to ultraviolet. For
example, the Worldview II MSI satellite [1] uses eight bands
to represent the wavelengths from 0.435 m to 1.328 m,
while typical HSI has approximately 60 bands over the same
range in addition to many more bands at higher wavelengths.
With spatial resolutions as low as 1 m, the increased spectral
resolution of HSI means that estimated ground reflectance data
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can be used to determine properties of the scene, including
material classification, geologic feature identification, and
environmental monitoring. A good overview of HSI and the
associated sensors can be found in [36].

Exploiting HSI is often difficult due to the particular chal-
lenges of the remote sensing environment. For example, even
“pure” pixels composed of a single material would have re-
flectance spectra that lie along a nonlinear manifold due to
variations in illumination, view angle, material heterogeneity,
scattering from the local scene geometry, and the presence
of moisture [5], [36]. Additionally, pure pixels are essentially
impossible to actually observe due to material mixtures within
a pixel and scattering from adjacent areas [36]. One of the most
common approaches to determining the material present in a
given pixel (called “spectral unmixing” [37]) is to use a linear
mixture model such as

(1)

where is a dictionary of approximation elements, are
the decomposition coefficients, and is additive noise. Note that

, where is the number of spectral bands and
the vectors are indexed by (which is suppressed in our nota-
tion). When the dictionary represents spectral signatures of the
various material components present in the scene, they are typ-
ically called “endmembers” and the resulting coefficients (as-
sumed to sum to one) represent the material abundances in each
pixel. The endmember vectors are conceptualized as forming
a convex hull about the HSI data (e.g., see the red vectors in
Fig. 1). Such a decomposition is often used for detecting the
presence of a material in the scene or classifying the materials
present in a pixel. A number of methods have been proposed
for determining endmembers, including algorithms which se-
lect endmembers from the data based on a measure of pixel pu-
rity [48] or the quality of the resulting convex cone [53], tools
that assist in the manual selection of endmembers from the data
[9], algorithms which optimize endmembers for linear filtering
[12], methods based on finding convex cones using principal
component analysis (PCA) or independent component analysis
(ICA) decompositions [21], [24], [27], [32], iterative statistical
methods that optimize the resulting convex cone [10], and itera-
tive measures to select optimal endmember sets from larger po-
tential sets [50]. However, these algorithms either rely on postu-
lating candidate endmember sets for initialization [50], assume
the existence of pure pixels in the scene [48], [53], attempt to
encompass the data within a cone rather than directly represent
the data variations [9], [10], [32], use orthogonal linear filters to
attempt to separate out highly non-orthogonal spectra [12], or
attempt to determine spectral statistics from decompositions in
the spatial dimensions rather than the spectral dimension. [21],
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Fig. 1. Typical endmember analysis uses vectors that compose a convex hull
around the data. In this stylized illustration, the data manifold is indicated by
the dashed line and the red vectors represent the endmembers. In contrast, a
learned dictionary for sparse coding attempts to learn a local approximation of
the nonlinear data characteristics directly (indicated here by blue vectors).

[24]. None of these methods attempt to directly learn from the
spectral data a good representation of the low-dimensional, non-
linear spectral variations inherent in HSI.

In addition to the difficulties determining the basic spectral
components of an HSI dataset, there are many resource costs
(i.e., time, money, computation, availability of sensor platforms)
that result from the high dimensionally of the data. During data
acquisition, the high resolution of HSI data comes at the ex-
pense of sophisticated sensors that are costly and require rela-
tively long scan times to get usable SNRs. After data acquisition,
it is evident that reducing the dimensionality while retaining the
exploitation value of the data would save significant computa-
tional and storage resources. If the higher order statistics of the
HSI data can be characterized, this information can be used to
perform both dimensionality reduction of existing high-dimen-
sional data and high-resolution inference from low-resolution
data (collected from either a cheaper MSI sensor or a modi-
fied HSI sensor measuring coarse spectral resolution, thereby
lowering scan times). One common approach to dimensionality
reduction is PCA. However, the underlying Gaussian model in
PCA means that it can only capture pairwise correlations in
the data and not the higher-order (and non-Gaussian) statistics
present in HSI data.

Following on developments in the computational neuro-
science community, the signal processing community has
recently employed signal models based on the notion of spar-
sity to characterize high-order statistical dependencies in data
and yield state-of-the-art results in many signal and image
processing algorithms [20]. Specifically, this approach models
a noisy measurement vector as being generated by a linear
combination of just a few elements from the dictionary .
This is the same model as in (1), but where the coefficients are
calculated to have as few nonzero elements as possible. Much

like PCA, sparse coding can be viewed as a type of dimension-
ality reduction where a high-dimensional dataset is expressed
in a lower dimensional space of active coefficients. However,
while PCA calculates just a few principal components and uses
essentially all of them to represent each pixel, sparse coding
models typically employ a larger dictionary but use only a few
of these elements to represent each pixel. When cast in terms
of a probabilistic model, this sparsity constraint corresponds to
a non-Gaussian prior that enables the model to capture higher
order statistics in the data.

Due to the high spatial resolution of modern HSI sensors
(resulting in just a few dominant materials in a pixel), spar-
sity models seem especially relevant for this sensing modality.
In fact, initial research into sparsity models for spectral un-
mixing in HSI has shown promising results [29], [33]. While a
sparse decomposition can be estimated for any dictionary, pre-
vious research [43] has shown that unsupervised learning tech-
niques can be used in conjunction with an example dataset to
iteratively learn a dictionary that admits optimally sparse co-
efficients (without requiring the dataset to contain any “pure”
signals that correspond to a single dictionary element). These
methods leverage the specific high-order statistics of the ex-
ample dataset to find the underlying low-dimensional structure
that is most efficient at representing the data.

In contrast to the typical endmember model described above,
the sparse coding model does not assume that the data lie within
the convex hull of the dictionary. Instead, the learned sparse
coding dictionary elements will tend to look like the basic
spectral signatures comprising the scene (early encouraging
evidence of this can be found in [28]). In fact, the sparse coding
model may actually learn several dictionary elements to rep-
resent some types of materials, especially when that material
spectra demonstrates highly nonlinear variations within the
scene. Because of the sparsity constraint, one would expect
these learned dictionaries to reflect the specific statistics of
the HSI data by locally approximating these nonlinear data
manifolds [45] (as illustrated in Fig. 1, and in contrast to typical
endmember models that form a convex hull containing the
data).

We have modified the unsupervised learning approach de-
scribed in [43] and applied it to HSI data to learn a dictionary
that is optimized for sparse coding. Importantly, the HSI dataset
used in this study has significant ground truth labeling of ma-
terial classes making it possible to examine the characteristics
of the learned dictionary relative to the data. Using this learned
dictionary, we make three main contributions. First, we show
that the sparse coding model learns meaningful dictionaries that
correspond to known spectral signatures: they locally approx-
imate nonlinear data manifolds for individual materials, and
they convey information about environmental properties such
as moisture content in a region. Second, we generate simulated
imagery at MSI-level resolution and show that the learned HSI
dictionaries and sparse coding model can be effectively used to
infer HSI-resolution data with very high accuracy (even for data
of the same region collected in a different season). Finally, we
use ground truth labels for the HSI data to demonstrate that a
sparse coding representation improves the performance of a su-
pervised classification algorithm, both in terms of the classifier
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complexity (i.e., classification time) and the ability of the clas-
sifier to generalize from very small training sets.

II. BACKGROUND AND RELATED WORK

A. Methods

Given a pixel and a fixed dictionary with
for , the goal of sparse coding is to find

a set of coefficients that represent the data well using as few
nonzero elements as possible. Written mathematically, the goal
is to minimize an objective function that combines data fidelity
and a sparsity-inducing penalty. A common choice is to use a
regularized least-squares objective function such as

(2)

with mean-squared error as the data-fidelity term, the norm
(i.e., the sum of the coefficient magnitudes) as the sparsity in-
ducing penalty, and a scalar parameter trading off between
these two terms [19]. This objective is convex in the coeffi-
cients when the dictionary is fixed, meaning that solving

is a tractable optimization. Sig-
nificant progress has recently been made developing solvers that
are customized for this specific optimization program and run
considerably faster than general purpose algorithms [15], [22],
[30], [38]. This general approach is applicable directly to HSI
with one small modification: we constrain the coefficients to be
non-negative to maintain physical correspondence
between the coefficients and the relative abundance of mate-
rial spectra present in the scene. Due to its wide use in the
community, its ability to enforce positive coefficients without
a sum-to-one constraint, and established reputation for quick
convergence, we use the specialized optimization package de-
scribed in [38] to solve this constrained optimization and calcu-
late sparse coefficients. While other solvers have been explored
in the specific context of HSI [11], [46] that may be faster in
some settings, many of these HSI-specific solvers include addi-
tional constraints which we do not employ (e.g., ).
The framework we present here is largely agnostic to the specific
solver as long as it returns accurate solutions, so other choices
could be substituted if there were advantages for a given appli-
cation. A detailed analysis of various algorithms to optimize (2)
in the context of HSI unmixing is given in [33].

An alternate interpretation of the cost function in (2) is to con-
sider the problem as Bayesian inference. With a white Gaussian
noise distribution on , the likelihood on the data vector given
the coefficients is also Gaussian. We assume a Lapla-
cian prior probability distribution on the coefficients be-
cause the high kurtosis of this distribution (i.e., the peakiness of
the distribution around zero) encourages coefficients to be close
to zero. Using Bayes’ rule, the resulting (unnormalized) poste-
rior is

where is the standard deviation on the prior over (i.e., the
signal energy) and is the noise variance. Taking the nega-
tive logarithm of the posterior results in the cost function (2).
Thus, the maximum a posteriori (MAP) estimate on the coeffi-
cients is equivalent to minimizing (2) with . This
Bayesian formulation allows us to naturally extend the sparse
approximation problem to more general observation models and
inverse problems, such as the high resolution inference task de-
scribed in Section III-B and similar inverse problems described
in [55]. Note also that the sparse prior introduces a non-Gaus-
sianity into the model that is critical for capturing the high-order
data statistics. An approach such as PCA that fundamentally as-
sumes a Gaussian data model can only learn from pairwise cor-
relations in the data, and is therefore unable to capture the higher
order statistics.

To learn an optimal dictionary for sparse coding, we would
like to minimize the cost function with re-
spect to both the coefficients and the dictionary. Unfortunately,
this objective function is not jointly convex in the coefficients
and the dictionary, making global minimization prohibitive. The
work presented in [43], [44] takes a typical approach to this
type of problem, using a variational method that alternates be-
tween minimizing (2) with respect to the coefficients given the
current dictionary, then taking a gradient descent step over the
dictionary elements given the calculated coefficients. Specifi-
cally, after inferring coefficients for a randomly selected batch
of data, the dictionary learning proceeds by descending the gra-
dient of with respect to , resulting in the
learning rule

(3)

where is the step-size of the update (possibly varying with it-
eration number) and indicates the average over the current
batch of data. This approach has the drawback that a trivial solu-
tion of enlarging the norm of the dictionary elements can always
produce smaller total energy in the coefficients, which we avoid
by renormalizing the dictionary elements to have unit norm after
each learning step. Returning briefly to the Bayesian interpre-
tation detailed above, it is worth noting that the cost function

may be viewed as an approximation to the
negative log-likelihood of the model [44]. Therefore, gradient
descent on is tantamount to maximizing the
log-likelihood of the model. As with the coefficient optimiza-
tion, other algorithms have been proposed for the learning step
that could be substituted for this steepest decent approach. In
particular, many other methods (including the recently proposed
K-SVD) use second order information in the learning step to re-
duce the number of learning iterations required for convergence
(though this may come at the cost of increasing the batch size
per iteration to get better estimates for the update step) [2], [3].

The results in [43], [44] demonstrate that this unsupervised
approach can start with an unstructured random dictionary and
recover known sparse structure in simulated datasets, as well as
uncover unknown sparse structure in complex signal families
such as natural images. We again adopt this general approach
with a small modification: we constrain the dictionary elements
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to be non-negative to maintain physical correspon-
dence with spectral reflectances. To be concrete, the dictionary
learning method we use is specified in Algorithm 1, and we de-
termine convergence visually by when the dictionary elements
stopped adapting. In our experience, most of the dictionary el-
ements were well-converged by 1000 iterations of the learning
step (approximately 50 minutes of computation on an 8-core
Intel Xeon E5420 with 14 GB of DDR3 RAM). Some dictionary
elements corresponding to less prominent materials (that are
randomly selected less often during learning) seem to require
10 000–20 000 learning iterations to converge (approximately
10–15 hours on the same machine). We often conservatively let
the algorithm run for 20 000 to 80 000 iterations at a smaller
step size to assure good convergence. The increasing prevalence
of parallel architectures in multi-core CPUs and graphics pro-
cessing units should provide increasing opportunities to speed
up this type of unsupervised learning approach.

Algorithm 1 Sparse coding dictionary learning algorithm
of [44], modified for HSI.

Set

Set

Initialize to random positive values

repeat

for to 200 do

Choose HSI pixel uniformly at random

s.t.

end for

until converges

Finally, we note that the proposed approach can have local
minima or non-unique solutions in at least two respects, espe-
cially in the case of HSI. First, though the coefficient optimiza-
tion using an sparsity penalty is convex, the ideal sparse
solution may not be unique when the one-sided coherence of
the dictionary is large [13]. Second,
though there are few analytic guarantees about the performance
of dictionary learning algorithms, recent results indicate that
the ideal dictionary is more likely to be a local solution to the
optimization presented here when the coherence of the dictio-
nary is also low [26]. Since many materials have spectral signa-
tures with high correlation in some bands, typical HSI dictionary
databases have coherence values very close to unity [33], and
we observe similar values in our learned dictionaries. Despite
not being favorable for the technical results described above
regarding coefficient inference and dictionary learning, the in-
ferred coefficients and learned dictionaries appear to be robust
and useful in the applications described here. Indeed, it is likely
in these cases that despite there being many local solutions (and
a unique minima perhaps even not existing), many of the subop-
timal solutions are also quite good and useful in applications. In
particular, we have repeated the dictionary learning experiments

described in this paper many times (with different random initial
conditions), with no significant changes in the qualitative nature
of the dictionary or the performance in the tasks highlighted in
Section III. This also corresponds to the results in [33] showing
that despite the near-unity coherence in a standard hyperspectral
endmember dictionary, these dictionaries can yield good sparse
representations useful in spectral unmixing applications.

B. Hyperspectral Dataset and Learned Dictionaries

In this paper we apply the dictionary learning method de-
scribed in Algorithm 1 to learn a 44-element dictionary for a HSI
scene of Smith Island, VA. This scene has 113 usable spectral
bands (ranging from 0.44–2.486 m) acquired by the PROBE2
sensor on October 18, 2001.1 The data has a spatial resolution
of approximately 4.5 m and was postprocessed to estimate the
ground reflectance. Of the 490 000 pixels in the dataset, 2700
pixels are tagged with ground truth labels drawn from 22 cate-
gories. These categories include specific plant species and vege-
tation communities common to wetlands, and were determined
by in situ observations made with differential GPS aided field
studies during October 8–12, 2001. More information about the
HSI dataset and the ground truth labels can be found in [4] and
[6]–[8]. The size of the dictionary (44 elements) was made to en-
sure that there were multiple elements available for each of the
22 known material classes in this particular dataset. The number
44 represented a compromise between smaller dictionaries that
did not perform as well on the tasks described in Section III (es-
pecially the local manifold approximation), and larger dictio-
naries that presented more difficulty getting all of the elements
to converge in the learning.2 In general, determining the optimal
number of dictionary elements to learn for a dataset is an open
question and could be a valuable future research direction.

We cross-validated the results of this paper in two ways. First,
10 000 randomly selected pixels were excluded from the dataset
before the dictionary learning so that they could be used in
testing. Second, we also have available data from another HSI
collection of the same geographic region using the same sensor
on August 22, 2001. While this is close enough in time to as-
sume that there are no major geologic changes in the scene, this
data does come from a different season where the vegetation and
atmospheric characteristics are potentially different, resulting in
different statistics from the data used in the learning process.
We use this dataset specifically to assess the potential negative
effects of mismatch between the statistics of the training and
testing datasets when performing signal processing applications
using the learned dictionary.

C. Related Work

Prior work in using unsupervised methods to learn HSI mate-
rial spectra has used some algorithms that are very related to our

1Smith Island is a barrier island that is part of the Virginia Coast Re-
serve Long-Term Ecological Research Project. For more details, see
http://www.vcrlter.virginia.edu. This dataset was generously provided by
Charles Bachmann at the Naval Research Laboratory.

2While performance in the signal processing tasks we tested did improve with
larger dictionaries, we note that the performance difference was often relatively
minor when using 22 element dictionaries and this size would likely be suffi-
ciently for this dataset in many applications.
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present approach. For example, ICA can be viewed as finding
linear filters that give high sparsity, and prior work [23], [27],
[51] demonstrates that ICA can be effective at determining a
range of spectral signatures from preprocessed data. Other ap-
proaches also based on Bayesian inference (but not necessarily
a sparsity-inducing prior) [41] have been used to learn HSI dic-
tionaries, but this approach has trouble including information
from large datasets and often uses ICA as a preprocessing stage
to reduce the number of pixels to analyze. The technique most
closely related to our current approach is blind source separa-
tion based on non-negative matrix factorization (NMF) [35],
[47]. While not explicitly incorporating sparsity constraints, re-
sults using NMF have been shown to exhibit sparse behavior
[31]. In the NMF setup, the sparsity level of the decomposition
is difficult to control [31] and previous work in [35] mitigates
this by adding an explicit sparsity inducing term. Additionally,
the above mentioned approaches all retain the sum-to-one con-
straint, which we drop due to the variable power in the pixels
throughout the scene.

In addition to these results on unsupervised learning, as well
as additional encouraging prior work on using sparsity models
for spectral unmixing [29], [33] and learning dictionaries that
resemble material spectra [28], Castrodad et al. [16] have ex-
plored using a sparsity model and learned dictionaries to im-
prove supervised classification performance on HSI data.3 In
Section III-C we will explore the advantages of using sparse
coefficients from a learned dictionary in an off-the-shelf classi-
fication algorithm. In [16], the authors use labeled data to learn
a separate dictionary for each class and classify data by deter-
mining which of these candidate dictionaries best describes an
unknown pixel [defined by having the minimum value for the
objective function in (2)]. This approach is customized to the
classification problem, and we expect the classification perfor-
mance would outperform the general approach we describe in
Section III-C. In contrast, the approach in [16] requires a more
computationally expensive learning process (due to the multiple
dictionaries), requires labeled data before the learning process,
and generates a dictionary that is tailored to the classification
task and may not generalize as well to other tasks.

Zhou et al. [55] have explored using a sparsity model and
learned dictionaries to effectively solve inverse problems in
HSI. In Section III-B we will explore the ability of sparse
coefficients from a learned dictionary to infer high resolution
spectral data from low-resolution imagery by formulating the
task as a linear inverse problem. In [55], the authors show
that when removing substantial amounts of data from an HSI
datacube, a learned dictionary can be used to exploit the corre-
lation structure present in each band to infer the missing data
and reconstruct the spatial image associated with each band.
This inpainting task is a very similar inverse problem to the one
we examine in Section III-B, differing primarily in the type of
measurement operator used in the model (i.e., blurring versus
subsampling) and the dimension of the data used in the learning
and reconstruction (i.e., spectral versus spatial).

3The authors in [16] use a different learning algorithm (K-SVD [2]) from our
gradient approach, but it is attempting to achieve the same goal of learning an
optimal dictionary for sparse approximation.

III. MAIN RESULTS

A. Learned Dictionary Functions

While the learning procedure described in Algorithm 1 adapts
the dictionary to the high-order statistics of the HSI data, there
are no constraints added that ensure the resulting dictionary el-
ements will correspond to physical spectra or be informative
about material properties in the scene. To examine the proper-
ties of the learned dictionary, examples elements are plotted in
Fig. 2. It is clear that these dictionary elements not only have
the general appearance of spectral reflectances, they also match
the spectral signatures of many of the materials that are known
to be in the scene. Using the ground truth labels from the Smith
Island dataset (which denote the dominant material present in
the pixel), Fig. 2 shows an example spectral signature from a
class along with the dictionary element that has the largest coef-
ficient in the sparse decomposition of that pixel. Despite being
given no a priori information about the data beyond the spar-
sity model (i.e., without being given the class labels and corre-
sponding pixels), the algorithm learns spectral shapes that cor-
respond to a number of component material spectra present in
the image. These learned dictionaries cover a wide variety of
distinct material classes for which we have ground truth labels,
including “Pine,” “Water,” “Mud” and “Distichlis,” as well as
very similar spectra, such as “Water” and “Submerged Net” or
“Pine trees” and “Iva.”

In contrast, Fig. 3 shows the first four principal components
found through PCA analysis on the same HSI dataset, which
is sufficient to capture 99.9% of the variance in the data. While
the first principal component does have some similarity to a gen-
eral vegetation spectrum, the other spectral components do not
correspond to physically meaningful spectral features. Fig. 3
also shows the comparison between the decomposition coeffi-
cient in the sparsity model and PCA for all pixels in four of
the labeled classes. The raster plots show that while the sparse
decomposition and the principal components both only need a
few coefficients to represent the data, the sparse decomposition
chooses different coefficients for different spectral shapes (i.e.,
the material information is encoded in the selection of active
coefficients) whereas PCA uses the same four vectors to repre-
sent nearly all of the data. This comparison illustrates that the
learned dictionary under the sparsity model has a much closer
correspondence to the individual spectral characteristics found
in the dataset than PCA, indicating that this representation may
have many advantages for tasks such as classification.

While it is clear that the dictionary elements are learning
spectral elements present in the scene, this representation will
be most meaningful if there is consistency in the way environ-
mental features are represented. In other words, when looking
across the scene, do the sparse decompositions change in a way
that reflects the changes in the underlying geologic features? We
extracted a row of pixels from the Smith Island dataset, starting
inland and ending in the water off the coast of the island. The
selected row of pixels is shown in red in Fig. 4, superimposed on
a magnified RGB rendering of that portion of the island. Fig. 4
shows the coefficient decomposition of each pixel, as well as
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Fig. 2. Example spectra for materials in the labeled classes of the Smith Island dataset and the learned dictionary element (DE) that is the closest match for each
example. The two obvious gaps in the spectra are bands removed from consideration in the original dataset due to the interactions with the atmosphere in these
regions.

Fig. 3. (Left) The top four principal components for the Smith Island dataset (capturing 99.9% of the variance). In contrast to the learned dictionary elements in
Fig. 2, only one of the principle components looks generally like a spectral signature. (Right) PCA and sparse coding coefficients representing every sample of the
data from three of the labeled classes (“Andropogon,” “Sand,” and “Submerged Net”). The brightness at each pixel represents the intensity of a given coefficient
for a specific pixel. Note that PCA uses many of the same coefficients for different materials (e.g., coefficient 1 is always used), while sparse coding tends to select
distinct coefficients for the different materials.

the measured spectrum and the two most active dictionary ele-
ments at various locations along the row. Included with each of
the two most active dictionary elements is the fractional abun-
dance of that dictionary element in the decom-
position. This row starts with mostly vegetation spectra for the
first 75 pixels, changing to sand-like spectra by the 100th pixel
and eventually to water spectra by the 160th pixel.

We highlight two important properties of the coefficient de-
compositions over the pixel progression in the raster plot in
Fig. 4. First, the sparse coefficients are relatively consistent over
contiguous spatial ranges, with the same small sets of coeffi-

cients generally dominating the decomposition over small con-
tiguous regions. While this is evident in the regions dominated
by sand and water, there are also repeated dictionary elements
across several spatial locations in the regions dominated by veg-
etation (which we would expect to have much more variability
over pixels with 4 m resolution). Second, some slowly changing
geologic properties are actually observable in the gradual onset
and offset of specific dictionary elements in the decomposition.
One prominent example of this is the slow change from dictio-
nary element 8 to dictionary element 44 over the span of water
moving away from the shoreline, indicating the slow fading of
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Fig. 4. Progression of sparse coding coefficients from a row of contiguous pixels in the Smith Island dataset. (Upper left) The red line indicates a row of 300 pixels
selected for analysis. These pixels (numbered left to right) represent a progression from an inland region to the water off the east coast of the island. (Upper right)
The sparse coding coefficients for the row of pixels is shown, where the brightness of a pixel indicates the intensity of each coefficient for each pixel. Note that
many of the same coefficients are often active in the same geographic regions, and the progression from one type of element to another (e.g., sand to water) can be
seen by different coefficients dominating the decomposition. (Bottom) The spectra for pixels 1, 25, 50, 75, 100, 150, 200, and 300 are shown in the bottom row (in
black), along with the two most active dictionary elements in the top two rows (color coded). The fractional abundance for each dictionary element in each pixel is
given by � � �� ����� . Note that many of the same dictionary elements can be seen dominating the decomposition in regions with similar material composition.

shallow water to deep water (which have different spectral char-
acteristics and are represented by different dictionary elements).
Another example of this is the rise of dictionary element 9 from
the second most active to the most active element from pixels
75 and 100, indicating the slowly increasing presence of a par-
ticular vegetation characteristic in this region.

In addition to the spectral matches shown in Fig. 2 and the
spatial coefficient variations shown in Fig. 4, another important
aspect of the learned dictionary is to examine how it represents
the nonlinear variations within a particular material class [5].
For example, Fig. 5 shows full spectral signatures for a patch
of water off the coast of Smith Island, as well as spectral bands
14, 29 and 70 (0.6278, 0.8572 and 1.4962 m) from three
different view angles to show the geometry of these points in
3-D spectral space.4 Despite being one material class (“water”),
it is evident even in these few bands that the measured spectrum
lies on a nonlinear manifold. Superimposed on the 3-D spectral
plots are five of the learned dictionary elements projected onto
these same three spectral bands. The measured spectra are
color coded to indicate which of these five learned dictionary
elements are dominant in their sparse decomposition. The
contiguity of this color coding over small manifold regions
demonstrates that rather than containing the measured spectra

4These are the same spectral bands and approximately the same region high-
lighted in [5, Fig. 1].

in a convex hull, the learned dictionaries are essentially forming
a local linear approximation to this manifold. So, despite being
a linear data model, the dictionary learns multiple elements
that capture the nonlinear spectral variations by locally approx-
imating the manifold structure in a meaningful way. In our
experiments with other endmember extraction algorithms such
as [53], the learned sparse dictionary does appear to produce
a representation that more closely tracks the nonlinear varia-
tions in the data points (e.g., produces a smaller relative MSE
between the data and the dictionary elements) compared to a
method restricted to finding a convex cone around the data. A
more detailed characterization of the differences between var-
ious linear models at representing nonlinear material variations
would be a valuable direction for future research.

B. Reconstructing HSI-Resolution From MSI-Resolution Data

As discussed earlier, while the high spectral resolution of HSI
is valuable, acquiring data at this resolution comes at a cost. In
terrestrial remote sensing, hyperspectral imagers are relatively
rare instruments, and it would be much more resource efficient
to perform most spectral imaging at MSI-level resolution. Data
at this resolution could either be gathered by actual MSI sensors,
or by HSI sensors modified to decrease their spectral resolution
(which could potentially decrease scan times). The question we
consider here is whether a dictionary learned on an HSI training
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Fig. 5. Nonlinear structure of water pixels is locally approximated by the learned dictionary. The plots in the upper left, upper right and bottom right all show the
spectra water pixels (selected from a contiguous region) projected onto three spectral bands (14, 29, 70). Even in three dimensions, it is clear that the data live on a
nonlinear manifold, and there is clear structure in the variability. The vectors represent the projection onto the same three bands of five learned dictionary elements.
The points representing water pixels are color coded to indicate which dictionary element has the largest value when inferring the sparse coefficients, showing that
contiguous values on the manifold are coded using the same dictionary element.

set could be used to accurately infer high-resolution spectra
from subsequent data collected at MSI-level spectral resolution.

In this basic paradigm, assume that we start with a learned
dictionary that has been adapted to the specific structure of the
desired HSI data. This could arise from earlier HSI of the scene
being imaged, or imaging from other geographic regions with
similar environmental features (and therefore similar statistics).
For the new data acquired at MSI-level resolution, we assume
for a first approximation that each band is a linear combination
of some group of spectral bands in the underlying true HSI data.
Specifically, we model the MSI-resolution data as

(4)

where is the new coarse resolution data and
can be thought of as an “blurring” matrix that bins

the spectral bands of the desired HSI data. While could be
any matrix describing the sensitivity function of the imager ac-
quiring the MSI-resolution data, we will consider that simply
sums spectral bands over a contiguous range.

This measurement paradigm fits nicely into the well-known
framework of Bayesian inference (or equivalently, linear inverse
problems in image processing). Essentially, given the wealth
of information about the statistics of the HSI we would like
to obtain, Bayesian inference allows one to optimally answer
the question of what underlying HSI data is most likely given
the observed MSI-resolution data . Specifically, given the new

model in (4), the likelihood of the data given the coefficients
is now the Gaussian distribution

We can again use an independent Laplacian prior on the sparse
coefficients , and write the posterior distribution using ex-
actly the same simplifications as before. The optimal MAP es-
timate of the sparse coefficients given the observed data is
therefore given by optimizing the following objective function
with respect to the coefficients:

(5)

This optimization program is very similar to (2) (and can be
solved by the same software packages), but incorporates the
measurement process described by into the inference. Given
the estimated sparse coefficients, the HSI vector is recon-
structed according to (1): . The full workflow
is shown schematically in Fig. 6. We note that many linear in-
verse problems are formulated in a similar way depending on
the choice of , including inpainting missing data such as the
application considered by [55].

For proof-of-concept simulations we generated simulated
data with MSI-level resolution from pixels that were not used
in the training dataset, and perform the inference process
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Fig. 6. Reconstructing spectra with HSI resolution from measurements with MSI-level resolution. (Top) A schematic of the process for simulating low
resolution spectral data and performing recovery. The matrix ��� characterizes the measurement process (i.e., the sensitivity function of the sensor), simu-
lating the aggregation of high-resolution spectral information into low-resolution spectral bands. (Bottom left) A diagram indicating the sensitivity function
for MSI resolution measurements, where 113 HSI bands are collapsed into eight equally spaced measurement bands over the lowest wavelengths (ap-
proximately matching the spectral bands reported by the Worldview II MSI sensor). Note that no information is measured from the highest wavelength
regions. (Bottom right) A diagram indicating the sensitivity function for coarse HSI measurements, where 113 HSI bands are collapsed into eight nearly
equally spaced measurement bands across the whole HSI spectrum.

TABLE I
RELATIVE RECOVERY ERROR FOR HSI SPECTRA FROM COARSE HSI MEASUREMENTS (FULL SPECTRUM). RESULTS ARE REPORTED

FOR TESTING DATA COLLECTED ON THE SAME DAY (SD) AS THE TRAINING DATA USED TO LEARN THE DICTIONARY,
AS WELL AS RESULTS FOR TESTING DATA COLLECTED ON A DIFFERENT DAY (DD)

described above to estimate the high-resolution spectra from
the low-resolution measurements. In the first set of simula-
tions, the matrix (illustrated in Fig. 6) generates simulated
data with eight equally spaced bands covering the entire spec-
tral range of the HSI data. This is intended to model a hy-
perspectral imager collecting spectral data with an order of
magnitude less spectral resolution than the original data. We
used two testing datasets in this simulation: the 10 000 pixels
from the October 2001 scan of Smith Island that were with-
held from the learning process, and 10 000 randomly selected
pixels from the August 2001 scan of the same geographic re-
gion. By using HSI collected on a different date we can ex-
amine the effects of using a dictionary that was learned on
data with different statistics than the data we are trying to re-
construct (due to different vegetation characteristics in the dif-
ferent seasons and different atmospheric conditions present on
the different days).

We infer the sparse coefficients in the HSI dictionary given
the simulated MSI-resolution data by minimizing the objective
function in (5) as described above. For comparison purposes and
to determine the value of the learning process in the reconstruc-
tion, we repeated this recovery process with a 44-element dic-
tionary of random values (i.e., the initialization conditions for
the dictionary learning) and with an exemplar dictionary formed
by taking two random spectral signatures from each class in the
original labeled HSI data (for a total of 44 dictionary elements).
Figs. 7 and 8 show examples of the original HSI, the simulated
coarse resolution data, the estimated sparsity coefficients in the
learned dictionary, and the subsequent recovered HSI data for
the test datasets collected on the same date (SD) and a different

date (DD) as the training dataset. The set of examples shown in
the figure span the range of the most favorable and least favor-
able reconstructions.

Table I reports the average relative MSE for the reconstruc-
tions, calculated as

(6)

The aggregate results as well as the specific plotted examples
demonstrate that the HSI-resolution data is recovered with less
than 0.09% relative MSE for the SD testing set and less than
0.71% relative MSE on the DD testing set. While the recon-
struction is worse on the DD dataset because of the mismatch
in the training and testing statistics, the reconstructions are still
very good overall and often capture even fine detail in the HSI
spectra. Also note that the learned dictionary is performing sig-
nificantly better than both the exemplar dictionary (which was
chosen using oracle knowledge of the classes to ensure good
coverage of the various materials) and the random dictionary
(indicating the value of the learning process).

In the second set of simulations, the matrix (illustrated
in Fig. 6) generates simulated data with eight equally spaced
bands excluding the highest wavelength regions. This is
intended to model a multispectral imager, and we selected
the bands to approximately match the reported bands of the
WorldView II multispectral sensor. We used the same SD
and DD testing datasets in the simulation, with Figs. 9 and
10 showing example reconstructions and Table II reporting
average reconstruction results. While the overall performance
does suffer compared to the previous experiment when the
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Fig. 7. Reconstructing HSI data from simulated coarse HSI measurements using training and testing data collected on the same date. Plots show original HSI
spectrum in blue (113 bands), simulated coarse HSI spectrum (eight bands), inferred sparse coefficients, and reconstructed HSI spectrum in green. Examples
were selected to illustrate a range of recovery performance, from examples of the best recovery on top to examples of the worst recovery on the bottom.

Fig. 8. Reconstructing HSI data from simulated coarse HSI measurements using training and testing data collected on different dates (in different seasons).
Plots show original HSI spectrum in blue (113 bands), simulated coarse HSI spectrum (eight bands), inferred sparse coefficients, and reconstructed HSI
spectrum in green. Examples were selected to illustrate a range of recovery performance, from examples of the best recovery on top to examples of the
worst recovery on the bottom.



CHARLES et al.: LEARNING SPARSE CODES FOR HSI 973

Fig. 9. Reconstructing HSI data from simulated MSI measurements using training and testing data collected on the same date. Plots show original HSI
spectrum in blue (113 bands), simulated coarse HSI spectrum (eight bands), inferred sparse coefficients, and reconstructed HSI spectrum in green. Examples
were selected to illustrate a range of recovery performance, from examples of the best recovery on top to examples of the worst recovery on the bottom.

Fig. 10. Reconstructing HSI data from simulated MSI measurements using training and testing data collected on different dates (in different seasons). Plots
show original HSI spectrum in blue (113 bands), simulated coarse HSI spectrum (eight bands), inferred sparse coefficients, and reconstructed HSI spectrum
in green. Examples were selected to illustrate a range of recovery performance, from examples of the best recovery on top to examples of the worst recovery
on the bottom.
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TABLE II
RELATIVE RECOVERY ERROR FOR HSI SPECTRA FROM MSI MEASUREMENTS (NO MEASUREMENTS FROM HIGHEST WAVELENGTHS). RESULTS

ARE REPORTED FOR TESTING DATA COLLECTED ON THE SAME DAY (SD) AS THE TRAINING DATA USED TO LEARN THE DICTIONARY,
AS WELL AS RESULTS FOR TESTING DATA COLLECTED ON A DIFFERENT DAY (DD)

whole spectral range was measured, the HSI spectra are again
recovered with low error overall: less than 1.28% for the SD
dataset, and less than 2.47% error for the DD dataset. As ex-
pected from the previous simulation, the lower wavelengths can
be reconstructed very well. As might be expected because no
data was collected in the higher wavelength range, the recovery
in these spectral bands can suffer from higher errors even de-
spite getting the general shape correct. Table II also shows that
overall, both the learned and exemplar dictionaries have ap-
proximately the same mean relative error in this setting. How-
ever, the distribution of the relative errors over the test pixels
is more tightly peaked about the origin for the learned dictio-
nary, with a median relative error approximately a third of that
for the exemplar dictionary. This indicates that while most test
pixels were recovered better with the learned dictionary, there
were a minority of pixels that suffered more egregious errors
than seen with the exemplar dictionary.

Though the results of the high-resolution reconstructions
given above are very encouraging, as with any engineering ap-
plication it is important to characterize what causes variations
in the performance. Fig. 11 shows a more detailed analysis of
the errors for the worst performing case in the above simu-
lations: using simulated MSI data with a dictionary that was
learned on data taken on a different date from the test data. This
analysis quantifies the observation that the better the model is
at fitting the data, the better we expect the resulting algorithm
to perform. Specifically, we group the pixels in the test dataset
into three groups based on the (normalized) sparsity of their
resulting inferred coefficients (i.e., how well the data point is fit
by a sparsity model) measured by . The clear trend
is that the performance in this task is strongly dependent on
how amenable that pixel is to admitting a sparse decomposition.
Fortunately, only a small fraction of the data (less than 9%)
falls into the worst performing category. Currently we have not
found any quantitative correlations between material classes
and model fit, but anecdotally we observe that classes such as
pine trees and water appear prevalent among the pixels with
the lowest rMSE in the reconstruction task, and classes such as
mixed vegetation and mud are more prevalent in the outliers
that have higher rMSE. Of course, an interesting topic of future
study would be to understand more precisely how to modify
the model to improve the fit with the current outliers (and
subsequently the performance on the current task).

We note that there are many other linear inverse problems that
may be of interest, including other methods for reducing data
acquisition resources. For example, in the field of compressed
sensing [40], a sparsity model is also assumed and data is mea-
sured by using a coded aperture that forms each measurement
by taking a (generally random) linear combination of the input

Fig. 11. Rreconstruction errors when inferring HSI-resolution data from
simulated MSI measurements are closely related to the normalized sparsity
����� ������ of the coefficients. The mean and median errors are shown for
three categories measuring the sparsity model fit: High Sparsity represents
an excellent model fit (normalized sparsity is between 1 and 1.92), Moderate
Sparsity represents a good model fit (normalized sparsity is between 1.92 and
2.3), and Low Sparsity represents only a fair model fit (normalized sparsity
is above 2.3). The data shown is for the reconstructed pixels in the worst per-
forming scenario in our simulations (test pixels from the August 2001 dataset
and dictionaries learned from the October 2001 dataset), and the percentage of
pixels falling into each category are displayed below the category labels. The
error bars of the mean rMSE represent the standard deviation and the error bars
on the median rMSE represent the 25th and 75th percentiles. The differences
between these two indicates that the reconstruction errors are tightly packed
for the data points with low normalized sparsity with a few outliers, and spread
out for points with higher normalized sparsity.

data. In this case, the original data is recovered by solving the
same optimization problem as in (5). Indeed, similar acquisition
strategies have already been implemented in novel HSI sensors
[25], [52]. Looking carefully, the only difference between the
compressed sensing strategy and the approach presented above
is in the choice of . The “blurring” choice of in our exper-
iments should actually result in a more difficult reconstruction
problem than when is chosen to be a random matrix because
the introduction of randomness will tend to improve the condi-
tioning of the acquisition operator. We have performed similar
simulations to the ones above (not shown) using drawn ran-
domly and independently from a Bernoulli distribution, and the
results indicate that recovery with similar accuracy is also pos-
sible when using this learned dictionary.

C. Supervised Classification

Clearly one of the most important HSI applications is clas-
sifying the dominant materials present in a pixel [4], [7], [39].
Because sparse coding is a highly nonlinear operation that ap-
pears to capture different spectral features by using different dic-
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Fig. 12. Vector quantization classification of the scene. The color in each pixel
indicates which dictionary element had the largest coefficient value in the sparse
code for that pixel. Distinct shapes consistent with known material structures
from the ground truth data (e.g., sand bars and tree lines) can be easily seen.

tionary elements (and not just changing the coefficient values
on those elements), we suspect that performing classification
on the sparse coefficients can improve HSI classification per-
formance compared to classification on the raw data (or other
dimensionality reduced representations such as PCA). Intuition
for this approach comes from the well-known idea in machine
learning that expanding a data representation with a highly non-
linear kernel can serve to separate the data classes and make
classification easier (especially with a simple linear classifier).
Indeed, several researchers have reported that sparse coding in
highly overcomplete learned dictionaries (which is a highly non-
linear mapping) does improve classification performance [34],
[49].

To gain further intuition, consider a very simple classifier
based on finding the maximum sparse coefficient for each pixel
in the scene. This sparse decomposition with one coefficient can
be thought of as a type of vector quantization (VQ) [42], and the
coefficient index can be used as a rough determination of the
class of the pixel. Fig. 12 shows a segment of the Smith Island
dataset, where each pixel is independently unmixed and colored
according to the index of the maximum sparse coefficient rep-
resenting that pixel.5 Relevant environmental features such as
tree lines and sandbanks are clearly distinct, indicating a corre-
lation between the most active dictionary element and the mate-
rial in the image. Additionally, variations within a class can be
captured by different coefficients. For example, different water
characteristics are clearly visible, including depth changes due
to sandbars (the orange stripes in the left side of the image) and
areas with submerged nets (the red stripes offshore by the sand-
banks).

While the simple demonstration in Fig. 12 is an encouraging
illustration, this approach clearly going to underperform com-
pared to a classification scheme that includes information from
all of the coefficients simultaneously. To demonstrate the utility

5The colors in Fig. 12 are assigned to give as much visual distinction as pos-
sible between elements that are physically adjacent, but have no other meaning.

of sparse coefficient representations using learned dictionaries
for classification, we performed several classification tests on
the Smith Island dataset using support vector machines (SVMs)
and verifying the results with ground truth labels. SVMs [14]
are a widely used supervised learning technique capable of
performing multi-class classification. Specifically, we use
the C-SVM algorithm (implemented in the freely available
libsvm package [17]) with a linear kernel.

There are two potential factors to consider when performing
supervised classification: overall performance (i.e., classifica-
tion error) and classifier complexity. While classification error
on a test dataset is an obvious performance metric of interest,
classifier complexity is also an important aspect to consider.
For a fixed performance rate, less complex classifiers take
less computation time (which is important in large datasets),
and are typically less prone to over-fitting during the training
(which may lead to better generalization beyond the training
data). With linear kernels, the only parameter of the C-SVM
algorithm is the cost variable which controls the complexity
of the classifier by changing the cost of the wrongly classified
points in the training process. We sweep over a range of
values from 1 to 10 000 and observe the probability of error
and classification time using the raw HSI data, reduced dimen-
sionality data using PCA, and sparse coefficient representations
for the learned, exemplar and random dictionaries discussed
earlier. For each value of , we performed 20 trials where each
trial consists of selecting a subset of 17 pixels from the labeled
data for each of the 22 classes to train a new SVM classifier and
then testing the classification performance on the remaining
labeled data withheld from the SVM training.6 We average over
all trials and all 22 classes to find the average classification
error and average classification time (as a proxy for classifier
complexity). Fig. 13 shows the changes in classification time
and probability of classification error.

There are three interesting things to note about the results in
Fig. 13. First, while the raw data achieved the lowest overall
error for the range of tested , the
sparse coefficients in the learned dictionary are nearly as good

using a much simpler classifier that
operates % faster than the SVM on the raw data.7 Second,
while PCA reduces the classification time farther then the
other approaches due to its extremely low dimensionality (four
principle components), it performs significantly worse than
the raw data or the sparse coefficients. Third, using sparse
coefficients in the random dictionary surprisingly performs
better than sparse coefficients in the

6We choose a training set size of 17 because we want the same amount of
training data per class, and the smallest class has 18 labeled samples (leaving
one testing pixel for the cross-validation). Average classification performance
can be improved significantly on this dataset when larger training samples are
used (but at the expense of consistent training set sizes per class).

7We note that in other simulations (not shown), the best classification perfor-
mance of the SVN does not improve when using a nonlinear kernel such as a
radial basis function (though the complexity obviously increases compared to
the linear kernel). This indicates that linear decision boundaries are nearly op-
timal for this particular dataset, and little advantage is gained from a nonlinear
mapping of the decision boundary. While in general we would hope to see lower
possible classification error when using sparse coefficients, it appears that non-
linear mappings simply do not add much value to the decision boundaries for
this particular dataset.
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Fig. 13. Classification on 22 material classes in the Smith Island dataset. (Left) Average classification error plotted as a function of average classification time (as
a proxy for classifier complexity) as the complexity parameter of the SVM is varied. Using coefficients from a sparse code in a learned dictionary as input to the
SVM performs essentially as well as using the raw data, but with a classifier 30% less complex. (Right) Average classification error as a function of the training
dataset size for each class. The power of the lower complexity classifier is demonstrated in the ability to generalize better, with sparse coefficients in the learned
dictionary clearly showing better performance for the very small training sets.

exemplar dictionary , despite having no
apparent relevance to material spectra in the scene. While this is
counter-intuitive, other recent results have shown that projection
onto random dictionaries can be a way to preserve information
useful for classification [34], [54], and it is likely that these dic-
tionaries cover the signal space better than random pixels drawn
from the labeled classes to form the exemplar dictionaries. De-
spite this, the coefficients of the learned dictionary do perform
better than the random dictionary, demonstrating the value of the
learning process. Finally, we should note that while we only dis-
play average classification errors, there is a wide variety in the
per-class classification errors classes (i.e., some classes are in-
herently very challenging to distinguish because of their similar
spectral features [5]). In our observations (not plotted), the rela-
tive difficulty of these classes in the classification task is roughly
the same in the different data representations.

As mentioned earlier, one advantage of using classifiers with
less complexity is that they may generalize better from the
training data, especially when the training dataset is very small.
We test the generalization ability of the SVM classification
approach described above by repeating the experiment with
variable sizes for the training dataset, in the extreme case using
only one training pixel per class. We performed and evaluated
this simulation in largely the same manner as described above,
fixing to achieve the lowest classification error
and conservatively using 50 trials (i.e., random selections
of training data for calculating a new SVM) to mitigate the
increased result sensitivity due to the low training set size.
Fig. 13 plots the results, showing that the sparse coefficients in
the learned dictionary do in fact generalize better than the other
methods, outperforming the other data representations for very

small training set sizes (less than 12 training pixels from the
total ground truth data).

IV. CONCLUSION

In this paper, we have shown that a sparse coding model and
the dictionary learning approach described in [44] (with minor
modifications) can yield valuable representations of HSI data
using no a priori information about the dataset. The learned dic-
tionary elements resemble many of the spectra corresponding
to known material properties in the scene, and the sparse de-
composition of the HSI data using this dictionary shows that
the variations in the surface properties are often sensibly rep-
resented. In particular, in contrast with a typical endmember
approach that seeks to contain the HSI data in a convex hull,
this learned dictionary captures nonlinear material variations di-
rectly by forming a locally linear approximation to the mani-
folds observed within a material class.

The learned dictionaries capture many high-order statistics
of the data they are learned from, and this representation
showes advantages in applications relevant for remote sensing
scenarios. For example, when coupled with a linear inverse
problem, this learned dictionary demonstrated that HSI-res-
olution spectra could be recovered with remarkable fidelity
from (simulated) spectra collected with just MSI-level reso-
lution. This performance is only possible because the learned
dictionaries are capable of effectively capturing the high level
of statistical dependencies inherent in HSI data. Furthermore,
encouraging results show that the performance on this task is
still very good when there is some mismatch in the statistics
because the training and testing data was collected at different
times (i.e., a different season of the year, with different char-
acteristics in the vegetation and the atmosphere). While this
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reconstruction problem was intended to mimic a realistic and
useful data acquisition scenario, we note that this linear inverse
problem framework captures many problems of interest (in-
cluding other acquisition models such as those in compressed
sensing [40]). Finally, we showed that the sparse coefficients
from this learned dictionary form a useful representation for
performing classification compared to the raw data, yielding
classifiers with less complexity that generalize better when the
training dataset size is very small.

From these results we can conclude that the sparse coding
model is a potentially valuable approach to analyzing HSI data,
and the learned dictionaries for this model form a meaningful
representation of the high-order statistics in the HSI data. While
this approach shares the same linear model as the common
endmember approach for spectral unmixing, the different
philosophy of representing the data variations directly appears
to have value both in the general understanding of the data
and in specific applications. We believe that this exploration
(along with the other related results in [16], [28], [29], and [55])
demonstrates that more extensive exploration of the utility of
this model in HSI is warranted, and improvements in many
specific applications are likely. In the future, in addition to
more thorough application of these ideas to other datasets, it
will be valuable to explore the utility of including increasingly
complex models in the learning process. For example, there
may be potential benefits to learning much larger dictionaries
than those shown in this work, learning joint spectral-spatial
dictionaries, learning dictionaries customized for specific appli-
cations (such as in [16]), and learning dictionaries that attempt
to explicitly capture features such as correlations between
pixels and nonlinear variations within material classes.
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