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Abstract

We have developed a sparse mathematical representation of speech that minimizes the number of active model neurons
needed to represent typical speech sounds. The model learns several well-known acoustic features of speech such as
harmonic stacks, formants, onsets and terminations, but we also find more exotic structures in the spectrogram
representation of sound such as localized checkerboard patterns and frequency-modulated excitatory subregions flanked
by suppressive sidebands. Moreover, several of these novel features resemble neuronal receptive fields reported in the
Inferior Colliculus (IC), as well as auditory thalamus and cortex, and our model neurons exhibit the same tradeoff in
spectrotemporal resolution as has been observed in IC. To our knowledge, this is the first demonstration that receptive
fields of neurons in the ascending mammalian auditory pathway beyond the auditory nerve can be predicted based on
coding principles and the statistical properties of recorded sounds.
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Introduction

Our remarkable ability to interpret the highly structured sounds

in our everyday environment suggests that auditory processing in

the brain is somehow specialized for natural sounds. Many authors

have postulated that the brain tries to transmit and encode

information efficiently, so as to minimize the energy expended [1],

reduce redundancy [2–4], maximize information flow [5–8], or

facilitate computations at later stages of processing [9], among

other possible objectives. One way to create an efficient code is to

enforce population sparseness, having only a few active neurons at

a time. Sparse coding schemes pick out the statistically important

features of a signal — those features that occur much more often

than chance — which can then be used to efficiently represent a

complex signal with few active neurons.

The principle of sparse coding has led to important insights into

the neural encoding of visual scenes within the primary visual

cortex (V1). Sparse coding of natural images revealed local,

oriented edge-detectors that qualitatively match the receptive

fields of simple cells in V1 [10]. More recently, overcomplete

sparse coding schemes have uncovered a greater diversity of

features that more closely matches the full range of simple cell

receptive field shapes found in V1 [11]. An encoding is called

overcomplete if the number of neurons available to represent the

stimulus is larger than the dimensionality of the input. This is a

biologically realistic property for a model of sensory processing

because information is encoded by increasing numbers of neurons

as it travels from the optic nerve to higher stages in the visual path-

way, just as auditory sensory information is encoded by increasing

numbers of neurons as it travels from the auditory nerve to higher

processing stages [12].

Despite experimental evidence for sparse coding in the auditory

system [13,14], there have been fewer theoretical sparse coding

studies in audition than in vision. However, there has been

progress, particularly for the earliest stages of auditory processing.

Sparse coding of raw sound pressure level waveforms of natural

sounds produced a ‘‘dictionary’’ of acoustic filters closely resem-

bling the impulse response functions of auditory nerve fibers

[15,16]. Acoustic features learned by this model were best fit to the

neural data for a particular combination of animal vocalizations

and two subclasses of environmental sounds. Intriguingly, they

found that training on speech alone produced features that were

just as well-fit to the neural data as the optimal combination of

natural sounds, suggesting that speech provides the right mixture

of acoustic features for probing and predicting the properties of the

mammalian auditory system.

Another pioneering sparse coding study [17] took as its starting

point speech that was first preprocessed using a model of the

cochlea — one of several so-called cochleogram representations of

sound. This group found relatively simple acoustic features that

were fairly localized in time and frequency as well as some

temporally localized harmonic stacks. These results were roughly

consistent with some properties of receptive fields in primary

auditory cortex (A1), but modeled responses did not capture the

majority of the specific shapes of neuronal spectrotemporal

receptive fields (STRFs; [18]) reported in the literature. That

study only considered undercomplete dictionaries, and it focused

solely on a ‘‘soft’’ sparse coding model that minimized the mean
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activity of the model’s neurons, as opposed to ‘‘hard’’ sparse

models that minimize the number of active neurons.

The same group also considered undercomplete, soft sparse

coding of spectrograms of speech [19], which did yield some

STRFs showing multiple subfields and temporally modulated

harmonic stacks, but the range of STRF shapes they reported was

still modest compared with what has been seen experimentally in

auditory midbrain, thalamus, or cortex. Another recent study

considered sparse coding of music [20] in order to develop auto-

mated genre classifiers.

To our knowledge, there are no published studies of complete or

overcomplete, sparse coding of either spectrograms or cochleo-

grams of speech or natural sounds. We note that one preliminary

sparse coding study utilizing a complete dictionary trained on

spectrograms did find STRFs resembling formants, onset-sensitive

neurons, and harmonic stacks (J. Wang, B.A. Olshausen, and V.L.

Ming, COSYNE 2008) but they did not obtain novel acoustic

features, nor any that closely resembled STRFs from the auditory

system.

Our goal is two-fold. First, we test whether an overcomplete,

hard sparse coding model trained on spectrograms of speech can

more fully reveal the structure of natural sounds than previous

models. Second, we ask whether our model can accurately predict

receptive fields in the ascending auditory pathway beyond the

auditory nerve. We have found that, when trained on spectro-

grams of human speech, an overcomplete, hard sparse coding

model does learn features resembling those of STRF shapes

previously reported in the inferior colliculus (IC), as well as

auditory thalamus and cortex. Moreover, our model exhibits a

similar tradeoff in spectrotemporal resolution as previously

reported in IC. Finally, our model has identified novel acoustic

features for probing the response properties of neurons in the

auditory pathway that have thus far resisted classification and

meaningful analysis.

Results

Sparse Coding Model of Speech
In order to uncover important acoustic features that can inform

us about how the nervous system processes natural sounds, we

have developed a sparse coding model of human speech (see

Methods for details). As illustrated in Fig. 1, raw sound pressure

level waveforms of recorded speech were first preprocessed by one

of two simple models of the peripheral auditory system. The first of

these preprocessing models was the spectrogram, which can be

thought of as the power spectrum of short segments of the original

waveform at each moment in time. We also explored an alter-

native preprocessing step that was meant to more accurately

model the cochlea [21,22]; the original waveform was sent

through a filter bank with center frequencies based on the pro-

perties of cochlear nerve fibers. Both models produced represen-

tations of the waveform as power at different frequencies over

time. The spectrograms (cochleograms) were then separated into

segments of length 216 ms (250 ms). Because of the high

dimensionality of these training examples, we performed prin-

cipal components analysis (PCA) and retained only the first

two hundred components to reduce the dimensionality (from

256|25~6,400 values down to 200), as was done previously in

some visual [23] and auditory [17] sparse coding studies; the latter

group also performed the control of repeating their analysis

without the PCA step and they found that their results did not

change.

We then trained a ‘‘dictionary’’ of model neurons that could

encode this data using the Locally Competitive Algorithm (LCA),

a recently developed sparse encoding algorithm [24]. This flexible

algorithm allowed us to approximately enforce either the so-called

‘‘hard’’ sparseness (L0 sparseness; minimizing the number of

simultaneously active model neurons) or ‘‘soft’’ sparseness (L1

sparseness; minimizing the sum of all simultaneous activity across

all model neurons) during encoding by our choice of thresholding

function. Additionally, we explored the effect of dictionary over-

completeness (with respect to the number of principal components)

by training dictionaries that were half-complete, complete, or

overcomplete (two or four times). Following training, the various

resulting dictionaries were analyzed for cell-types and compared to

experimental receptive fields reported in the literature.

Cochleogram-Trained Models
In general, training our network on cochleogram representa-

tions of speech resulted in smooth and simple shapes for the

learned receptive fields of model neurons. Klein and colleagues

[17] used a sparse coding algorithm that imposed an L1-like

sparseness constraint to learn a half-complete dictionary of

cochleograms. Their dictionary elements consisted of harmonic

stacks at the lower frequencies and localized elements at the higher

frequencies. To make contact with these results, we trained a half-

complete L0-sparse dictionary on cochleograms and compared the

response properties of our model neurons with those of the

previous study. The resulting dictionary (Fig. 2) consists of similar

shapes to this previous work with the exception of one ‘‘onset

element’’ in the upper left (this is the least used of all of the

elements from this dictionary). Subsequent simulations revealed

that the form of the dictionary is strongly dependent on the degree

of overcompleteness. Even a complete dictionary exhibits a greater

diversity of shapes than this half-complete dictionary (Fig. S11).

This was true for L1-sparse dictionaries trained with LCA [24] or

with Sparsenet [10] (Figs. S15 and S19).

The inability of the half-complete dictionary to produce the

more complex receptive field shapes of the complete dictio-

nary, such as those resembling STRFs measured in IC, or those

in auditory thalamus or cortex, suggests that overcompleteness

in those regions is crucial to the flexibility of their auditory

codes.

Author Summary

The receptive field of a neuron can be thought of as the
stimulus that most strongly causes it to be active.
Scientists have long been interested in discovering the
underlying principles that determine the structure of
receptive fields of cells in the auditory pathway to better
understand how our brains process sound. One possible
way of predicting these receptive fields is by using a
theoretical model such as a sparse coding model. In such a
model, each sound is represented by the smallest possible
number of active model neurons chosen from a much
larger group. A primary question addressed in this study is
whether the receptive fields of model neurons optimized
for natural sounds will predict receptive fields of actual
neurons. Here, we use a sparse coding model on speech
data. We find that our model neurons do predict receptive
fields of auditory neurons, specifically in the Inferior
Colliculus (midbrain) as well as the thalamus and cortex.
To our knowledge, this is the first time any theoretical
model has been able to predict so many of the diverse
receptive fields of the various cell-types in those areas.

Sparse Coding Predicts IC Receptive Fields
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Figure 1. Schematic illustration of our sparse coding model. (a) Stimuli used to train the model consisted of examples of recorded speech.
The blue curve represents the raw sound pressure waveform of a woman saying, ‘‘The north wind and the sun were disputing which was the
stronger, when a traveler came along wrapped in a warm cloak.’’ (b) The raw waveforms were first put through one of two preprocessing steps
meant to model the earliest stages of auditory processing to produce either a spectrogram or a ‘‘cochleogram’’ (not shown; see Methods for details).
In either case, the power spectrum across acoustic frequencies is displayed as a function of time, with warmer colors indicating high power content
and cooler colors indicating low power. (c) The spectrograms were then divided into overlapping 216 ms segments. (d) Subsequently, principal
components analysis (PCA) was used to project each segment onto the space of the first two hundred principal components (first ten shown), in
order to reduce the dimensionality of the data to make it tractable for further analysis while retaining its basic structure [17]. (e) These projections

Sparse Coding Predicts IC Receptive Fields
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Spectrogram-Trained Models
The spectrogram-trained dictionaries provide a much richer

and more diverse set of dictionary elements than those trained on

cochleograms. We display representative elements of the different

categories of shapes found in a half-complete L0-sparse spectro-

gram dictionary (Fig. 3a–f) along with a histogram of the usage of

the elements (Fig. 3g) when used to represent individual sounds

drawn from the training set (i.e., during inference). Interestingly,

we find that the different qualitative types of neurons separate

according to their usage into a series of rises and plateaus. The

least used elements are the harmonic stacks (Fig. 3a), which is

perhaps unsurprising since, in principle, only one of them needs to

be active at many points in time for a typical epoch of a recording

from a single human speaker. We note that, while such harmonic

stack receptive fields are apparently rare in the colliculus,

thalamus, and cortex, they are well represented in the dorsal

cochlear nucleus (DCN) (e.g., see Fig. 5b in [25]). The neighboring

flat region consists of onset elements (Fig. 3b), which contain

broad frequency subfields that change abruptly at one moment in

time. These neurons were all used approximately equally often

across the training set since it is equally probable that a stimulus

transient will occur any time during the 216 ms time window.

The third region consists of more complex harmonic stacks that

contain low-power subfields on the sides (Fig. 3c), a feature

were then input to a sparse coding network in order to learn a ‘‘dictionary’’ of basis elements analogous to neuronal receptive fields, which can then
be used to form a representation of any given stimulus (i.e., to perform inference). We explored networks capable of learning either ‘‘hard’’ (L0) sparse
dictionaries or ‘‘soft’’ (L1) sparse dictionaries (described in the text and Methods) that were undercomplete (fewer dictionary elements than PCA
components), complete (equal number of dictionary elements), or over-complete (greater number of dictionary elements).
doi:10.1371/journal.pcbi.1002594.g001

Figure 2. A half-complete sparse coding dictionary trained on cochleogram representations of speech. This dictionary exhibits a limited
range of shapes. The full set of 100 elements from a half-complete, L0-sparse dictionary trained on cochleograms of human speech resemble those
found in a previous study [17]. Nearly all elements are extremely smooth, with most consisting of a single frequency subfield or an unmodulated
harmonic stack. Each rectangle can be thought of as representing the spectro-temporal receptive field (STRF) of a single element in the dictionary
(see Methods for details); time is plotted along the horizontal axis (from 0 to 250 ms), and log frequency is plotted along the vertical axis, with
frequencies ranging from 73 Hz to 7630 Hz. Color indicates the amount of power present at each frequency at each moment in time, with warm
colors representing high power and cool colors representing low power. Each element has been normalized to have unit Euclidean length. Elements
are arranged in order of their usage during inference (i.e., when used to represent individual sounds drawn from the training set) with usage
increasing from left to right along each row, and all elements of lower rows used more than those of higher rows.
doi:10.1371/journal.pcbi.1002594.g002

Sparse Coding Predicts IC Receptive Fields
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sometimes referred to as ‘‘temporal inhibition’’ or ‘‘band-passed

inhibition’’ when observed in neural receptive fields; we will refer

to this as ‘‘suppression’’ rather than inhibition to indicate that the

model is agnostic as to whether these suppressed regions reflect

direct synaptic inhibition to the neuron, rather than a decrease in

excitatory synaptic input. The next flat region represents stimulus

onsets, or ON-type cells, that tend to be more localized in

frequency (Fig. 3d). The fifth group of elements is reminiscent of

formants (Fig. 3e), which are resonances of the vocal tract that

appear as characteristic frequency modulations common in

speech. Formants are modulations ‘‘on top of’’ the underlying

harmonic stack, often consisting of pairs of subfields that diverge

or converge over time in a manner that is not consistent with a

pair of harmonics rising or falling together due to fluctuations in

the fundamental frequency of the speaker’s voice. The final region

consists of the most active neurons, which are highly localized in

time and frequency and exhibit tight checkerboard-like patterns of

excitatory and suppressive subfields (Fig. 3f). These features are

exciting because they are similar to experimentally measured

receptive field shapes that to our knowledge have not previously

been theoretically predicted, as discussed below.

Overcompleteness Affects Learned Features
Analogous to sparse coding studies in vision [11,26], we find

that the degree of overcompleteness strongly influences the range

and complexity of model STRF shapes.

Fig. 4 presents representative examples of essentially all distinct

cell types found in a four-times overcomplete L0-sparse dictionary

trained on spectrograms. Features in the half-complete dictionary

do appear as subsets of the larger dictionaries (Fig. 4a, c, e, g, l),
but with increasing overcompleteness more complex features

emerge, exhibiting richer patterns of excitatory and suppressive

subfields. In general, optimized overcomplete representations can

better capture structured data with fewer active elements, since the

greater number of elements allows for important stimulus features

to be explicitly represented by dedicated elements. In the limit of

an infinite dictionary, for example, each element could be used as

a so-called ‘‘grandmother cell’’ that perfectly represents a single,

specific stimulus while all other elements are inactive.

Novel features that were not observed in smaller dictionaries

include: an excitatory harmonic stack flanked by a suppressive

harmonic stack (Fig. 4b); a neuron excited by low frequencies

(Fig. 4d); a neuron sensitive to two middle frequencies (Fig. 4f); a

localized but complex excitatory subregion followed by a

suppressive subregion that is strongest for high frequencies

(Fig. 4h); a checkerboard pattern with roughly eight distinct

subregions (Fig. 4i); a highly temporally localized OFF-type

neuron (Fig. 4j); and a broadband checkerboard pattern that

extends for many cycles in time (Fig. 4k). Several of these features

resemble STRFs reported in IC and further up the auditory

pathway (see the ‘‘Predicting acoustic features that drive neurons

in IC and later stages in the ascending auditory pathway’’ section

below). One interesting property of the checkerboard units is that

they are largely separable in space and time [27], which has been

studied for these and other types of neurons in ferret IC [28]. This

is in contrast to some of the other model STRF shapes we have

found, such as the example shown in Fig. 4e, which contains a

strong diagonal subfield that is not well described by a product of

independent functions of time and frequency.

As in the case of the half-complete dictionary (Fig. 3), the

different classes of receptive field shapes segregate as a function of

usage even as more intermediary shapes appear (see Fig. S4 for

the entire four-times overcomplete dictionary). However, the

plateaus and rises evident in the usage plot for the half-complete

dictionary (Fig. 3g) are far less distinct for the overcomplete

representation (Fig. 4m).

Figure 3. A half-complete, L0-sparse dictionary trained on spectrograms of speech. This dictionary exhibits a variety of distinct shapes that
capture several classes of acoustic features present in speech and other natural sounds. (a–f) Selected elements from the dictionary that are
representative of different types of receptive fields: (a) a harmonic stack; (b) an onset element; (c) a harmonic stack with flanking suppression; (d) a
more localized onset/termination element; (e) a formant; (f) a tight checkerboard pattern (see Fig. S1 for the full dictionary). Each rectangle
represents the spectro-temporal receptive field (STRF) of a single element in the dictionary; time is plotted along the horizontal axis (from 0 to
216 msec) and log frequency is plotted along the vertical axis, with frequencies ranging from 100 Hz to 4000 Hz. (g) A graph of the usage of the
dictionary elements showing that the different types of receptive field shapes separate based on usage into a series of rises and plateaus; red symbols
indicate where each of the examples from panels a–f fall on the graph. The vertical axis represents the number of stimuli that required a given
dictionary element in order to be represented accurately during inference.
doi:10.1371/journal.pcbi.1002594.g003

Sparse Coding Predicts IC Receptive Fields
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These same trends are present in the cochleogram-trained

dictionaries. More types of STRFs appear when the degree of

overcompleteness is increased (Figs. S11, S12, S13). For

example, with more overcomplete dictionaries, some neurons

have subfields spanning all frequencies or the full time-window

within the cochleogram inputs. Additionally, we find neurons that

exhibit both excitation and suppression in complex patterns,

though the detailed shapes differ from what we find for the

dictionaries trained on spectrograms.

We wondered to what extent the specific form of sparseness we

imposed on the representation was affecting the particular features

learned by our network. To study this, we used the LCA algorithm

[24] to find the soft sparse solution (i.e., one that minimizes the L1

norm), and obtained similar results to what we found for the hard

sparse cases: increasing overcompleteness resulted in greater

diversity and complexity of learned features (see Figs. S5, S6,
S7, S8). We also trained some networks using a different

algorithm, called Sparsenet [10], for producing soft sparse

dictionaries, and we again obtained similar results as for our hard

sparse dictionaries (Figs. S9, S10). It has been proven mathe-

matically [29] that signals that are actually L0-sparse can be

uncovered effectively by L1-sparse coding algorithms, which

suggests that speech is an L0-sparse signal given that we find

similar features using algorithms designed to achieve either L1 or

L0 sparseness. Thus, preprocessing with spectrograms rather than

a more nuanced cochlear model, and the degree of over-

completeness, greatly influenced the learned dictionaries, unlike

the different sparseness penalties we employed.

The specific form of the sparseness penalty did, however, affect

the performance of the various dictionaries. In particular, the level

of sparseness achieved across the population of model neurons

exhibited different relationships with the fidelity of their repre-

sentations, suggesting that some model choices resulted in

population codes that were more efficient at using small numbers

of neurons to represent stimuli efficiently, while others were more

effective at increasing their representational power when incorpo-

rating more active neurons (Fig. S20).

Modulation Power Spectra
Our four-times overcomplete, spectrogram-trained dictionary

exhibits a clear tradeoff in spectrotemporal resolution (red points,

Fig. 5), similar to what has been found experimentally in IC [30].

IC is the lowest stage in the ascending auditory pathway to exhibit

such a tradeoff, but it has yet to be determined for higher stages of

processing, such as A1. This trend is not present in the half-

complete cochleogram-trained dictionary (blue open circles,

Fig. 5). Rather, these elements display a limited range of temporal

modulations, but they span nearly the full range of possible

Figure 4. A four-times overcomplete, L0-sparse dictionary trained on speech spectrograms. This dictionary shows a greater diversity of
shapes than the undercomplete dictionaries. (a–l) Representative elements a, c, e, g, j, and l resemble those of the half-complete dictionary (see
Fig. 3). Other neurons display more complex shapes than those found in less overcomplete dictionaries: (b) a harmonic stack with flanking
suppressive subregions; (d) a neuron sensitive to lower frequencies; (f) a short harmonic stack; (h) a localized but complex pattern of excitation with
flanking suppression; (i) a localized checkerboard with larger excitatory and suppressive subregions than those in panel l; (k) a checkerboard pattern
that extends for many cycles in time. Several of these patterns resemble neural spectro-temporal receptive fields (STRFs) reported in various stages of
the auditory pathway that have not been predicted by previous theoretical models (see text and Figs. 6–8). (m) A graph of usage of the dictionary
elements during inference. The different classes of dictionary elements still separate according to usage (see Fig. S4 for the full dictionary) although
the notable rises and plateaus as seen in Fig. 3g are less apparent in this larger dictionary.
doi:10.1371/journal.pcbi.1002594.g004

Sparse Coding Predicts IC Receptive Fields
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spectral modulations. Thus, by this measure the spectrogram-

trained dictionary is a better model of IC than the cochleogram-

trained model. In the next section, we compare the shapes of the

various classes of model STRFs with individual neuronal STRFs

from IC, and again find good agreement between our over-

complete spectrogram-trained model and the neural data.

Predicting Acoustic Features that Drive Neurons in IC and
Later Stages in the Ascending Auditory Pathway

Our model learns features that resemble STRFs reported in IC

[30–33], as well as in the ventral side of the medial geninculate

body (MGBv) [34] and A1 [34–36]. We are unaware of any

previous theoretical work that has provided accurate predictions

for receptive fields in these areas.

Figs. 6, 7, and 8 present several examples of previously

reported experimental receptive fields that qualitatively match

some of our model’s dictionary elements. We believe the most

important class of STRFs we have found are localized checker-

board patterns of excitation and suppression, which qualitatively

match receptive fields of neurons in IC and MGBv (Fig. 7).

IC neurons often exhibit highly localized excitation and

suppression patterns (Fig. 6), sometimes referred to as ‘‘ON’’ or

‘‘OFF’’ responses, depending on the temporal order of excitation

and suppression. We show multiple examples drawn from the

complete, two-times overcomplete, and four-times overcomplete

dictionaries, trained on spectrograms, that exhibit these patterns.

The receptive fields of two neurons recorded in gerbil IC exhibit

suppression at a particular frequency followed by excitation at the

same frequency (Fig. 6a). Such neurons are found in our model

dictionaries (Fig. 6b). The reverse pattern is also found in which

suppression follows excitation as shown in two cat IC STRFs

(Fig. 6c) with matching examples from our model dictionaries

(Fig. 6d). Note that the experimental receptive fields extend to

higher frequencies because the studies were done in cats and

gerbils, which are sensitive to higher frequencies than we were

probing with our human speech training set. The difference in

time-scales between our spectrogram representation and the

experimental STRFs could reflect the different timescales of

speech and behaviorally relevant sounds for cats and rodents.

A common feature of thalamic and midbrain neural receptive

fields is a localized checkerboard pattern of excitation and

suppression (Fig. 7), typically containing between four to nine

distinct subfields. We present experimental gerbil IC, cat IC and

cat MGBv STRFs of this type in Fig. 7a beside similar examples

from our model (Fig. 7b). This pattern is displayed by many

elements in our sparse coding dictionaries, but to our knowledge it

has not been predicted by previous theories.

We also find some less localized receptive fields that strongly

resemble experimental data. Some model neurons (Fig. 8b)

consist of a suppression/excitation pattern that extends across

most frequencies, reminiscent of broadband OFF and ON

responses as reported in cat IC and rat A1 (Fig. 8a).

Another shape seen in experimental STRFs of bat IC (top), and

cat A1 (bottom; Fig. 8c) is a diagonal pattern of excitation flanked

by suppression at the higher frequencies. This pattern of excitation

flanked by suppression is present in our dictionaries (Fig. 8d),

including at the highest frequencies probed. This type of STRF

pattern is reminiscent of the two-dimentional Gabor-like patches

seen in V1, which have been well captured by sparse coding

models of natural scenes [10,11,26].

Figure 5. Our overcomplete, spectrogram-trained model exhibits similar spectrotemporal tradeoff as Inferior Coliculus. Modulation
spectra of half-complete cochleogram-trained dictionary and four-times overcomplete spectroram-trained dictionary are shown. The four-times
overcomplete spectrogram-trained dictionary elements (red dots; same dictionary as in Fig. 4) display a clear tradeoff between spectral and temporal
modulations, similar to what has been reported for Inferior Colliculus (IC) [30]. By contrast, the half-complete cochleogram-trained dictionary (blue
circles; same dictionary as in Fig. 2) exhibits a much more limited range of temporal modulations, with no such tradeoff in spectrotemporal
resolution. Each data point represents the centroid of the modulation spectrum of the corresponding element. The elements shown in Fig. 4 are
indicated on the graph with the same symbols as before.
doi:10.1371/journal.pcbi.1002594.g005

Sparse Coding Predicts IC Receptive Fields
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Figure 6. Model comparisons to receptive fields from auditory midbrain. Complete and overcomplete sparse coding models trained on
spectrograms of speech predict Inferior Colliculus (IC) spectro-temporal receptive field (STRF) shapes with excitatory and suppressive subfields that
are localized in frequency but separated in time. (a) Two examples of Gerbil IC neural STRFs [31] exhibiting ON-type response patterns with excitation
following suppression; data courtesy of N.A. Lesica. (b) Representative model dictionary elements from each of three dictionaries that match this
pattern of excitation and suppression. The three dictionaries were all trained on spectrogram representations of speech, using a hard sparseness (L0)
penalty; the representations were complete (left column; Fig. S2), two-times overcomplete (middle column; Fig. S3), and four-times overcomplete
(right column; Fig. 4 and Fig. S4). (c) Two example neuronal STRFs from cat IC [30] exhibiting OFF-type patterns with excitation preceding
suppression; data courtesy of M.A. Escabı́. (d) Other model neurons from the same set of three dictionaries as in panel b also exhibit this OFF-type
pattern.
doi:10.1371/journal.pcbi.1002594.g006

Sparse Coding Predicts IC Receptive Fields
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Discussion

We have applied the principle of sparse coding to spectrogram

and cochleogram representations of human speech recordings in

order to uncover some important features of natural sounds. Of

the various models we considered, we have found that the specific

form of preprocessing (i.e., cochleograms vs. spectrograms) and the

degree of overcompleteness are the most significant factors in

determining the complexity and diversity of receptive field shapes.

Importantly, we have also found that features learned by our

sparse coding model resemble a diverse set of receptive field shapes

in IC, as well as MGBv and A1. Even though a spectrogram may

Figure 7. Model comparisons to receptive fields from auditory midbrain and thalamus. An overcomplete sparse coding model trained on
spectrograms of speech predicts Inferior Colliculus (IC) and auditory thalamus (ventral division of the medial geniculate body; MGBv) spectro-
temporal receptive fields (STRFs) consisting of localized checkerboard patterns containing roughly four to nine distinct subfields. (a) Example STRFs
of localized checkerboard patterns from two Gerbil IC neurons [31], one cat IC neuron [33], and one cat MGBv neuron [34] (top to bottom). Data
courtesy of N.A. Lesica (top two cells) and M.A. Escabı́ (bottom two cells). (b) Elements from the four-times overcomplete, L0-sparse, spectrogram-
trained dictionary with similar checkerboard patterns as the neurons in panel a.
doi:10.1371/journal.pcbi.1002594.g007
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Figure 8. Model comparisons to receptive fields from auditory midbrain and cortex. on spectrograms of speech predicts several classes of
broadband spectro-temporal receptive field (STRF) shapes found in Inferior Colliculus (IC) and primary auditory cortex (A1). (a,b) An example
broadband OFF-type STRF from cat IC [34] (top; data courtesy of M.A. Escabı́) and an example broadband ON-type subthreshold STRF from rat A1 [35]
(bottom; data courtesy of M. Wehr) shown in panel a resemble example elements from a four-times overcomplete, L0-sparse, spectrogram-trained

Sparse Coding Predicts IC Receptive Fields
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not provide as accurate a representation of the output of the

cochlea as a more explicit cochleogram model, such as the one we

explored here, we have found that sparse coding of spectrograms

yields closer agreement to experimentally measured receptive

fields, demonstrating that we can infer important aspects of

sensory processing in the brain by identifying the statistically

important features of natural sounds without having to impose

many constraints from biology into our models from the outset.

Indeed, it is worth emphasizing that the agreement we have

found did not result from fitting the neural physiology, per se; it

emerged naturally from the statistics of the speech data we used to

train our model. Specifically, the model parameters we explored

— undercomplete vs. overcomplete representation, L0 vs. L1 spar-

seness penalty, and cochleogram vs. spectrogram preprocessing —

represent a low-dimensional space of essentially eight different

choices compared with the rich, high-dimensional space of po-

tential STRF shapes we could have obtained.

Intriguingly, while we have emphasized the agreement between

our model and IC, the receptive fields we have found resemble

experimental data from multiple levels of the mammalian

ascending auditory pathway. This may reflect the possibility that

the auditory pathway is not strictly hierarchical, so that neurons

in different anatomical locations may perform similar roles, and

thus are represented by neurons from the same sparse coding

dictionary. This view is consistent with the well-known observation

that there is a great deal of feedback from higher to lower stages of

processing in the sub-cortical auditory pathway [37], as compared

with the visual pathway, for example. Some of our shapes have

even been reported at lower levels. Harmonic stacks, including

some with band-passed inhibition, have been reported in the

dorsal cochlear nucleus [25,38] and they have been observed in

presynaptic responses in IC (M.A. Escabı́, C. Chen, and H. Read,

Society for Neuroscience Abstracts 2011), but these shapes have

not yet been reported in IC spiking responses or further up the

ascending auditory pathway. The tradeoff in spectrotemporal

resolution we have found in our model resembles that of IC, which

is the lowest stage of the ascending auditory pathway to exhibit a

tradeoff that cannot be accounted for by the uncertainty principle,

as is the case for auditory nerve fibers [30], but it remains to be

seen if such a tradeoff also exists in MGBv or A1.

A related issue is that an individual neuron might play different

roles depending on the stimulus ensemble being presented to the

nervous system. In fact, changing the contrast level of the acoustic

stimuli used to probe individual IC neurons can affect the number

of prominent subfields in the measured STRF of the neuron [31].

Our model does not specify which neuron should represent any

given feature, it just predicts the STRFs that should be represented

in the neural population in order to achieve a sparse encoding of

the stimulus.

Moreover, for even moderate levels of overcompleteness, our

sparse coding dictionaries include categories of features that have

not been reported in the experimental literature. For example, the

STRF shown in Fig. 4k represents a well-defined class of elements

in our sparse dictionaries, but we are unaware of reports of this

type of STRF in the auditory pathway. Thus, our theoretical

receptive fields could be used to develop acoustic stimuli that

might drive auditory neurons that do not respond to traditional

probe stimuli. In particular, our dictionaries contain many

broadband STRFs with complex structures. These broadband

neurons may not have been found experimentally since by

necessity researchers often probe neurons extensively with stimuli

that are concentrated around the neuron’s best frequency.

It is important to recognize that STRFs do not fully capture the

response properties of neurons in IC, just as most of the

explainable variance is not captured by linear receptive fields of

V1 simple cells [39]. We note, however, that while our sparse

coding framework involves a linear generative model, the

encoding is non-linear. Thus, one of the questions addressed by

this study is the degree to which the competitive nonlinearity of a

highly over-complete model can account for the rich assortment of

STRFs in IC. We have found that this is a crucial factor in

learning a sparse representation that captures the rich variety of

STRF shapes observed in IC, as well as in thalamus and cortex.

We have presented several classes of STRFs from our model

that qualitatively match the shapes of neural receptive fields, but in

many cases the neurons are sensitive to higher frequencies than the

model neurons. This is likely due to the fact that we trained our

network on human speech, which has its greatest power in the low

kHz range, whereas the example neural data available in the

literature come from animals with hearing that extends to much

higher acoustic frequencies, and with much higher-pitched

vocalizations, than humans.

Our primary motivation for using speech came from the success

of previous studies that yielded good qualitative [15] and

quantitative [16] predictions of auditory nerve (AN) response

properties based on sparse coding of speech. In fact, in order to

obtain comparable results using environmental sounds and animal

vocalizations, the relative proportion of training examples from

each of three classes of natural sounds had to be adjusted to

empirically match the results found using speech alone. Thus,

speech provides a parameter-free stimulus set for matching AN

properties, just as we have found for our model of IC. Moreover,

good agreement between the model and AN physiology required

selecting high SNR epochs within typically noisy recordings from

the field; good results also required the selection of epochs

containing isolated animal vocalizations rather than simultaneous

calls from many individuals. By contrast, the speech databases

used in those studies and the present study consist of clean, high

SNR recordings of individual speakers. The issue of SNR is

especially important for our study given that the dimensionality of

our training examples is much higher (6,400 values for our

spectrogram patches; 200 values after PCA) compared with typical

vision studies (e.g., 64 pixel values [10]).

Beyond the practical benefits of training on speech, the basic

question of whether IC is best thought of as specialized for

conspecific vocalizations or suited for more general auditory

processing remains unanswered, but it seems reasonable to assume

that it plays both roles. Questions such as this have inspired an

important debate about the use of artificial and ecologically

relevant stimuli [40,41] and what naturalistic stimuli can tell us

about sensory coding [42–44]. The fact that several of the different

STRFs we find have been observed in a variety of species,

including rats, cats, and ferrets, suggests that there exist sufficiently

universal features shared by the specific acoustic environments of

these creatures to allow some understanding of IC function

without having to narrowly tailor the stimulus set to each species.

Even if sparse coding is, indeed, a central organizing principle

throughout the nervous system, it could still be that the sparse

dictionary shown in panel b. (c) STRFs from a bat IC neuron [32] (top; data courtesy of S. Andoni) and a cat A1 neuron [34] (bottom; data courtesy of
M.A. Escabı́) each consist of a primary excitatory subfield that is modulated in frequency over time, flanked by similarly angled suppressive subfields.
(d) Example STRFs from four elements taken from the same dictionary as in panels b exhibit similar patterns as the neuronal STRFs in panel c.
doi:10.1371/journal.pcbi.1002594.g008
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representations we predict with our model correspond best to the

subthreshold, postsynaptic responses of the membrane potentials

of neurons, rather than their spiking outputs. In fact, we show an

example of a subthreshold STRF (Fig. 8a bottom) that agrees well

with one class of broadband model STRFs (Fig. 8b). The tuning

properties of postsynaptic responses are typically broader than

spiking responses, as one would expect, which could offer a clue as

to which is more naturally associated with model dictionary

elements. If our model elements are to be interpreted as sub-

threshold responses, then the profoundly unresponsive regions

surrounding the active subfields of the neuronal STRFs could be

more accurately fit by our model STRFs after they are post-

processed by being passed through a model of a spiking neuron

with a finite spike threshold.

It is encouraging that sparse encoding of speech can identify

acoustic features that resemble neuronal STRFs from auditory

midbrain, as well as those in thalamus and cortex, and it is notable

that the majority of these features bear little resemblance to the

Gabor-like shapes and elongated edge detectors that have been

predicted by sparse coding representations of natural images.

Clearly, our results are not an unavoidable consequence of the

sparse coding procedure itself, but instead reflect the structure of

the speech spectrograms and cochleograms we have used to train

our model. Previous work to categorize receptive fields in A1 has

often focused on oriented features that are localized in time and

frequency [27,45], and some authors have suggested that such

Gabor-like features are the primary cell types in A1 [46], but the

emerging picture of the panoply of STRF shapes in IC, MGBv,

and A1 is much more complex, with several distinct classes of

features, just as we have found with our model. An important next

step will be to develop parameterized functional forms for the

various classes of STRFs we have found, which can assume the

role that Gabor wavelets have played in visual studies. We hope

that this approach will continue to yield insights into sensory

processing in the ascending auditory pathway.

Methods

Sparse Coding
In sparse coding, the input (spectrograms or cochleograms) y is

encoded as a matrix A multiplied by a vector of weighting

coefficients s: y~Asze where e is the error. Each column of A
represents one dictionary element or receptive field, the stimulus

that most strongly drives the neuron. If there are more columns in

A than elements in y, this will be an overcomplete representation.

We defined the degree of overcompleteness relative to the number

of principle components. We learned the dictionary and inferred

the coefficients by descending an energy function that minimizes

the mean squared error of reconstruction under a sparsity

constraint.

E(t)~
1

2
DDy(t){As(t)DD2zl

X

m

C(sm(t)): ð1Þ

Here l controls the relative weighting of the two terms and C

represents the sparsity constraint.

The sparsity constraint requires the column vector s to be sparse

by some definition. In this paper, we focus on the L0-norm,

minimizing the number of non-zero coefficients in s (or equi-

valently the number of active neurons in a network). Another

norm we have investigated is the L1-norm, minimizing the

absolute activity of all of the neurons.

Locally Competitive Algorithm
We performed inference of the coefficients with a recently

developed algorithm, a Locally Competitive Algorithm [24],

which minimizes close approximations of either the L0- or L1-

norms. Each basis function Ai is correlated with a computing unit

defined by an internal variable ui as well as the output coefficient

si. All of the neurons begin with the coefficients set to zero. These

values change over time depending on the input. A neuron ui

increases by an amount bi if the input overlaps with the receptive

field of the neuron: bi(t)~SAi,y(t)T. The neurons evolve as a

group following dynamics in which the neurons compete with one

another to represent the input. The neurons inhibit each other

with the strength of the inhibition increasing as the overlap of their

receptive fields and the output coefficient values increase. This

internal variable is then put through a thresholding function Tl to

produce the output value: si~Tl(ui).
In vector notation, the full dynamic equation of inference is:

_uu(t)~f (u(t))~
1

t
½b(t){u(t){(AT A{I)s(t)�,

s(t)~Tl(u(t)):

ð2Þ

The variable t sets the time-scale of the dynamics.

The thresholding function Tl is determined by the sparsity

constraint C. It is specified via:

l
dC(sm)

dsm

~um{sm~um{Tl(um): ð3Þ

Learning
Learning is done via gradient descent on the energy function:

r(t)~y(t){As(t),

A~AzgA(r(t)sT (t))zh(A{AAT A):
ð4Þ

The h term is a device for increasing orthogonality between

basis functions [47]. This is equivalent to adding in a prior that the

basis functions are unique.

Stimuli
We used two corpora of speech recordings from the handbook

of the International Phonetic Association (http://web.uvic.ca/

ling/resources/ipa/handbook_downloads.htm) and TIMIT [48].

These consist of people telling narratives in approximately 30

different languages. We resampled all waveforms to 16000 Hz,

and then converted them into spectrograms by taking the squared

Fourier Transform of the raw waveforms. We sampled at 256

frequencies logarithmically spaced between 100 and 4000 Hz. We

monotonically transformed the output with the logarithm function,

resulting in the log-power of the sound at specified frequencies

over time.

The data was then divided into segments covering all

frequencies and 25 overlapping time points (16 ms each)

representing 216 ms total. Subsequently, we performed principal

components analysis on the samples to whiten the data as well as

reduce the dimensionality. We retained the first 200 principal

components as this captured over 93% of the variance in the

spectrograms and lowered the simulation time. During analysis,

the dictionaries were dewhitened back into spectrogram space.
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We also trained with another type of input, cochleograms

[21,22]. These are similar to spectrograms, but the frequency

filters mimic known properties of the cochlea via a cochlear model

[21]. The cochlear model sampled at 86 frequencies between 73

and 7630 Hz. For this input, the total time for each sample was

250 ms (still 25 time points), and the first 200 principle com-

ponents captured over 98% of the variance.

Presentation of Dictionaries
All dictionary neurons were scaled to be between 21 and 1

when displayed. The coefficients in the encoding can take on

positive or negative values during encoding. To reflect this, we

looked at the skewness of each dictionary element. If the skewness

was negative, the colors of the dictionary element were inverted

when being displayed to reflect the way that element was actually

being used.

Modulation Power Spectra
To calculate the modulation power spectra, we took a 2D

Fourier Transform of each basis function. For each element, we

plotted the peak of the temporal and spectral modulation transfer

functions (Fig. 5). For the cochleogram-trained basis functions,

we approximated the cochleogram frequency spacing as being

log-spaced to allow comparison with the spectrogram-trained

dictionaries.

Presentation of Experimental Data
Data from [31] was given to us in raw STRF format. Each was

interpolated by a factor of three, but no noise was removed. Data

from [30,32–35] were given to us in the same format as they were

originally published.

Supporting Information

Figure S1 The full set of elements from a half-complete,
L0-sparse dictionary trained with LCA [24] on spectro-
grams of speech. Each rectangle represents the spectrotemporal

receptive field of a single element in the dictionary; time is plotted

along the horizontal axis (from 0 to 216 msec), and log frequency

is plotted along the vertical axis, with frequencies ranging from

100 Hz to 4000 Hz. Color indicates the amount of power present

at each frequency at each moment in time, with warm colors

representing high power and cool colors representing low power.

Each element has been normalized to have unit Euclidean length.

Elements are arranged in order of their usage during inference

with usage increasing from left to right along each row, and all

elements of lower rows used more than those of higher rows.

(TIFF)

Figure S2 The full set of elements from a complete,
L0-sparse dictionary trained with LCA [24] on spectro-
grams of speech. Same conventions as Fig. S1.

(TIF)

Figure S3 The full set of elements from a two times
overcomplete, L0-sparse dictionary trained with LCA
[24] on spectrograms of speech. Same conventions as

Fig. S1.

(TIF)

Figure S4 The full set of elements from a four times
overcomplete, L0-sparse dictionary trained with LCA
[24] on spectrograms of speech. Same conventions as

Fig. S1.

(TIF)

Figure S5 The full set of elements from a half-complete,
L1-sparse dictionary trained with LCA [24] on spectro-
grams of speech. Same conventions as Fig. S1.

(TIF)

Figures S6 The full set of elements from a complete, L1-
sparse dictionary trained with LCA [24] on spectro-
grams of speech. Same conventions as Fig. S1.

(TIF)

Figure S7 The full set of elements from a two times
overcomplete, L1-sparse dictionary trained with LCA
[24] on spectrograms of speech. Same conventions as Fig.

S1.

(TIF)

Figure S8 The full set of elements from a four times
overcomplete, L1-sparse dictionary trained with LCA
[24] on spectrograms of speech. Same conventions as Fig.

S1.

(TIF)

Figure S9 The full set of elements from a half-complete,
L1-sparse dictionary trained with Sparsenet [10] on
spectrograms of speech. Same conventions as Fig. S1.

(TIF)

Figure S10 The full set of elements from a complete, L1-
sparse dictionary trained with Sparsenet [10] on spec-
trograms of speech. Same conventions as Fig. S1.

(TIF)

Figure S11 The full set of elements from a complete,
L0-sparse dictionary trained using LCA [24] on cochleo-
grams of speech. Each rectangle represents the spectro-

temporal receptive field of a single element in the dictionary; time

is plotted along the horizontal axis (from 0 to 250 ms), and log

frequency is plotted along the vertical axis, with frequencies

ranging from 73 Hz to 7630 Hz. Color indicates the amount of

power present at each frequency at each moment in time, with

warm colors representing high power and cool colors represent-

ing low power. Each element has been normalized to have unit

Euclidean length. Elements are arranged in order of their usage

during inference with usage increasing from left to right along

each row, and all elements of lower rows used more than those of

higher rows.

(TIF)

Figure S12 The full set of elements from a two times
overcomplete, L0-sparse dictionary trained with LCA
[24] on cochleograms of speech. Same conventions as Fig.

S11.

(TIF)

Figure S13 The full set of elements from a four times
overcomplete, L0-sparse dictionary trained with LCA
[24] on cochleograms of speech. Same conventions as Fig.

S11.

(TIF)

Figure S14 The full set of elements from a half-
complete, L1-sparse dictionary trained with LCA [24]

on cochleograms of speech. Same conventions as Fig. S11.

(TIF)

Figure S15 The full set of elements from a complete, L1-
sparse dictionary trained with LCA [24] on cochleo-
grams of speech. Same conventions as Fig. S11.

(TIF)

Sparse Coding Predicts IC Receptive Fields

PLoS Computational Biology | www.ploscompbiol.org 13 July 2012 | Volume 8 | Issue 7 | e1002594



Figure S16 The full set of elements from a two times
overcomplete, L1-sparse dictionary trained with LCA
[24] on cochleograms of speech. Same conventions as

Fig. S11.

(TIF)

Figure S17 The full set of elements from a four times
overcomplete, L1-sparse dictionary trained with LCA
[24] on cochleograms of speech. Same conventions as

Fig. S11.

(TIF)

Figure S18 The full set of elements from a half-
complete, L1-sparse dictionary trained with Sparsenet
[10] on cochleograms of speech. Same conventions as

Fig. S11.

(TIF)

Figure S19 The full set of elements from a complete,
L1-sparse dictionary trained with Sparsenet [10] on
cochleograms of speech. Same conventions as Fig. S11.

(TIF)

Figure S20 The signal to noise ratio (SNR) of sparse
coding dictionaries increases with overcompleteness
and with increasing numbers of active elements. Blue

lines with triangles represent L0-sparse dictionaries, whereas green

lines represent L1-sparse dictionaries. As expected, representations

are more accurate with increasing numbers of active neurons and

also when the level of overcompleteness is increased. Interestingly,

the L0-sparse dictionaries typically have higher SNRs than the L1-

sparse dictionaries. A few other general trends are evident as well.

Most notably, the L0-sparse dictionaries have higher SNRs than

the L1-sparse dictionaries for similar levels of sparseness. Also, the

more overcomplete dictionaries have higher SNRs than half-

complete ones, even with the same absolute number of active

neurons. The half-complete and complete dictionaries do not show

much improvement in performance even as the number of active

neurons increases. Interestingly, we find that the performance of

the L0-sparse dictionaries tend to saturate as the fraction of active

neurons approaches unity whereas the corresponding curves for

the L1-sparse dictionaries tend to curve upwards. Note that we did

not optimize the dictionaries at each data point, but instead used

the same parameters used when training the network.

(TIF)
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9. Földiák P (1990) Forming sparse representations by local anti-hebbian learning.

Biol Cybern 64: 165–170.

10. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature 381: 607–609.

11. Rehn M, Sommer FT (2007) A network that uses few active neurones to code

visual input predicts the diverse shapes of cortical receptive fields. J Comput

Neurosci 22: 135–146.

12. DeWeese MR, Hromdka T, Zador AM (2005) Reliability and representational

bandwidth in the auditory cortex. Neuron 48: 479–488.

13. DeWeese MR, Wehr M, Zador AM (2003) Binary spiking in auditory cortex.

J Neurosci 23: 7940–7949.

14. Hromdka T, DeWeese MR, Zador AM (2008) Sparse representation of sounds

in the unanesthetized auditory cortex. PLoS Biol 6: e16.

15. Lewicki MS (2002) Efficient coding of natural sounds. Nat Neurosci 5: 356–

1111.

16. Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439: 978–982.

17. Klein D, König P, Körding KP (2003) Sparse spectrotemporal coding of sounds.

J Appl Signal Proc 7: 659–667.

18. Aertsen AMHJ, Johannesma PIM (1981) A comparison of the spectro-temporal

sensitivity of auditory neurons to tonal ad natural stimuli. Biol Cybern 42: 142–156.

19. Körding KP, König P, Klein D (2002) Learning of sparse auditory receptive

fields. In: Proceedings of the International Joint Conference on Neural Networks

2002; 12–17 May 2002; Honolulu, Hawaii, United States. IJCNN ’02.

20. Henaff M, Jarrett K, Kavukcuoglu K, LeCun Y (2011) Unsupervised learning of

sparse features for scalable audio classification. In: Proceedings of the 12th

International Symposium on Music Information Retrieval; 24–28 October 2011;

Miami, Florida, United States. ISMIR 2011.

21. Lyon RF (1982) A computational model of filtering, detection, and compression

in the cochlea. In: Proc. IEEE Int. Conf. Acoust., Speech Signal Processing;

Paris, France. pp. 1282–1285.

22. Slaney M (1998) Auditory toolbox version 2. Interval Research Corporation.

Technical Report 1998-010.

23. van Hateren JH, van der Schaaf A (1998) Independent component filters of

natural images compared with simple cells in primary visual cortex. Proc R Soc

Lond B 265: 359–366.

24. Rozell CJ, Johnson DH, Baraniuk RG, Olshausen BA (2008) Sparse coding via

thresholding and local competition in neural circuits. Neural Comput 20: 2526–

2563.

25. Backoff PM, Clopton BM (1991) A spectrotemporal analysis of dcn of single unit

responses to wideband noise in guinea pig. Hearing Res 53: 28–40.

26. Olshausen BA, Cadieu CF, Warland DK (2009) Learning real and complex

overcomplete representations from the statistics of natural images. In: Goyal

VK, Papadakis M, van de Ville D, editors. Proc. SPIE, volume 7446. San Diego,

California.

27. Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-temporal

response field characterization with dynamic ripples in ferret primary auditory

cortex. J Neurophysiol 85: 1220–1111.

28. Shechtere B, Marvit P, Depireux DA (2010) Lagged cells in the inferior

colliculus of the awake ferret. Eur J Neurosci 31: 42–48.

29. Donoho DL (2004) Compressed sensing. IEEE Trans Inform Theory 52: 1289–

1396.

30. Rodrı́guez FA, Read HL, Escabı́ MA (2010) Spectral and temporal modulation

tradeoff in the inferior colliculus. J Neurophysiol 103: 887–903.

31. Lesica NA, Grothe B (2008) Dynamic spectrotemporal feature selectivity in the

auditory midbrain. J Neurosci 28: 5412–5421.

32. Andoni S, Li N, Pollak GD (2007) Spectrotemporal receptive fields in the

inferior colliculus revealing selectivity for spectral motion in conspecific

vocalizations. J Neurosci 27: 4882–4893.

33. Qiu A, Schreiner CE, Escabı́ MA (2003) Gabor analysis of auditory midbrain

receptive fields: spectro-temporal and binaural composition. J Neurophysiol 90:

456–476.

34. Escabı́ MA, Read HL (2005) Neural mechanisms for spectral analysis

in the auditory midbrain, thalamus, and cortex. Int Rev Neurobiol 70:

207–252.

Sparse Coding Predicts IC Receptive Fields

PLoS Computational Biology | www.ploscompbiol.org 14 July 2012 | Volume 8 | Issue 7 | e1002594



35. Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields

measured with natural sounds. J Neurosci 24: 1089–1100.
36. Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of

spectrotemporal receptive ı́elds in primary auditory cortex. Nat Neurosci 6:

1216–1223.
37. Read HL, Winer JA, Schreiner CE (2002) Functional architecture of auditory

cortex. Curr Opin Neurobiol 12: 433–440.
38. Clopton BM, Backoff PM (1991) Spectrotemporal receptive fields of neurons in

cochlear nucleus of guinea pig. Hearing Res 52: 329–44.

39. David SV, Gallant JL (2005) Predicting neuronal responses during natural
vision. Network 16: 239–60.

40. Rust NC, Movshon JA (2005) In praise of artifice. Nat Neurosci 8: 1647–50.
41. Felsen G, Dan Y (2005) A natural approach to studying vision. Nat Neurosci 8:

1643–6.
42. Hsu A, Woolley SM, Fremouw TE, Theunissen FE (2004) Modulation power

and phase spectrum of natural sounds enhance neural encoding performed by

single auditory neurons. J Neurosci 24: 9201–11.

43. Rieke F, Bodnar DA, Bialek W (1995) Naturalistic stimuli increase the rate and

efficiency of information transmission by primary auditory afferents. Proc Biol

Sci 262: 259–65.

44. Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual

cortex during natural vision. Science 287: 1273–6.

45. Shamma SA (2001) On the role of space and time in auditory processing.

TRENDS Cogn Sci 5: 340–348.

46. deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for

cortical neurons. Science 280: 1439–1111.

47. Lee H, Pham P, Largman Y, Ng A (2009) Unsupervised feature learning for

audio classification using convolutional deep belief networks. In: Bengio Y,

Schuurmans D, Lafferty J, Williams CKI, Culotta A, editors. Advances in

Neural Information Processing Systems 22. pp. 1096–1104.

48. Garofolo JS, et al (1993) Timit acoustic-phonetic continuous speech corpus.

Philadelphia: Linguistic Data Consortium.

Sparse Coding Predicts IC Receptive Fields

PLoS Computational Biology | www.ploscompbiol.org 15 July 2012 | Volume 8 | Issue 7 | e1002594


