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Oscillatory phase coupling within large-scale brain networks is a topic of
increasing interest within systems, cognitive, and theoretical neurosci-
ence. Evidence shows that brain rhythms play a role in controlling
neuronal excitability and response modulation (Haider B, McCormick D.
Neuron 62: 171–189, 2009) and regulate the efficacy of communication
between cortical regions (Fries P. Trends Cogn Sci 9: 474–480, 2005)
and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn
Sci 14: 506–515, 2010). In this view, anatomically connected brain areas
form the scaffolding upon which neuronal oscillations rapidly create and
dissolve transient functional networks (Lakatos P, Karmos G, Mehta A,
Ulbert I, Schroeder C. Science 320: 110–113, 2008). Importantly, testing
these hypotheses requires methods designed to accurately reflect dynamic
changes in multivariate phase coupling within brain networks. Unfortu-
nately, phase coupling between neurophysiological signals is commonly
investigated using suboptimal techniques. Here we describe how a re-
cently developed probabilistic model, phase coupling estimation (PCE;
Cadieu C, Koepsell K Neural Comput 44: 3107–3126, 2010), can be used
to investigate changes in multivariate phase coupling, and we detail the
advantages of this model over the commonly employed phase-locking
value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human
Brain Map 8: 194–208, 1999). We show that the N-dimensional PCE is
a natural generalization of the inherently bivariate PLV. Using simula-
tions, we show that PCE accurately captures both direct and indirect
(network mediated) coupling between network elements in situations
where PLV produces erroneous results. We present empirical results on
recordings from humans and nonhuman primates and show that the PCE-
estimated coupling values are different from those using the bivariate PLV.
Critically on these empirical recordings, PCE output tends to be sparser than
the PLVs, indicating fewer significant interactions and perhaps a more
parsimonious description of the data. Finally, the physical interpretation of
PCE parameters is straightforward: the PCE parameters correspond to inter-
action terms in a network of coupled oscillators. Forward modeling of a
network of coupled oscillators with parameters estimated by PCE gen-
erates synthetic data with statistical characteristics identical to empirical
signals. Given these advantages over the PLV, PCE is a useful tool for
investigating multivariate phase coupling in distributed brain networks.

neuronal oscillations; phase-locking value; functional networks; mul-
tivariate analysis

THE BRAIN EXHIBITS NETWORK structure across a variety of dif-
ferent spatial scales, from the local synaptic connectivity of

nerve cells within a cortical column (White and Keller 1989) to
the large-scale networks of interconnected brain areas respon-
sible for language, attention, and memory (Sporns 2011).
Furthermore, goal-directed complex behavior such as reading a
sentence requires the dynamic coordination of multiple distinct
subnetworks, with computation and communication occurring
via the transient activation and deactivation of appropriate
functional networks. However, structural or anatomical con-
nectivity is relatively static at the time-scale of perception and
action. What mechanism could provide the fast dynamic reg-
ulation of active brain networks required to survive in an
unpredictable world?

One possibility is that a hierarchy of neuronal oscillations
could provide the dynamic scaffolding required to modulate
network activity at a variety of different scales (Lakatos et al.
2005). In particular, the communication through coherence
hypothesis (Fries 2005) proposes a mechanistic solution for
dynamically regulating the strength of connectivity between
brain areas via oscillatory phase coupling. In this view, oscil-
lations within a given brain area are rhythmic variations in
neuronal excitability that influence the effective gain of spiking
input to an area as well as the probability of spike output from
an area; that is, neuronal oscillations define recurring windows
of communication for a cortical region. Therefore, if two
interconnected brain areas are oscillating at a given frequency,
then the relative phase difference between them may influence
their effective connectivity. For example, given short axonal
conduction delays, if two areas have a relative phase lag of 0
radians, then their open windows of communication will occur
simultaneously, increasing effective connectivity, whereas a
relative phase lag of � radians misaligns the windows of
communication in the two areas, such that spikes leaving one
area will arrive at the least effective time to elicit spiking in the
other area. Finally, dynamic regulation of network activity can
be accomplished via fast changes of the relative phase offset
between areas. Proper empirical evaluation of the communica-
tion through coherence hypothesis thus requires a technique for
tracking transient phase coupling in brain activity.

Existing Methods for Estimating Phase Coupling

Linear coherence and its limitations. A number of tech-
niques exist for estimating phase coupling from brain activity.
Such activity is typically recorded from microelectrodes as
local field potentials (LFPs), from subdural macroelectrodes as
the electrocorticogram (ECoG), from macroelectrodes on the
scalp as the electroencephalogram, or from measurement of
magnetic activity outside the head as the magnetoencephalo-
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gram. For each of these types of signals, the activity in a given
frequency band can be described in terms of the amplitude and
phase of filtered signals. One popular technique for investigat-
ing frequency-specific dependence between two signals is
coherence (Carter 1987; Nunez et al. 1997). Given two wide-
sense stationary signals x and y, we can compute the cross
power spectrum

Gxy� f� � ���

��
Rxy���exp�2�if��d� (1)

where Rxy(�) � E[x(t)y(t � �)] is the cross-correlation function
and E[.] is the expectation operator. The autospectra for x and
y can be computed similarly. From these, we can calculate the
complex-valued coherence as

�xy �
Gxy� f�

�Gxx� f�Gyy� f�
(2)

and then the magnitude-squared coherence (MSC):

Cxy� f� � ��xy�2, Cxy� f� � �0, 1� (3)

Furthermore, windowing the input signals x and y before
computing the MSC allows one to track changes in coherence
over time. However, while the MSC has seen wide use in
neuroscience, two aspects of the coherence method make it less
than ideal for evaluating event-related phase coupling in neu-
ronal signals.

First, linear coherence is dependent on amplitudes as well as
phases, that is, the coherence method is sensitive to correlated
amplitude fluctuations and may exhibit significant event-re-
lated changes even if the phases of the two signals are statis-
tically independent (Nunez and Srinivasan 2006). While the
instantaneous value of amplitude or power in an area is also
likely to influence effective connectivity between areas, it
would be preferable to employ methods that can distinguish the
influence of amplitude and phase separately, such as phase-
only coherence (Nunez and Srinivasan 2006).

Second, event-related coherence methods tend to employ a
sliding-window approach that estimates coherence over short
time intervals. In this approach, the same window length
(temporal duration) is employed for all frequencies from very
low to very high frequencies. However, the duration of neuro-
nal oscillations does not appear to be the same for all frequen-
cies but is rather a function of the mean oscillatory frequency
(Durka 2007). That is, the duration of an oscillatory “wavelet”
or burst of rhythmic activity will be shorter for high frequen-
cies than the duration of oscillatory activity occurring at low
frequencies. Similar to techniques that employ the natural
statistics of signals for compact, high signal-to-noise decom-
positions (Smith 2006), it would be preferable to investigate
phase coupling using a method that employs optimal window
sizes for the different frequencies of interest.

Phase-Locking Value and Its Limitations

One popular technique that addresses both of these issues is
the phase-locking value (PLV) method (Lachaux et al. 1999).
First, this technique investigates one frequency at a time,
permitting investigators to employ whatever filtering/window-
ing parameters are most appropriate for the question of interest.
Second, the PLV method normalizes the filtered (complex
valued) signals to have unit amplitude, so that only instanta-

neous phases are involved in the computations. Specifically,
one formulation of the PLV method employs three steps: first,
given two raw (real-valued) time series x1 and x2, the instan-
taneous phases of both signals are extracted to generate two
(complex-valued) time series z1 and z2. These new signals z1
and z2 are normalized such that the modulus (amplitude) of
each sample point z1(t) � z2(t) � 1 for all sample points t.
This phase extraction step can be accomplished via convolu-
tion of the raw signal with an appropriate basis function
[time-frequency signal atom; see Grochenig (2001) for more
details]. Second, for event-related data, epochs or windows
around the trial events of interest are extracted from each signal
and the modulus (amplitude) of the trial-averaged phase dif-
ferences is computed:

PLVmn�t� � � 1

Ntrials
�
k�1

Ntrials zmk�t�
znk�t� �

� � 1

Ntrials
�
k�1

Ntrials

exp�i�	mk�t� � 	nk�t���� (4)

where 	 � [��, �), z � exp[i	] � C, |.| indicates complex
modulus, |z| � 1, i � ��1, k indexes the trial number, and
m and n index the first and second channels of interest,
respectively. This trial-averaged modulus is the PLV and takes
on values between 0 and 1. A PLV of 1 can only occur if the
relative phase difference is identical from trial to trial. If the
relative phase difference between signals is independent from
one trial to the next and uniformly distributed over all possible
phase values, then the PLV will be close to 0. Finally, the
statistical significance of the PLV actually observed can be
estimated through a randomized permutation test. That is, for
some large number of surrogate trials (say, NSURROGATE �
1000 surrogate runs), one computes a set of surrogate PLV
{PLVSUR}. For each surrogate run, the ordered list of trial epochs
is preserved for signal 1, but is randomly permuted for signal 2.
Rather than pairing trial k of z1 to trial k of z2, now trial k of z1
is paired with trial h of z2, where h is sampled without replace-
ment from the set of integers {1, 2, . . . ,NTRIALS}. The trial-
shuffling procedure preserves event-related phase changes
caused by trial events alone and discounts any nontrial specific
coupling between the two signals (which is the effect of inter-
est). Statistical significance can be assessed by comparing the
actual PLV to the set of surrogate PLV {PLVSUR}; if an
event-related increase in PLV is expected and only s surrogate
PLV are larger than the actual PLV, this corresponds to P value

of p �
s

NSURROGATE
.

The PLV method is an excellent technique for estimating the
strength and significance of instantaneous phase coupling be-
tween two brain signals, and it has been used to investigate a
multitude of different functional brain networks. Nonetheless,
the PLV method suffers from two fundamental limitations that
motivate the development of alternative methods. First, the
output of the PLV is a single scalar number or index rather than
a probability distribution, and second, the PLV is an inherently
bivariate measure.

Because the PLV is an index and not a distribution, it cannot
be directly used to generate simulated data with identical phase
coupling characteristics. However, the set of single-trial rela-
tive phase differences used to calculate the PLV can also be
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used to fit a parametric statistical model. One of the simplest
and most tractable statistical models over circular or phase
variables is the von Mises distribution:

p(
|�, �) �
exp�� cos�
 � ���

2�I0���
(5)

where 
, � � [��, �), � � (0,��), and I0(.) is the modified
Bessel function of order 0. Once the von Mises parameters �
and � have been fit for a set of relative phase differences
(where 
 � 	m � 	n) it is straightforward to generate synthetic
data with the same phase coupling properties as the empirically
recorded data; that is, synthetic data generated in this way will
yield the same pair-wise PLVs as the empirical data. The
generation of synthetic data is beyond the scope of this study
[see Strogatz (1994) and Press et al. (2007) for additional
details and standard numerical techniques]. In our experience
working with the subdural electrocorticogram in humans and
macaque LFPs, the von Mises distribution often provides an
excellent model for the empirical distribution of phase differ-
ences.

The second limitation of the PLV is that it is an inherently
bivariate measure. That is, if N different LFP channels are
simultaneously recorded during an experiment, the PLV
method requires that all possible pairs of channels be examined
separately, which can produce misleading results. For example,
suppose we have a three-node network of coupled oscillators
including nodes A, B, and C. If nodes A and B are both phase
coupled to node C, then phase value 	A from node A and phase
value 	B from node B may nonetheless appear dependent even
if there is no direct influence between nodes A and B. That is,
it may be the case that

p�	A, 	B�  p�	A�p�	B� , (6)

but

p�	A, 	B�	C� � p�	A�	C�p�	B�	C� (7)

where p(x|y) denotes the probability of observing an event x,
given that y is known. That is, Eq. 6 says that the phases of
oscillators A and B are statistically dependent (if you discover
the value of the phase of A, then you have also reduced the
uncertainty of your knowledge of the phase of B), but at the
same time Eq. 7 says that the phases of A and B are condition-
ally independent, given the phase of oscillator C (that is, if you
discover the phases of both A and C, you still have the same
amount of uncertainty as before about the phase of B). There-
fore, examining nodes A and B in isolation and ignoring the
influence of node C may produce incorrect estimates of the
network structure. The ideal case, given N-coupled oscillators,
would be to fit a probability density function (pdf) describing
the likelihood of seeing every possible N-dimensional vector of
phases. In contrast to the PLV, such a multivariate pdf would
permit one to draw samples from it to run numerical simula-
tions as well as avoiding the confounding issues of conditional
dependence inherent in applying bivariate measures to a highly-
interconnected network of coupled oscillators.

METHODS

Here we describe a method for estimating task- and event-related
changes in phase coupling that improves upon these existing methods.

In particular, this method termed phase coupling estimation (PCE)
exhibits three key advantages over the widely used PLV method: 1) it
is a fully multivariate approach that can distinguish direct coupling
from indirect coupling between nodes in a large network; 2) it is a
probabilistic method that permits resampling from the best-fit distri-
butions, aiding in-depth simulation studies; and 3) it is a dynamical
systems approach where the model parameters have a clear physical
interpretation as the coupling terms describing interactions within a
network of coupled oscillators (Cadieu and Koepsell 2010).

PCE

The probability model used in multivariate phase coupling estima-
tion is the maximum entropy distribution for N-dimensional phase
vectors given pair-wise statistics. A number of maximum entropy
distributions are used throughout the science and engineering com-
munities. In the real-valued case the multivariate Gaussian distribu-
tion, and in the binary case the Ising model, serve as widely used
multivariate maximum entropy distributions consistent with second
order statistics. For a one-dimensional phase variable, the maximum
entropy distribution given the first circular moment is the von Mises
distribution (Kotz et al. 1985). Through a change of variables


mn�t� � 	m�t� � 	n�t� (8)

we can describe the relative phase difference between channels m and
n using the von Mises pdf:

p(
mn|�mn, �mn) �
exp��mn cos�
mn � �mn��

2�I0��mn�
(9)

where 	m, 	n, 
mn, and �mn � [��, �) and �mn � (0, ��). The phase
vector 	 � (	1, 	2, . . . , 	N) from N simultaneously recorded channels
is a point on the N-torus. We can generalize the von Mises pdf to N
dimensions, thus capturing the full multivariate dependence structure.
Given the full set of pair-wise phase statistics, there is a unique
maximum entropy distribution that reproduces the first and second
statistics of these measurements (Cadieu and Koepsell 2010). Here we
refer to this multivariate distribution of phase vectors, and its efficient
estimation via score-matching (Cadieu and Koepsell 2010), as PCE.

For multivariate phases, the first circular moment is a measurement
between two phases, 	m and 	n, and is defined as the complex
quantity: 	exp�i�	m � 	n��
, where 	.
 is the average over samples. The
real and imaginary parts are given as:

��	exp�i�	m � 	n��
� � 	cos�	m � 	n�

� 	cos�	m�cos�	n� � sin�	m�sin�	n�


(10)

and

��	exp�i�	m � 	n��
� � 	sin�	m � 	n�

� 	sin�	m�cos�	n� � cos�	m�sin�	n�


(11)

Written in this way, the statistical measurements for the first circular
moment contain bivariate terms between pairs of phases and are thus
second order phase statistics.

Given these statistics, it can be shown (Cadieu and Koepsell 2010)
that the corresponding maximum entropy distribution is given as:

p(	|K) �
1

Z�K�
exp�1

2 �
m,n�1

N

�mn cos�	m � 	n � �mn�� (12)

where 	 � (	1, 	2, . . . , 	N) is the N dimensional set of phases and K
specifies the parameters of the distribution. We have used trigono-
metric identities to combine the sine and the cosine of the differences
of the phase pairs into one term for each pair of phases. The terms �mn

and �mn are the coupling between phases 	m and 	n and the phase
offset between phases 	m and 	n, respectively. The term Z(K) is the
normalization constant and is dependent on the parameters of the
distribution. Given phases from N different LFP channels, we can
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estimate the probability of observing a particular N-dimensional
vector of phases using a multivariate phase distribution. An equivalent
but more compact expression for the probability distribution given in
Eq. 12 is,

p(	|K) �
1

Z�K�
exp�1

2
z†Kz� (13)

where we define the N-dimensional vector of phase variables z as a
vector of unit length complex variables zm � exp[i	m) and 	m is an
element of the real-valued interval [��, �]. The N � N coupling
matrix K is Hermitian and traceless. The elements of K encode the
coupling parameters between channels; e.g., Kmn encodes the cou-
pling between the m-th and n-th phase variables. Each element of K
is a complex number Kmn � �mn exp[i�mn], where the modulus �mn

encodes coupling strength and the angle �mn denotes the preferred
phase offset between channels. The diagonal elements of K are zero
(Kii � 0), but nonuniform univariate phase distributions can be
modeled by augmenting the observed matrix of phase variables with
an additional variable of fixed phase, resulting in a (N � 1) � (N �
1) coupling matrix. The normalization constant Z(K) is a function of
the coupling matrix and in general cannot be computed analytically.
Note that Eqs. 12 and 13 are equivalent, but Eq. 13 uses complex
notation. Given an observed set of phase variables, we then estimate
the parameters of the distribution using an efficient technique derived
in (Cadieu and Koepsell 2010). The lack of a closed form to the
partition function Z(K) makes standard maximum-likelihood estima-
tors computationally expensive and prone to convergence problems.
The estimator derived in (Cadieu and Koepsell 2010) is a linear
system of equations using the measurements of the phase variables.
This linear system of equations can be solved using standard tech-
niques; code to estimate the distribution using score-matching (Hy-
varinen 2005) is available at https://github.com/koepsell/phase-
coupling-estimation. This estimator has been shown to correspond to
the maximum-likelihood estimate and performs well in high dimen-
sions and with limited data (Cadieu and Koepsell 2010). As with other
statistical measures, we will be less certain of PCE parameter values
when we have few sample points per dimension for high-dimensional
data sets, but as shown in Fig. 3 of Cadieu and Koepsell (2010),
accurate parameter estimates can be obtained for as few as 100 sample
points per dimension.

Interestingly, the estimated parameters of this maximum entropy
multivariate phase distribution have a physical interpretation in a
dynamic system of coupled oscillators. In fact, the parameters in the
phase distribution are identical to the interactions between the oscil-
lators. This implies that rather than starting with a set of pair-wise
phase statistics and deriving the maximum entropy distribution con-
sistent with these statistics, we can instead derive the multivariate
phase distribution from a dynamical systems model of coupled oscil-
lators. Given the dynamical system,

�

� t
	m�t� � � � �

j�1

N

�mn sin�	m�t� � 	n�t� � �mn� � vm�t� (14)

a corresponding steady-state distribution can be derived using a
suitable Langevin equation. The probability distribution for the phases
of this coupled oscillator system is identical to that given above in
Eqs. 12 and 13, save for the introduction of a multiplicative factor �
within the exponential to account for the variance of the noise terms
vm(t). Thus the parameters of the matrix K estimated from observed
phase data may be interpreted as the interaction terms between a
physical system of coupled oscillators. For simplicity, in the remain-
der of this work, we ignore this parameter � [see Cadieu and Koepsell
(2010) for more details].

In summary, the multivariate phase distribution of Eq. 13 provides
the most parsimonious statistical model of the joint multivariate phase
distribution given only pair-wise phase measurements. Maximum
entropy solutions make the fewest assumptions required to satisfy a

given set of constraints (here, matching the first and second moments
of the data) and are preferred to more structured statistical models
when the true joint distribution is unknown. PCE is a technique that
can be used to estimate the parameters of the joint multivariate phase
distribution from measurements. The coupling parameters in the
estimated multivariate phase distribution can be interpreted as inter-
actions in a physical system of coupled oscillators. For further details
on this distribution, the PCE technique, and the interpretation of this
distribution as a physical system of oscillators, we refer the reader to
Cadieu and Koepsell (2010).

Relationship Among the PLV, the Von Mises Distribution, and PCE

How is the bivariate PLV related to the multivariate PCE? While
the PLV and von Mises distribution are closely related to each other,
they are only indirectly related to the PCE coupling parameters. This
is important because the PCE coupling parameters can be used to
distinguish direct from indirect coupling between pairs of oscillators.
That is, in the context of brain networks, two cortical areas A and B
can influence each other directly, presumably through monosynaptic
anatomical corticocortical projections, or they can influence each
other indirectly via indirect polysynaptic chains that involve one or
more intermediate cortical areas. In particular, the oscillatory signals
recorded from areas A and B may exhibit statistical dependence even
if there is no direct link between A and B. This is a severe limitation
of the PLV, which cannot distinguish direct from indirect coupling. In
this section, we show exactly how the PLV relates to PCE, and how
PCE can distinguish direct from indirect coupling.

Recall that the PLV is the amplitude of the first circular moment of
the measured phase difference between two phases:

PLVmn � �	exp�i�	m � 	n��
� (15)

Given two channels m and n, we can see the relationship between the
phase-locking value PLVmn and the PCE coupling parameter Kmn by
examining the marginal distribution of phase differences. The mar-
ginal distribution of phase differences between channels m and n
indicates how strongly coupled the two channels are, including all
possible network paths between m and n (that is, including both direct
and indirect or intermediate connections). Strong coupling will show
up in the marginal distribution as a narrow distribution over phases,
while weak coupling will be indicated by the presence of a broad
distribution over phases. In other words, given the phase of one
channel (say, channel m), the marginal distribution of phase differ-
ences between m and n tells us how much uncertainty remains about
the phase value of channel n. The marginal distribution is defined as:

p	m � 	n�K� � �  �
i,j�1

N

exp�1

2
�ij cos�	i � 	 j � �ij���d	N�2

(16)

in which the integration is over all phases 	k with k � m, n, which can
be either the first or second variable in the cosine. Intuitively, the
effect of the integration in Eq. 16 is to condense the influence of all
possible network paths between m and n into a single “virtual” link
between channels m and n, now represented by the one-dimensional
probability distribution. After applying the variable substitution 	k �
�	k � 	n, all terms in Eq. 16 either depend on the phase difference
	m � 	n, or are independent of 	m and 	n. The independent terms
integrate to a constant and the remaining terms combine to a distri-
bution in the pair-wise phase difference given by

p�	m � 	n�K� � exp��mn cos�	m � 	n � �mn�� (17)

with mean phase �mn and concentration parameter �mn. Equation 17
states that the (unnormalized) distribution on the left-hand-side is
proportional to the expression on the right-hand-side, but one of the
axioms of probability theory is that the integral of a continuous
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probability distribution must be equal to unity (Jaynes 2003). Solving
for the normalization term that makes this true, we find that

p(	m � 	n|K) �
1

2�I0��mn�
exp��mn cos�	m � 	n � �mn�� (18)

which is a von Mises distribution (Kotz et al. 1985). We call the
concentration parameter �mn for a pair of phases the phase concen-
tration. Recall that Eq. 4 relates the PLV to the first circular moment
such that 	exp�i�	m � 	n��
 � PLVmnexp�i�mn�. This indicates how we
can compute the parameters of the distribution in Eq. 18: the mean
phase �mn is the angle of the first moment and the concentration
parameter �mn can be obtained by numerically solving the equation

PLVmn �
I1��mn�
I0��mn�

(19)

where I0(x) and I1(x) denote the modified Bessel functions of zeroeth
and first order, respectively (Evans et al. 2000).

Therefore, there is a nontrivial relationship between the PLV and
the PCE coupling parameters. There is a simple one-to-one mapping
between the phase locking value PLVmn and the von Mises concen-
tration parameter �mn through Eq. 19, but the value of the (bivariate)
von Mises concentration parameter �mn is related to the (multivariate)
coupling parameters K through the nonintuitive Eq. 16 together with
Eqs. 17 and 18. Thus the PLVmn is related to the full set of PCE
coupling parameters K through Eqs. 16, 17, 18, and 19 (see also Fig. 1
for a schematic overview of these different measures).

One intuitive way to make sense of these nontrivial relationships is
to recall the dynamical system interpretation of PCE. Under this
interpretation of the probability distribution, the interaction between
two oscillators m and n is given by the complexvalued coupling
parameter Kmn � �mn exp[i�mn], where �mn represents the phase
concentration due to direct coupling alone, and �mn is the mean phase
offset due to direct coupling alone (e.g., m ↔ n). However, in a
complex network there will also exist many indirect paths linking m
and n (e.g., m ↔ k ↔ n, m ↔ k ↔ l ↔ n, etc.), and these indirect paths

Fig. 1. Schematic of computation of the phase-locking value (PLV), bivariate von Mises distribution, and the phase coupling estimation (PCE) methods. A: 2
local field potential (LFP) signals recorded from macaque primary motor cortex during a delayed center-out reach task. Shown is one 500 ms single-trial epoch.
B: band-pass filtered LFP signals, filtered in the beta-band (at a center frequency of 32 Hz, corresponding to the peak in the power spectrum). C: instantaneous
phase time series for the 2 filtered LFP signals. D: time series of the (real-valued) relative phase difference between the 2 filtered LFP signals. E: instantaneous
phase difference at a single sample point (200 ms after movement onset) for the trial shown in A–D, represented in the complex plane (as a unit-length complex
number). F: full set of instantaneous phase differences 200 ms after movement onset (black) across 250 independent trials. Length of the vector sum of these
complex phases (red) corresponds to the PLV. G: alternatively, a probability density function (pdf) can be fit to this data; the von Mises distribution is the simplest
(maximum entropy) distribution for data with a given mean phase and circular variance. H: steps A–G can be computed for all possible channel pairs, and these
pair-wise statistics used to find parameter values (I) of the corresponding multivariate model. These parameters describe the maximum entropy distribution for
N-dimensional phase vectors matching the observed pair-wise statistics. J: these parameters describe a dynamical system of coupled oscillators with symmetric
coupling of strength �mn and phase offset �mn between nodes.
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will also influence the value of PLV and the marginal (von Mises)
distributions. In general there is no simple relationship between the
PCE coupling parameters and the measured PLV or phase concentra-
tion. However, unlike bivariate approaches that aggregate direct and
indirect interactions into one lumped total interaction term, the PCE
approach permits investigators to infer the direct interactions between
the oscillators separately from the indirect interactions mediated
through the rest of the network. This separation is essential for
accurately capturing dynamic activity in complex networks. We make
explicit these direct and indirect interactions in the next section.

Empirical, Isolated, and Network Distributions

In terms of marginal phase distributions, we can separate the
influence of direct and indirect modes of coupling. That is, given a set
of phase measurements we can directly compute the marginal distri-
bution of the phase difference between a specific pair of phases. We
call the marginal distribution computed from the difference of phase
measurements of 	m and 	n the empirical distribution p(	m � 	n). In
a network of many oscillators, the empirical distribution is determined
by a direct interaction between nodes m and n and an indirect
interaction through the rest of the network. However, this empirical
distribution can be decomposed into an isolated distribution, which
captures the direct interaction, and a network distribution, which
captures the interaction through the network.

For a given set of oscillators and coupling parameters the empirical
distribution is given as:

p(	m � 	n|K) � � � �
�i,j�

exp��ij cos�	i � 	 j � �ij���d	N�2 (20)

which is a reformulation of Eq. 16 but with the product containing
only one term for each pair of oscillators. The integration is over all
phases 	k with k � m, n. Because the integration is over phases from
all channels except m and n, we can factor out the terms containing the
coupling parameters between nodes m and n:

p(	m � 	n|K) � exp��mn cos�	m � 	n

� �mn�� � � �
�i,j��m,n�

exp��ij cos�	i � 	 j � �ij���d	N�2 (21)

We can apply the variable substitution 	k � �	k � 	n, and all terms
in Eq. 21 either depend on the phase difference 	m � 	n or are
independent of 	m and 	n. The independent terms integrate to a
constant and the remaining terms combine to a von Mises distribution
in the pair-wise phase difference. Therefore, the empirical distribution
p(	m � 	n K), written as pemp(	m � 	n K) for clarity, is proportional
to a product of two von Mises distributions:

pemp�	m � 	n�K� � piso�	m � 	n��mn, �mn�pnet�	m � 	n�K� mn�
(22)

piso(	m � 	n|�mn, �mn) �
1

2�I0��mn�
exp��mn cos�	m � 	n � �mn��

(23)

pnet(	m � 	n|K� mn) �
1

2�I0��� mn�
exp��� mn cos�	m � 	n��� mn��

(24)

where K
�

mn is the set of parameters excluding the direct coupling
parameters �mn and �mn.

The (indirect) concentration ��mn and (indirect) phase offset ��mn are
determined through the integral in Eq. 21 and depend on all of the
terms in the coupling matrix K excluding the direct coupling term
Kmn � �mn exp[i�mn]. We refer to the distribution that contains the
direct coupling parameters the isolated distribution piso(	m � 	n �mn,
�mn) because it is the distribution that would be measured if these two
oscillators were isolated from the rest of the network and their

interaction would only be determined by the direct interaction. We
refer to the distribution that contains the network effects on the
empirical distribution the network distribution pnet(	m � 	n K

�
mn)

because it is the distribution that would be measured if there were no
direct interaction between the nodes and only indirect interactions
through the network were present.

RESULTS

PCE Validation Via Simulations of Coupled
Oscillator Networks

The ability to separate direct from indirect interactions has
important consequences for accurate estimation of network
structure and explains the differences observed between PLV
and the coupling parameters estimated from the PCE approach.
Here we illustrate these differences using simulations of simple
networks of coupled oscillators, where “ground truth” is
known.

For the first simple network, we consider three nodes and are
interested in determining the interaction between nodes A and
B (see Fig. 2A). A third node (unlabeled) is coupled to both
nodes A and B (� � 1.1 and � � 0 to node A, and � � 0.9 and
� � 0 to node B), but nodes A and B have no direct coupling
(� � 0). We simulate this network using a discrete time
simulation of equation Eq. 14, a sampling rate of 1,000 Hz, an
oscillator frequency, �, of 10 Hz, and sample v to be indepen-
dent Gaussian noise with zero mean and a variance of 0.002.
This simulation generates a phase time-series for each oscilla-
tor in the network. We then used the phase time series from
oscillators A and B (ignoring the third unlabeled oscillator) to
compute the bivariate measure PLVAB. The phase concentra-
tion parameter �AB, describing the width of the distribution of
A–B phase differences, can be found from PLVAB via Eq. 19
and is represented as the length of the black arrows in Fig. 2B.
The von Mises distributions of A-B phase differences, gener-
ated from the phase concentration values via Eq. 18, are shown
in black in Fig. 2C. Clearly, using the PLV estimation results
in the estimation of a spurious coupling between nodes A
and B.

We also estimated the PCE parameters and isolated distri-
butions for this network (red in Fig. 2, B and C), the critical
difference being that PCE uses the phase time series from all
three oscillators in the network to estimate the coupling be-
tween A and B, rather examining the phases of A and B alone.
Figure 2B in red shows the estimated phase coupling and Fig.
2C in red shows the estimated isolated distribution, corre-
sponding to Eq. 23. For this case, the PCE parameters clearly
show no interaction between oscillators A and B, which cor-
rectly matches the network simulation. Therefore, in this ex-
ample, where PLV produces a spurious coupling, the PCE
correctly estimates the lack of coupling between nodes A and
B. PCE estimates a model in which the interactions between
nodes A and B through the third node explain the correlations
observed between A and B. No direct interaction between A
and B is necessary to explain this observed correlation.

We illustrate two additional networks: missing coupling
(Fig. 2, D-F) and incorrect phase offset (Fig. 2, G–I). In the
missing coupling network with four nodes the coupling be-
tween nodes A and B is � � 0.5 with � � 3�/4 (135°), the
coupling strength between the unlabeled nodes and A and B is
� � 0.75 with � � 3�/4 (135°) and � � ��/2 (270°) between
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one node and A and B, respectively, and with � � ��/2 (270°)
and � � 3�/4 (135°) between the other unlabeled node and A
and B, respectively. In the incorrect phase offset network with
three nodes the coupling between nodes A and B is � � 0.3
with � � 3�/4 (135°), between node A and the unlabeled node
� � 0.9 with � � �3�/4 (225°), and between node B and the
unlabeled node the coupling is � � 1.1 with � � 3�/4 (135°).
In each case, PLV and/or phase concentration does not reflect
the true direct interaction between the indicated oscillators. In
contrast, inferring the parameters of the full probabilistic dis-
tribution using PCE correctly recovers the true coupling be-

tween the indicated oscillators and all other pairs. That is, for
these simple networks the estimated PCE parameters reflect the
“ground-truth” connectivity of each network, while the bivari-
ate measures do not.

Multivariate Phase Coupling in Nonhuman Primate
LFP Signals

Importantly, these examples of spurious coupling, missing
coupling, and incorrect phase offset, due to the inability of
bivariate methods to factor the empirical distribution into a

Fig. 2. Direct multivariate phase coupling estimation correctly estimates phase coupling in networks where bivariate methods such as PLV or phase
concentrations from von Mises distributions are misleading. Here we show 3 example networks (one in each row). A, D, and G: network coupling used to simulate
a system of oscillators. B, E, and H: measured phase concentration (black vector) and estimated phase coupling (red vector) between oscillators A and B.
Magnitude and angle of the phase concentration are plotted on the polar plot with angle equal to �AB and radius equal to �AB. Estimated phase coupling, �AB,
and angle, �AB, are plotted similarly. C, F, and I: isolated distribution piso(	A � 	B �AB, �AB) (red line) and the empirical distribution p(	A � 	B K) (black line)
for the phase difference 	A � 	B. A–C: spurious coupling: phase concentration measurements (black vector and black line) indicate interaction between oscillators
A and B when the true coupling and the estimated coupling (red vector and red line) have 0 magnitude. D–F: missing coupling: phase concentration indicates
a lack of coupling between oscillators A and B, but the estimated phase coupling and true phase coupling indicate a strong interaction. G–I: incorrect phase offset:
phase concentration indicates that oscillator A leads oscillator B; however, the true interaction and the estimated phase coupling indicate that oscillator A lags
behind oscillator B.
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product of isolated (direct) and network (indirect) distributions,
are not limited to toy examples of simulated oscillator net-
works. Similar differences between the bivariate approach and
the multivariate approach can be seen in real neurophysiology
data. For example, Figs. 3 and 4 provide examples of coupling
differences seen in LFP data recorded from the macaque motor
system. These LFP signals were sampled at 1000 Hz from
chronically implanted tungsten microwire arrays [see Ganguly
and Carmena (2009) for more details of the task, the surgery,
and recording methods used]. Conducted procedures were in
compliance with the National Institutes of Health’s Guide for
the Care and Use of Laboratory Animals and approved by the
University of California (Berkeley) Institutional Animal Care
and Use Committee. To extract estimates of instantaneous
phase, LFPs were filtered with a complex Gabor atom (Gauss-
ian envelope) with a center frequency of 32 Hz and a frequency-
domain SD of 4.4 Hz, corresponding to the observed motor
beta-activity for this subject (Canolty et al. 2010). Figure 3
shows examples of coupling estimates for pairs of channels
that appear to exhibit cases of spurious coupling (A, D, and G),
missing or reduced coupling (B, E, and H), and incorrect phase

offset (C, F, and I). While ground truth is not know with
certainty in these cases, the similarity to the simulation cases
suggests the need for caution when interpreting the results of
bivariate methods. Importantly, the network structure inferred
from the bivariate and multivariate methods is quite different.

As with the PLV, PCE can be used to track transient,
event-related changes in phase coupling during behavior.
Figure 4 shows the chronic microelectrode arrays (Fig. 4A)
implanted in multiple areas (Fig. 4B) of the macaque motor
system while subjects engaged in 3,730 trials of a delayed
center-out reach task over 19 days (Fig. 4C) [see Ganguly and
Carmena (2009) for details]. From these electrodes, we se-
lected 20 channels from three different brain areas (bilateral
primary motor cortex and left dorsal premotor cortex) for
further analysis here. A set of N channels has N�N � 1��2
unique (unordered) channel pairs; thus, 20 channels yield 190
unique channel pairs. As shown earlier, there is a one-to-one
correspondence between the PLV index and the von Mises
concentration parameter; after computing the PLV for each
channel pair as described above, we can convert this value into

Fig. 3. Differences between bivariate and multivariate phase coupling in macaque LFP data. As in Fig. 2, C, F, and I, A–I show examples of spurious coupling,
missing coupling, and incorrect phase offset, but in actual neurophysiological signals rather than simulated networks of coupled oscillations. A–C: examples of
LFP electrode pairs that appear to be phase coupled when assessed using the bivariate PLV to identify empirical distributions (black), but show little or no
coupling under PCE, from which we can determine the isolated distributions (red). Both the empirical and isolated distributions are von Mises distributions; see
also Fig. 2, C, F, and I. In these cases, bivariate methods would infer direct coupling between the LFP channels while the multivariate PCE would not. D–F: in
contrast, here bivariate methods (black) underestimate the direct coupling between channels compared with PCE. G–I: examples of cases where the bivariate von
Mises approach and the multivariate PCE approach produce comparable estimates of coupling strength but differ on the relative phase offset between LFP
channels.
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a corresponding von Mises parameter to compare it with the
PCE concentration parameters.

Critically, the previous examples considered above do not
explicitly model a change in PCE parameter values over the
time course of an experimental trial. With enough sample
points per dimension, however, we can simply perform an
independent PCE fitting for an ordered set of time points within
the trial (cross-trial fitting). That is, we can perform a PCE
fitting at the time of the trial go-cue (0 ms), then a second,
independent PCE fitting 10 ms after the go-cue, and a third
fitting at 20 ms after the go-cue, and so on. In particular, when
fitting the 0 ms PCE (for example), we will include one sample
point from each trial for each of the 20 channels for all of the
3,730 trials; the input for the PCE function will be a 20 � 3730
(channels � trials) matrix of phases. As shown in Cadieu and
Koepsell (2010), excellent parameter estimates can be obtained
for as few as 100 sample points per dimension; here we have
3,730 trials and 20 channels for 186.5 sample points per
dimension for each of these independent PCE fittings over the
course of the experimental trial. For time-resolved estimates of
PCE parameter values in studies with fewer trials, we will need
to either include more sample points per trial or reduce the
number of channels considered. Alternatively, we can shift the
focus from event-related PCE changes, as in this example, to
experimental-condition-related PCE changes, as shown for the
human ECoG language study discussed in the next section.

This event-locked PCE approach results in several differ-
ences from PLV-based methods. Figure 4, D and E, shows the
event-related changes in phase coupling associated with move-
ment onset (0 ms) in the center-out reach task. First, note that
the overall strength of coupling is lower for the multivariate
PCE method than for the bivariate von Mises method. That is,
while both methods explain the observed statistics of the data,
the PCE parameters are sparser than the von Mises parameters.
Second, both methods show a drop in phase coupling associ-
ated with movement, consistent with prior results showing a
drop in beta-power and phase coupling during movement
(Sporns 2011). That is, even given a relatively small number of
trials per dimension (Cadieu and Koepsell 2010), PCE can
track rapid changes in instantaneous phase coupling in dy-
namic functional networks. Finally, Fig. 4F shows that the
bivariate and multivariate methods differ in their statistical
specificity. With the use of the PLV resampling procedure
described above, 98.4% (187/190) electrode pairs exhibited
sustained phase coupling during reaching. In contrast, under
PCE only 49.5% (94/190) electrode pairs exhibited statistically
significant phase coupling. As in the simulation studies, it is
likely that this sparse pattern of coupling is due to PCE
explicitly accounting for indirect network effects, unlike the
PLV method. Again, these striking differences in the signifi-
cance and strength of phase coupling will have a strong effect
on the interpretation of dynamic network activity.

Fig. 4. Transient, event-related changes in beta-phase coupling in macaque motor network. A: photo indicating placement of multiple electrode arrays. For each
64 channel (8 � 8) microelectrode array, interelectrode spacing is 0.5 mm, such that full array covers 3.5 mm � 3.5 mm. Of the 192 implanted electrodes, 20
electrodes were selected for further analysis in this study [5 in contralateral primary motor cortex (M1), 10 in ipsilateral M1, and 5 in contralateral dorsal premotor
cortex (PMd)]. B: power spectrum of LFP recorded from M1 which shows strong beta-band activity centered around 30 Hz. C: subject performed a delayed center
out reach task to 1 of 8 targets during this study; see Ganguly et al. (2009) for details. D: estimates of the event-related changes in phase coupling assessed using
bivariate statistics alone; the von Mises concentration parameter is inversely related to the circular variance, such that larger concentration parameters correspond
to “peakier” distributions. Time (0 ms) is aligned to movement onset from the center. Note the strong drop in beta-phase coupling during movement. E: estimates
of the event-related changes in phase coupling assessed using the multivariate PCE model. Note that PCE parameters are smaller in magnitude compared with
von Mises parameters (D), with fewer channel pairs exhibiting strong phase coupling. F: bivariate and multivariate methods differ in their estimates of the number
of channel pairs exhibiting significant periods of phase coupling, with PCE generating a sparser estimate of network activity and thus providing a more
parsimonious interpretation of the data.
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Multivariate Phase Coupling in Human ECoG Signals

While the example above focused on time-dependent event-
related changes in coupling, it is possible to focus on task- or
stimulus-related differences as well. For example, Fig. 5 shows
phase coupling data from a human intracranial study on lan-
guage comprehension and target detection. The study protocol,
approved by the University of California, San Francisco, and
University of California, Berkeley, Committees on Human
Research, did not interfere with the ECoG recording made for
clinical purposes and presented minimal risk to the participat-
ing subjects. Briefly, patients undergoing surgical treatment for
epilepsy were implanted with a grid of subdural electrodes for
clinical purposes. During their hospital stay, some patients
volunteered to participate in a simple auditory target detection
task. Subjects listened to a string of action verbs (e.g., throw,
blow, etc.), acoustically matched but scrambled nonwords
(unintelligible), or people’s names (e.g., Bob, Mary, etc.). The
task was to respond with a button press to the rarely presented
target items (people’s names) and ignore all other stimuli. This

task elicits complex patterns of dynamic activity across space,
time, and frequency. Here we focus on changes in theta (4–8
Hz)-phase coupling within the widespread network of elec-
trodes of one subject that show strong target-selectivity (red
electrodes in Fig. 5B). Target-selective electrodes were defined
as those electrodes showing a significant increase in high
gamma (80–150 Hz)-power following presentation of targets
vs. verbs [for details, see Canolty et al. (2007)]. The mean
strength of phase coupling within this network is dependent on
the type of stimulus presented, with the strongest coupling
occurring after target presentation and the weakest occurring
after the presentation of scrambled nonwords (Fig. 5A; verbs 	
nonwords, P 
 0.01; targets 	 verbs, P 
 0.01; randomized
permutation test).

Interestingly, while the macaque motor results discussed
above show a drop in both beta-band power and beta-phase
coupling, here theta-power and phase coupling disassociate.
Specifically, in this task theta-power remains steady for non-
words, increases for verb distracters, and decreases for target
presentation (Canolty et al. 2007). However, while short-range

Fig. 5. Stimulus-dependent changes in theta -phase coupling during a simple auditory target detection task (Canolty et al. 2007). A: theta (4–8 Hz)-phase coupling
is stronger for targets compared with distracters and for verbs compared with nonwords (both P 
 0.01). Values shown are the mean of the PCE parameters
�i;j for all unique channel pairs considered. B: only pairs of electrodes with strong target-specific high gamma (80–150 Hz)-responses were examined (red);
yellow lines indicate the subset of channel pairs with significant target-related changes in theta-phase coupling. PLV-based estimates (not shown) identify many
more channel pairs. Three electrodes of interest are also marked: channels 57 (strong auditory responses), 16 (target-selective responses), and 62 (linguistic and
motor responses). C: distribution of the phase differences between channels 16 and 62 during presentation of targets (red) or verbs (black) as estimated by the
bivariate von Mises method (dashed lines) and the multivariate PCE (solid lines). Note that the bivariate approach produces similar estimates of phase coupling
for both targets and verbs (dashed). In contrast, the PCE estimate of long-range theta-phase coupling is weak for verbs (black) but strong for targets (red),
indicating that the direct coupling between these 2 channels increases during target detection and motor output. D: As in C, for channels 16 and 57. In this case,
the strength of phase coupling detected by the PCE model is similar for targets and distracters, but there is a large phase shift between the 2 cases. In contrast,
the bivariate approaches do not reflect this phase shift, most likely because such methods collapse all direct and indirect (network mediated) influences into 1
measure.
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(
2 cm) theta-phase coupling drops for target presentation,
many long-range electrode pairs exhibit an increase in theta-
phase coupling (e.g., Fig. 5C). This shows that power and
phase coupling can change independently, at least over large
spatial distances. Critically, these stimulus-specific phase cou-
pling results are only apparent using PCE; the PLV and von
Mises approaches do not reveal these changes (Fig. 5C).
Similarly, Fig. 5D shows a case where PCE finds a stimulus-
dependent phase shift for targets but not distracters (as sug-
gested by the communication through coherence hypothesis),
while the bivariate methods do not. As before, this is likely due
to the inability of the PLV to separate direct and indirect
influences on phase coupling, an interpretation bolstered by
ground-truth simulation studies that reach similar findings
(Cadieu and Koepsell 2010).

DISCUSSION

Summary of Advantages Over Existing Methods

The PCE method, employing a multivariate probabilistic
approach, exhibits several advantages over the commonly used
PLV method. Importantly, we show that PCE accurately cap-
tures both direct and indirect (network mediated) coupling
between network elements, and we show that the direct cou-
pling terms have a straightforward physical interpretation,
representing interaction terms in a dynamical system of cou-
pled oscillators. It is straightforward to model this dynamical
system using standard techniques and thus generate synthetic
data with second-order statistical properties identical to the
recorded data. The PCE model parameters also describe a
probability distribution that can be employed for resampling or
simulations. We have found empirically that PCE output is
sparser than bivariate approaches and generates models with
fewer interactions and thus a more parsimonious interpretation
of the data. In addition, using the PCE coupling parameters,
forward modeling via simulations generates synthetic data with
statistical characteristics identical to empirical signals.

A primary purpose of this study is to show how the multi-
variate phase distribution derived in Cadieu and Koepsell
(2010) can be used to estimate task- and event-related changes
in phase coupling in neurophysiological signals such as intra-
cortical LFPs, subdural ECoG, and scalp-recorded signals such
as the electroencephalogram or magnetoencephalogram and to
highlight the advantages of this approach over bivariate meth-
ods. However, PCE has proven useful in addressing a variety
of other questions. For example, PCE has been employed to
characterize the dependence of neuronal spiking upon large-
scale patterns of LFP phase coupling (Canolty et al. 2010) and
has also been used to estimate multivariate phase-amplitude
cross-frequency coupling (Canolty et al. 2012). Any question
that requires the examination of phase coupling in multivariate
signals will likely benefit from employing PCE, for the reasons
detailed above.

Limitations of the PCE Method and Future Directions

Despite the advantages over the PLV approach described
earlier, the PCE method does not fully describe coupling
within brain networks. In particular, three limitations of the
PCE method described here point toward directions for future
development. First, the PCE approach cannot model phase-

phase coupling between multiple frequency bands. The ap-
proach described here targets single-frequency phase coupling
between N simultaneously recorded signals. More complex
networks involving coupling between M distinct frequencies
active within N channels will require a probabilistic model of
different form.

Second, the PCE method does not incorporate information
about the power of ongoing oscillations. This is an important
limitation in that transient changes in oscillatory power may act
to change the coupling strength between nodes. Intuitively,
brain areas that exhibit higher oscillatory power may be rela-
tively “louder” than areas with lower oscillatory power, exert-
ing more influence on downstream nodes. Clearly, it is impor-
tant to keep the effects of phase and power separate, in fact, this
was our primary criticism of the linear coherence approach to esti-
mating phase coupling. However, a modeling approach that
incorporates both power and phase as separate and distinct
elements will likely produce a better fit to observed data than
will a phase-only approach. Additionally, when band-limited
power is high, we can have more confidence in the stability of
phase estimates compared with times of low power. Unfortu-
nately, it is not immediately obvious how to incorporate am-
plitude or power into a multivariate model similar to PCE; this
is an issue that will require future research.

Third, if some oscillators or signals are not included in the
estimation procedure, then PCE may not reveal the “ground-
truth” coupling between all oscillators. However, PCE will still
generate the most parsimonious model of the available data
that matches second-order statistics. That is, the rationale for
employing maximum-entropy (minimum assumption) models
will still hold in this case, and to our knowledge no other
method currently available can recover or estimate the cou-
pling to unobserved (hidden) variables.

Conclusion

Using ground-truth simulations and empirical data sets, we
showed how PCE can be used to investigate changes in
multivariate phase coupling and detailed the advantages of this
multivariate model over bivariate approaches. Given these
strong advantages, we contend that PCE is a useful tool for
investigating multivariate phase coupling in distributed func-
tional brain networks.
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