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Hebb proposed that neuronal cell assemblies are critical for effective
perception, cognition, and action. However, evidence for brain mech-
anisms that coordinate multiple coactive assemblies remains lacking.
Neuronal oscillations have been suggested as one possible mecha-
nism for cell assembly coordination. Prior studies have shown that
spike timing depends upon local field potential (LFP) phase proximal
to the cell body, but few studies have examined the dependence of
spiking on distal LFP phases in other brain areas far from the neuron
or the influence of LFP–LFP phase coupling between distal areas on
spiking. We investigated these interactions by recording LFPs and
single-unit activity using multiple microelectrode arrays in several
brain areas and then used a unique probabilistic multivariate phase
distribution to model the dependence of spike timing on the full
pattern of proximal LFP phases, distal LFP phases, and LFP–LFP phase
coupling between electrodes. Here we show that spiking activity
in single neurons and neuronal ensembles depends on dynamic
patterns of oscillatory phase coupling between multiple brain
areas, in addition to the effects of proximal LFP phase. Neurons that
prefer similar patterns of phase coupling exhibit similar changes in
spike rates, whereas neurons with different preferences show diver-
gent responses, providing a basic mechanism to bind different neu-
rons together into coordinated cell assemblies. Surprisingly, phase-
coupling–based rate correlations are independent of interneuron dis-
tance. Phase-coupling preferences correlatewith behavior and neural
function and remain stable overmultiple days. Thesefindings suggest
that neuronal oscillations enable selective and dynamic control of
distributed functional cell assemblies.

neuronal oscillations | neuronal ensembles | spike timing | local field
potentials | brain rhythms

Significant progress has been made in understanding the dy-
namics and response properties of single nerve cells (1, 2) and

how they interconnect to form cortical microcircuits (3, 4). More
than 60 y ago, however, Donald Hebb hypothesized that the fun-
damental unit of brain operation is not the single neuron but rather
the cell assembly—an anatomically dispersed but functionally in-
tegrated ensemble of neurons (5). The individual neurons that
compose an assembly may reside in widely separated brain areas but
act as a single functional unit through coordinated network activity.
Dynamic interactions between multiple assemblies may then give
rise to the large-scale functional networks found in mammalian
brains (6–8). Despite the theoretical appeal of Hebb’s idea (9) and
growing empirical evidence of assemblies (10–12), it remains un-
clear how diverse groups of neurons spanning several cortical re-
gions transiently coordinate their activity to form cell assemblies or
howmultiple coactive assemblies regulate their interactions to form
larger functional networks.
Brain rhythms may play a key role in coordinating neuronal

ensembles (13–15),withadynamichierarchyof neuronal oscillations
modulating local computation and long-range communication (16–
18). This hypothesis is supported by evidence that spiking activity
depends on the local field potential (LFP) in both hippocampus

(19–21) and neocortex (22, 23). In particular, single-neuron spike
timing depends on frequency-specific oscillatory LFP phase, both
proximal to theneuron(24) andatmoredistal locations (25).That is,
considering the LFP filtered at a given frequency as a sinusoidal
waveform, individual neurons tend to emit spikes clustered around
a preferred phase, such as the peak (phase: 0 rad or 0°) or trough
(phase: π rad or 180°) of the waveform (Fig. S1). In addition to this
dependence upon absolute LFP phase, spiking also depends on
LFP–LFP phase coupling between distal and proximal sites (26).
LFP–LFPphase coupling is estimated from the distribution of phase
differences between two LFP signals (Fig. S2E) and is a measure of
thedirect dependence between two signals. In otherwords, given the
frequency-specific phase for one LFP signal, how much does one
know about the phase of the other? Spike timing thus appears to
depend on neuronal oscillations in both proximal and distal sites as
well as on the strength of phase coherence between them. This de-
pendence suggests that the spiking of single neurons is influenced by
patterned oscillatory activity occurring in multiple interconnected
brain areas as well as the neuron’s local cortical environment.
Despite the variety of evidence for LFP–neuron interactions, the

role of distributed neuronal oscillations in coordinating single-unit
and cell assembly activity remains an open question. We therefore
investigated the main hypothesis that oscillations enable computa-
tion and long-range communication in distributed brain networks,
focusing on the relationship between cell assemblies, proximal and
distal LFP phases, and LFP–LFP phase coupling. Specifically, our
hypotheses were (i) that spike timing in single neurons depends on
oscillatory phase coupling across multiple brain areas (Fig. 1 A–D),
(ii) that large-scale patterns of phase coupling synchronize ana-
tomically dispersed neuronal ensembles (Fig. 1 E–G), and (iii) that
sensitivity to distinct brain rhythms or coupling patterns permits
selective control of multiple coactive assemblies (Fig. 1 H–J).

Results
We tested these hypotheses using existing data sets recorded from
macaque frontal cortex. Two monkeys engaged in a brain–machine
interface (BMI) task (27) had multiple microelectrode arrays
chronically implanted bilaterally in primary motor (M1) and dorsal
premotor (PMd) cortex. We also examined data from twomonkeys
performing a working memory task (28) with acute bilateral re-
cordings in multiple prefrontal areas including dorsal and ventral
prefrontal cortex (PFdl and PFvl, respectively), orbitofrontal cortex
(PFo), and the dorsal bank of the cingulate sulcus (PFcs).
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These data show that neuronal spiking is modulated by wide-
spread LFP activity occurring in distinct frequency bands. In par-
ticular, the instantaneous spike rates of most cells are statistically
dependent on LFP phases inmultiple areas (Fig. S3). Fig. 2A shows
the dependence of a M1 neuron upon frequency-specific LFP
phase in three different brain areas (28 LFP channels in right M1,
where the neuron is located; 16 in left M1; and 4 in right PMd). All
LFP electrodes were at least 500 μm from the electrode used to
record spikes from this neuron, with most electrodes several mil-
limeters away or in the opposite hemisphere. Fig. 2A shows the
dependence between spike rate and LFP phase as a function of
frequency, where the influence of each LFP channel is considered
separately. Typical of motor cortical neurons (29), this cell exhibits
a strong dependence on the motor high β (25–40 Hz)-band across
most electrodes. For example, if we filter the LFP signal recorded
from an electrode in left M1 (blue traces in Fig. 2A, opposite
hemisphere from the neuron), we find that the distribution of all
phases over a long time interval is uniform (Fig. S2B), but that the
distribution of phases that occur at spike times is nonuniform and is
clustered around a preferred phase (Fig. S2C). This result indicates
that spike times and the LFP phase on that channel are statistically
dependent and that variation in LFP phase can be converted into

a modulation of the expected neuronal spike rate (SI Methods).
Given the strong modulation in the high β-band for most recorded
neurons (29), for the M1–PMd datasets we therefore focused ex-
clusively on the dependence between spikes and 36-Hz phases.
What are the network origins of this dependence? One possi-

bility is that the spiking of this neuron is directly dependent on the
LFP activity occurring in the opposite hemisphere, perhaps medi-
ated by direct synaptic contact of projecting transcallosal axons.
Alternatively, the neuron may be directly coupled to the proximal
LFP through synaptic connections with local interneurons, but not
coupled to distal LFP signals, whereas the LFPs from proximal and
distal cortical areas are nonetheless in phase coherence. In the
second case, spikes and distal LFP phases would not be dependent
once proximal LFP phases were known—spikes and distal LFP
phases would be conditionally independent given proximal LFP
phase. A similar situation may hold for the spike timing depen-
dence on LFP–LFP phase coupling, where such dependence dis-
solves once conditioned upon proximal phases.
Critically, we cannot answer this question by examining the de-

pendence of spiking upon each LFP channel separately—such an
analysis ignores the influence of LFP–LFP interactions and will
therefore generate misleading results. Due to widespread network

Fig. 1. Patterns of oscillatory phase coupling across multiple brain areas coordinate anatomically dispersed neuronal cell assemblies (schematic). (A–D) Hypothesis
1: Spike timing in single neurons depends on frequency-specific oscillatory phase coupling across multiple brain areas. (A) Spiking in one area may depend on
population activity (localfield potentials, LFPs) occurring inmultiple areas. (B) Many neurons are sensitive to oscillatory LFP activity occurring in particular frequency
bands; filtering all LFPs at this frequency and extracting phases can reveal patterns of phase coupling between LFP channels. (C) The strength of LFP–LFP phase
coupling is different for spike times compared with randomly selected times and defines a neuron’s preferred pattern of LFP–LFP phase coupling, similar to a re-
ceptive field. That is, when LFP activity matches the neuron’s preferred pattern of LFP–LFP phase coupling, the cell spikes more often. (D) Given novel LFP phases as
input, themodel generates a predicted coupling-based spike rateoutput,which can thenbe comparedwith themeasured spike rate. (E–G) Hypothesis 2: Large-scale
patterns of phase coupling synchronize anatomically dispersed neuronal ensembles. (E) The procedure described above can be applied to multiple simultaneously
recorded neurons. (F) Cells that prefer similar LFP–LFP phase-coupling patterns exhibit similar coupling-based rates. (G) Shared variability in coupling-based rates is
compactly described by a single phase coupling network that defines a cell assembly. That is, it is possible to identify large-scale patterns of LFP–LFP phase coupling
(G) that explain a significant fraction of the variation in spike rates for a large ensemble of neurons distributed across multiple brain areas. (H–J) Hypothesis 3:
Differential sensitivity to distinct brain rhythms or coupling patterns permits selective control of multiple coactive assemblies. (H) Multiple functional ensembles,
each spanning several brain areas, overlap in space. (I) Interference between ensembles is minimized when each assembly responds to a different frequency (as-
semblies A and C) or distinct phase-coupling pattern (assemblies A and B). (J) Frequency and pattern selectivity permits dynamic, independent coordination of
multiple coactive ensembles.
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connectivity, the phase distribution of one channel, or the distri-
bution of phase differences between two channels, is shaped by the
full network of LFP–LFP phase coupling between all channels. We
therefore estimated the joint probability distribution over phases
using a recently developedmultivariate model for circular variables
(30) that accounts for these complex network effects (SI Methods
and Figs. S4 and S5).
Whereas empirical univariate phase distributions are often used

to estimate phase concentration and phase coupling, additional
influences due to network connectivity bias these estimates. That is,
empirical (marginal) probability density functions (PDFs) (black in
Fig. 2 B–G) differ from the isolated distributions that would be
observed if network effects were removed (red in Fig. 2 B–G); we
term these “isolated distributions,” because they single out effects
due to coupling between only the phases of interest (SI Methods).
Isolated distributions provide a more accurate estimate of the di-
rect coupling between two nodes within a larger network than does
considering those two nodes alone. For example, Fig. 2B shows
a case where accounting for network influence reduces our estimate
of spike/phase dependence, producing a flatter distribution. In con-
trast, for some channels removing network effects reveals stronger
spike/phase dependence (Fig. 2C) or shifts in the preferred phase
(Fig. 2D). Fig. 2 E–G shows similar effects for the phase difference
between channels used to estimate the strength of LFP–LFP phase

coupling (see also Figs. S4 and S5 for simulations demonstrating
these effects).
Surprisingly, the spiking of a single neuron depends on both distal

LFP phases and LFP–LFP phase coupling in addition to the prox-
imal LFP phase recorded near the neuronal cell body (Fig. 2H and
Fig. S3). This dependence indicates that single-unit spiking is related
to large-scale network activity patterns rather than simply reflecting
local presynaptic phenomena. Importantly, the pattern of phase
coupling estimated using all data (baseline coupling) differs from
the pattern of phase coupling inferred using spike times alone
(spike-triggered coupling). The ratio of these distributions for a
given neuron defines its preferred pattern of phase coupling (Fig.
2H) and serves as an “internal” receptive field associated with ongo-
ing brain activity, complementing the traditional, stimulus-related
“external” receptive field. Each node in Fig. 2H represents one
LFP electrode, with links between nodes representing LFP–LFP
phase coupling. Line shading indicates the strength of LFP–LFP
phase coupling. Note that the preferred pattern for this cell exhibits
strong coupling between areas (e.g., right M1 and left PMd, shown
as links between green and red nodes) as well as strong intra-area
coupling (within right M1, green/green links). Importantly, some
LFP pairs exhibited increased phase coupling strength, compared
with baseline conditions, whereas other LFP pairs displayed de-
creased coupling (equivalently, increased coupling at a different
phase offset).

Fig. 2. Spike timing in single neurons depends on oscillatory phase coupling between multiple brain areas. (A) Example of a neuron where the probability of
spiking depends on frequency-specific LFP phase in multiple areas. The neuron is located in right primary motor cortex (M1). Colored traces represent dif-
ferent LFPs recorded from left M1 (blue), right M1 (green), or left dorsal premotor area (PMd, red). The strong high β (25–40 Hz)-modulation shown here is
typical of M1-PMd neurons. (B–G) Estimates of spike/LFP interactions depend on the method used and some commonly used techniques may generate
misleading results. Examining all LFP signals at once results in differing estimates of phase coupling strength compared with examining pairs of LFP signals
separately, as shown by differences between empirical (black) and isolated (red) probability density functions (main text and SI Methods; also Figs. S4 and S5).
(H) Preferred phase coupling network representing 48 LFPs from three brain areas for the M1 neuron shown in A. Nodes represent LFP phase variables; links
represent the strength of LFP–LFP phase coupling, from weak (light lines) to strong (dark lines). Node size is proportional to the sum of link connection
weights entering the node. Strong cross-area coupling remains after conditioning on proximal/distal phases and within-area phase coupling. This preferred
pattern of phase coupling acts like an internal, LFP-based receptive field; when the instantaneous pattern of phase coupling between electrodes is close to the
preferred coupling pattern, the cell spikes more often. (I) The coupling-based spike rate (generated from the preferred LFP–LFP phase coupling pattern
learned from training data and instantaneous LFP phases from test data) predicts the measured spike rate (calculated using spike times from test data). (J) The
relationship between predicted and measured spike rates is stable over multiple days.
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Given a vector of instantaneous phases observed across elec-
trodes at one moment in time, this preferred coupling pattern can
be used to generate a phase-coupling–based spike rate prediction.
That is, once the joint distribution between spike times and the
filtered LFP signals has been learned, a predicted spike rate can be
generated from novel LFP input. We call this spike rate prediction,
generated from LFP phases alone without reference to the actual
spike times, the coupling-based spike rate. Fig. 2 I–J shows how this
coupling-based rate compares to the actual spike rate when given
novel LFP test data (compare with Fig. S6A for a neuron from
a different subject). Overall, 71.2% of neurons (107/138 for subject
P; 51/84 for subject R) exhibited coupling-based rates significantly
correlated to measured rates (P < 0.05, corrected for multiple
comparisons).
Most neurons exhibited preferred phase coupling patterns in-

volving many electrodes in widely separated cortical areas, without
the strong localization one might expect from a modular brain ar-
chitecture. The broad spatial extent of neuron-specific preferred
coupling patterns suggests that neurons in different areas may
prefer the same pattern and thus have correlated coupling-based
rates (Fig. 3 A and B). In contrast, two neurons with different
preferred patterns may exhibit uncorrelated coupling-based rates,
even if they are in close proximity (Fig. 3 C and D). In fact, within
a cortical area the correlation between coupling-based rates is inde-
pendent of interneuron distance (Fig. 3E, not significant). In con-
trast to distance, similarity of neural function predicts coupling-
based rate correlations. That is, we can examine the dependence of
neuronal spiking on external factors such as target direction in
a center-out BMI task (28) to determine neural function, inde-
pendent of any internal spike/LFP relationships that may exist.
Nevertheless, despite assessing these external and internal de-
pendencies separately, on average two neurons with similar di-
rectional tuning exhibit stronger coupling-based rate correlations,

with correlation magnitude dropping as preferred directions di-
verge (Fig. 3F, P < 0.01). Importantly, observing two neurons with
correlated spike rates alone is not enough to produce this result;
neuronal spiking must also be dependent on the same pattern of
LFP–LFP phase coupling (SI Methods).
Given that large-scale patterns of phase coupling influence the

activity of multiple neurons in similar ways, could changes in these
coupling patterns be used to modulate the activity of a coordinated
cell assembly? And, if so, could multiple, coactive assemblies be
modulated independently? Independent components analysis
(ICA) of coupling-based rates reveals a small set of signals respon-
sible for most of the predictive efficacy (Fig. 3G, red). That is, the
coupling-based rate for each neuron—a spike rate prediction
generated from the ongoing LFP signals combined with the pattern
of phase coupling preferred by that neuron—can be decomposed as
a weighted sum of independent (and thus uncorrelated) signals
encoding spike rate variations over time. Each ICA component is
associated with a distinct LFP phase coupling pattern and con-
tributes to the weighted sums for many different neurons. Impor-
tantly, as shown by Fig. 3G, a subset of these components explains
spike rate changes across a large ensemble of neurons and can be
used for ICA-based denoising (SI Methods). Supporting the hy-
pothesis that distributed LFP patterns coordinate cell assembly
activity, these ICA-denoised coupling-based rates reveal synchro-
nized ensemble activity within subsets of simultaneously recorded
neurons. For example, the correlation matrix between denoised
coupling-based rates reveals overlapping clusters of neurons with
similar activity (Fig. 3H; compare with Fig. S6B). That is, simulta-
neously recorded neurons can be sorted such that neurons with
similar rank within a list have correlated changes in predicted spike
rates. This shared spike rate variation is evidence that large-scale
patterns of phase coupling synchronize anatomically dispersed
neuronal ensembles.

Fig. 3. Large-scale patterns of phase coupling synchronize anatomically dispersed neuronal ensembles. Neurons that prefer similar LFP–LFP phase coupling
patterns show correlations between coupling-based spike rates, independent of distance. (A and B) Two neurons from left and right M1 with correlated
coupling-based spike rates. (C and D) Two neurons recorded from one microelectrode exhibit a weak coupling-based spike rate correlation despite close
spatial proximity. (E) Within a cortical area, coupling-based spike rate correlations do not depend on interneuron distance (5,716 pairs, n.s.). (F) In contrast,
motor cortical neurons with similar direction tuning measured during a center-out BMI movement task (28) exhibit coupling-based spike rate correlations
(9,413 pairs, P < 0.001), suggesting that coupling-based spike rate correlations depend on neural function but not spatial location. (G) Shared variability in
coupling-based rates is concentrated by independent components analysis (ICA), with a small set of components (red) accounting for most of the predictive
value of coupling-based rates (see text). (H) Correlation matrix of ICA-denoised coupling-based rates, sorted to identify clusters of neurons with similar
activity; e.g., neurons 1–10 form a spatially distributed ensemble with correlated coupling-based rates, have a low correlation with the activity of neurons 61–
70, and are anticorrelated with neurons 121–130. The LFP–LFP phase coupling patterns associated with these ICA components explain a portion of the in-
ternally generated spike rate variations across an ensemble of anatomically distributed cells and may therefore bind these cells into a functional assembly via
Hebbian synaptic modification.
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Whereas we have shown that spiking depends on large-scale
phase coupling patterns, this dependence may be unrelated to
perception, cognition, and action. It is therefore of interest that
coupling-based rates exhibit event-related changes during behavior.
Monkeys engaged in a BMI task (28) must move a cursor to one of
eight targets, and significant changes are seen in the trial average of
coupling-based rates locked to the onset of a “go” cue (Fig. 4B, P <
0.01, corrected). Furthermore, as shown by Fig. 4C andD, different
cue-locked averages (red) correlate with spike-based peristimulus
time histograms (PSTHs) (blue) of specific neurons. This correla-
tion is evidence that the relation of spikes to distributed patterns of
LFP phase coupling holds during purposeful behavior as well
as spontaneous ongoing activity and can be used to predict event-
related changes in neural activity.
Finally, for cell assemblies to be effective, multiple ensembles

must be able to act in an independent, multiplexed fashion (Fig.
1H). One potential mechanism was identified above: Distinct
phase-coupling patterns at a given frequency can generate inde-
pendent modulatory signals that drive different sets of neurons
(Fig. 1I, cell assemblies A andB, and Fig. 3H). Another possibility is

that different ensembles tune into distinct brain rhythms, a form of
frequency–domain modularity (Fig. 1I, assemblies A and C). As in
Fig. 2A, Fig. 4 E–H shows prefrontal neurons with distinct fre-
quency preferences across many areas, whereas Fig. 4I shows the
sorted optimal frequencies for all 813 frontal neurons examined in
this study. Preferred frequencies span a wide range from <0.3 Hz
to >40 Hz, such that for any given frequency there exists a large
ensemble of neurons modulated by phase coupling patterns oc-
curring at that frequency. Such ensembles experience a common
modulatory drive and thus have the potential to operate as a co-
herent assembly (“fire together, wire together”). Thus, the sensi-
tivity of neurons to (i) distinct brain rhythms as well as (ii) distinct,
single-frequency coupling patterns suggests twomechanisms for the
selective control of multiple coactive assemblies.

Discussion
Are oscillations simply epiphenomenal reflections of population
activity? Or can fluctuations in electric fields have a causal impact
on neuronal networks? Recent studies show that externally gen-
erated, experimenter-controlled oscillatory electric fields have
a causal impact on hippocampal (31) and neocortical (32) slices in
vitro. Importantly, the timing of external stimuli relative to the
phase of the oscillating field can affect spike probability and timing
(31, 32). Other studies used current injection to simulate synaptic
input and show that cellular (33) and network (2) properties in-
teract with the injected current to influence spiking timing (34) and
stimulus discriminability (35). Finally, in vivo studies show that
depth of processing varies with local oscillatory phase (15, 36, 37)
and that oscillatory activity arises from interacting networks ofmul-
tiple cell subtypes (21, 38–40). Thus, neuronal oscillations clearly
have a direct causal impact upon local cortical computation.
In contrast to these local effects, oscillations in distant cortical

areas cannot have a direct ephaptic (field-only) influence upon
neurons. The dependence of spiking on distal phases and phase
coupling shown in this study must therefore rely on synaptic con-
nections mediated by projecting axons. Our findings complement
Fries’ communication through coherence (CTC) hypothesis (14),
where relative phase differences modulate the effective connectivity
between two cortical areas (26).Our hypothesis that distributedLFP
activity influences spiking activity (Fig. 1 A–D) incorporates N dis-
tinct phase signals simultaneously and can be considered a natural
extension of the inherently two-dimensional CTC hypothesis. That
is, we show that spiking in single neurons depends on the full pattern
of oscillatory phases occurring inmultiple brain areas and that phase
coupling patterns will therefore have an impact on long-range
communication.
The idea that oscillations also play a key role in perception, cog-

nition, and action is strengthened by findings that oscillations are
entrainedbyearly sensory (15),motor (41), and linguistic (42)events.
This entrainmentdependsonattention (15, 41) andprovides a link to
internal processes critical for learning and memory—processes as-
sociated with characteristic low-frequency brain rhythms (13, 43).
Priorwork suggests a relationshipbetween rhythmfrequency and the
spatial extent of engaged brain networks, with low frequencies
binding large-scale networks and high frequencies coordinating
smaller networks (44). It is intriguing to speculate on the connection
between the fluid, higher-order cognitive processing enabled by
prefrontal areas, on the one hand, and the diversity of prefrontal
rhythms that may coordinate multiple cell assemblies, on the other.
These connections are beyond the scope of this paper, but could be
investigated using a similar methodology.
In agreement with prior studies (45, 46), we show above that

neurons are sensitive to multiple frequencies. The cellular and net-
work origins of different rhythms are the focus of ongoing research
(39), but the period of concatenation hypothesis (47) provides an
elegant mechanism that generates the frequency bands observed in
neocortex. Each distinct brain rhythm thus generated could exert
independent control of different neuronal ensembles. Furthermore,

Fig. 4. Phase coupling networks exhibit behavior-related changes and may
selectively respond to different frequency bands. (A) Monkeys engaged in
a brain–machine interface (BMI) task, using some cells (BMI neurons) to drive
an on-screen cursor (28). The percentage of neurons exhibiting significant
coupling-based rate modulation was the same for BMI and non-BMI groups.
(B) Predicted spike rates generated by assembly-specific coupling patterns (SI
Methods) show event-related changes. Time is relative to GO cue onset; the
vertical axis shows different independent components sorted by activity
level 100 ms after cue onset. (C) Peristimulus time histogram (PSTH, blue) for
a PMd neuron shows an activity peak at cue onset. The cue-locked average
of one coupling-based rate (red) shows event-related changes that correlate
with PSTH activity. (D) As in C, for a M1 neuron and different coupling-based
rate. Both PSTH (blue) and coupling-based rate (red) peak ∼100 ms after cue.
(E–H) Different neurons are sensitive to distinct frequencies. Plots show
neuronal sensitivity to LFP phase versus frequency (compare with Fig. 2A).
Colored traces represent LFPs from different areas: right (red) and left
(yellow) dorsolateral prefrontal cortex, right (blue) and left (green) orbito-
frontal cortex, and left cingulate sulcus (black). (I) Eight hundred thirteen
neurons from four subjects sorted by preferred frequency (black dots).
Horizontal lines show normalized modulation strength from low (blue) to
high (red) versus frequency; the broad range of preferred frequencies may
enable multiple ensembles to operate with minimal interference.
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interactions between different frequency bands (16, 17, 48, 49) may
provideamechanism to coordinate theactivity ofmultiple functional
assemblies; future research will be required to determine the impact
of cross-frequency coupling on spike/LFP interactions.
Here we presented evidence that dynamic patterns of oscillatory

coupling across multiple brain areas coordinate anatomically dis-
persed neuronal cell assemblies. In particular, we found that spike
timing depends on distal LFPphases and long-range phase coupling,
even after accounting for proximal phase. Different neurons with
similar phase-coupling preferences exhibit similar coupling-based
rates, independent of interneuron distance. Importantly, this mod-
ulation depends on the functional role of neurons and correlates
with behavior, suggesting that neuronal oscillationsmay synchronize
anatomically dispersed ensembles actively engaged in functional
roles. Finally, we found that frontal neurons are selective for a broad
range of frequencies and distinct patterns of phase coupling and thus
may provide a mechanism for selective control of multiple coactive
assemblies. Together, these findings support the hypothesis that
neuronal oscillations play a role in coordinating the functional cell

assemblies thought to be responsible for computation and com-
munication in large-scale brain networks.

Methods
A detailed description of the methods is provided in SI Methods.

Surgery, Electrophysiology, and Analysis. Two adult monkeys were chronically
implanted with multiple microelectrode arrays bilaterally in M1 and PMd and
performed a BMI task. Two different monkeys engaged in a workingmemory
task and had acute recordings made from multiple prefrontal areas. The
pairwise phase distribution of LFP measurements was modeled using a prob-
abilistic model (30). For each neuron, two models were fitted using either all
LFP data or LFP phases occurring at spike times alone and then related using
Bayes’ rule.
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