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We present a model of intermediate-level visual representation that is
based on learning invariances from movies of the natural environment.
The model is composed of two stages of processing: an early feature
representation layer and a second layer in which invariances are explic-
itly represented. Invariances are learned as the result of factoring apart
the temporally stable and dynamic components embedded in the early
feature representation. The structure contained in these components is
made explicit in the activities of second-layer units that capture invari-
ances in both form and motion. When trained on natural movies, the first
layer produces a factorization, or separation, of image content into a tem-
porally persistent part representing local edge structure and a dynamic
part representing local motion structure, consistent with known response
properties in early visual cortex (area V1). This factorization linearizes
statistical dependencies among the first-layer units, making them learn-
able by the second layer. The second-layer units are split into two popu-
lations according to the factorization in the first layer. The form-selective
units receive their input from the temporally persistent part (local edge
structure) and after training result in a diverse set of higher-order shape
features consisting of extended contours, multiscale edges, textures, and
texture boundaries. The motion-selective units receive their input from
the dynamic part (local motion structure) and after training result in
a representation of image translation over different spatial scales and
directions, in addition to more complex deformations. These representa-
tions provide a rich description of dynamic natural images and testable
hypotheses regarding intermediate-level representation in visual cortex.

1 Introduction

A key attribute of visual perception is the ability to extract invariances from
visual input. How this is accomplished by neural circuits in the visual cortex
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has been the subject of intense investigation in neuroscience over the past
several decades. From this body of work, we know that visual information
is processed incrementally in a series of cortical stages: neurons at early
levels such as V1 appear to represent local features such as orientation and
motion (Hubel & Wiesel, 1968), while neurons at higher levels such as in the
inferotemporal and posterior parietal regions represent more global prop-
erties such as object identity (Kobatake & Tanaka, 1994; Tsunoda, Yamane,
Nishizaki, & Tanifuji, 2001; Yamane, Carlson, Bowman, Wang, & Connor,
2008) and complex motion trajectories (Born & Bradley, 2005; Orban, 2008).
These findings have led to a number of theoretical formulations of the prob-
lem (Gibson, 1983; Olshausen, Anderson, & Van Essen, 1993; Riesenhuber
& Poggio, 1999; Ullman, 2000; DiCarlo & Cox, 2007). However, the precise
nature of neural computation that takes place in intermediate-level areas
to enable this transformation remains a mystery. Our theoretical approach
to intermediate-level vision incorporates factorization of the visual world’s
constituent causes and learning the natural statistics of these causes.1 Un-
der this theoretical approach, we implement a model for how neurons in
intermediate-level areas could factor movies into invariances related to
form and motion, and we adapt the representation of these invariances to
the statistics of the natural environment.

Central to our approach is the hypothesis that biological sensory sys-
tems are adapted to the statistics of their input (Barlow, 1961; Field, 1994).
In previous modeling work, Olshausen and Field (1996) showed that when
a neural system is adapted to the statistics of natural images so as to pro-
duce a sparse representation, the receptive fields that emerge are localized,
oriented, and multiscale, in line with the response properties of simple cells
in primary visual cortex. Such a representation is advantageous because
it makes explicit the local features occurring in natural images. However,
the underlying causes of form and motion are still entangled: as an object
moves over the input array, the activity of neurons will be sparse but will
also fluctuate dramatically as features of the object move in and out of the
receptive fields of individual neurons. What is desired is a representation
in which form and motion are disentangled. That is, some units should rep-
resent the form of the object in a persistent manner that is independent of
motion, while other units represent the dynamics or motion that the object
is undergoing independent of its form. Thus, neurons are selective for either
form or motion information, but they are also invariant to the complemen-
tary aspect of visual information (motion or form, respectively). We use
the terms form-selective invariances and motion-selective invariances to refer to
these complementary aspects of visual representation.

1While we believe that a complete theory of intermediate-level vision will include
representations of surfaces and grouping processes, we believe that invariance, learning,
and factorization are also major aspects of intermediate-level vision.
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There have been numerous efforts to learn form-selective invariances
from the statistics of natural images (Einhauser, Kayser, Konig, & Kording,
2002; Karklin & Lewicki, 2005, 2008; Hyvärinen, Hurri, & Väyrynen, 2003;
Lee, Ekanadham, & Ng, 2007), especially with the goal of producing repre-
sentations that are useful for object recognition (Wallis & Rolls, 1997; LeCun,
Huang, & Bottou, 2004; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007).
Many statistical approaches to this problem capture dependencies among
oriented filter responses and reproduce properties of complex cells in pri-
mary visual cortex (Einhauser et al., 2002; Hyvärinen et al., 2003; Koster &
Hyvärinen, 2007; Karklin & Lewicki, 2008; Berkes, Turner, & Sahani, 2009)
or higher areas (Hoyer & Hyvärinen, 2002). Our approach leverages some
aspects of this body of work, especially the idea of slow feature analy-
sis as a principle of self-organization (Wiskott & Sejnowski, 2002). Models
that learn form-selective invariances and focus on performance evaluation
of object recognition tasks (Wallis & Rolls, 1997; LeCun et al., 2004; Serre
et al., 2007) often have the specific invariance built in to the model structure,
and the higher-order features that emerge beyond these built-in invariances
have not been explored. The model we propose here bears similarities to the
density components model of Karklin and Lewicki (2005) and to the hierar-
chical GSM model of Schwartz, Sejnowski, and Dayan (2006), which learn
higher-order structure in images by modeling the dependencies in scale
among oriented filter responses. Our model differs in that form-selective
invariances are learned from the temporally persistent structure contained
in natural movies as opposed to static image patches. In addition, our model
captures dependencies among the normalized filter responses that remain
after the scale has been divided out, which we parameterize as phase. These
differences allow our model to learn forms of higher-order structure beyond
those previously reported.

In contrast to learning of form-selective invariants, there has been lit-
tle work on learning motion-selective invariances from natural image se-
quences. Previous efforts have relied on using either unnatural motions
generated by hand (Nowlan & Sejnowski, 1995; Zhang, Sereno, & Sereno,
1993; Rolls & Stringer, 2007) or unrealistic supervised learning algorithms
accounting for only rigid global translation of an image (Grimes & Rao,
2005). In other models (Jhuang, Serre, Wolf, & Poggio, 2007), it is not clear
if they have captured the diversity of naturally occurring movements or
if the representations are invariant to visual form. Another closely related
line of work learns sparse, spatiotemporal representations of image se-
quences (Olshausen, 2002). This model produces local, direction-selective
components that capture key aspects of measured space-time receptive
fields in primary visual cortex. However, this type of model does not cap-
ture the abstract, invariant property of motion because each unit is bound
to a specific orientation, spatial frequency, and location within the image.
Like the sparse codes learned on static images, motion and form are still
entangled.
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The key attribute of our model that sets it apart from these previous
approaches is that it jointly estimates form and motion by factoring the time-
varying pixel data into persist and dynamic components. This approach
stands in contrast to traditional models of form and motion processing in
which these properties are extracted using computations that take place in
separate, independent streams in visual cortex (Simoncelli & Heeger, 1998;
Serre et al., 2007). Such approaches do not exploit the fact that information
about form and motion is bound together in the incoming sensory data
and that recovery of one of these properties depends on knowing the other:
Computing the true motion relies on knowing the spatial pattern being
compared across time, but since the pattern is not initially known, it must
also be estimated from the time-varying image by integrating evidence over
time in the motion-transformed pattern. Thus, a better estimate of one factor
improves the estimate of the other. This principle was recently exploited in
a model of retinal image motion compensation (Burak, Rokni, Meister, &
Sompolinsky, 2010).

In this article, we present a hierarchical, probabilistic generative model
for learning form- and motion-selective invariances from the statistics of
natural movies. We begin by describing the overall structure of the model
and the role of factorization. We then describe the first layer of the model,
which uses a sparse coding model composed of complex basis functions,
and we show how it provides a factorization into amplitude and phase that
linearizes statistical dependencies. Next, we describe the second layer of
the model, which learns from the factorized representation in the first layer,
and we describe the form- and motion-selective invariances that emerge
when trained on natural movies. In section 5, we relate our work to other
models of visual form and motion processing, discuss the implications of
factorization models for form and motion processing in visual cortex, and
describe the limitations of our approach.

2 Model Overview

The model consists of an input layer and two hidden layers, as shown in
Figure 1. The input to the model consists of the time-varying image pixel
intensities I(t). Local features of the image data are represented in the first
layer, and these are grouped into representations of form and motion in
the second layer. The weights between layers A, B, and D are learned by
adapting to the statistics of natural movies.

The first hidden layer is a sparse coding model utilizing complex ba-
sis functions A and shares properties with independent subspace analysis
(Hyvärinen & Hoyer, 2000) and the standard energy model of complex cells
(Adelson & Bergen, 1985). The corresponding complex coefficients are rep-
resented in terms of amplitude a(t) and complex phasor e jφ(t). Sparseness
and temporal persistence are imposed on the amplitudes a(t). The basis
functions A are then adapted to the statistics of natural movies so as to best
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Figure 1: Model architecture. The first hidden layer is a sparse coding model
utilizing complex basis functions A. The corresponding complex coefficients are
factorized into amplitude a(t) and a complex phasor e jφ(t). The second hidden
layer is a sparse coding model of the logarithm of the quantities represented
in the first layer. In the motion pathway, the second layer models the time
derivative of phase. The higher-order form and motion components, B and
D, are learned from the statistical dependencies contained in the amplitudes
and phase derivatives inferred from natural movies. These learned form and
motion components are represented by the second-layer variables v(t) and w(t),
respectively.

represent images under this constraint. Sparsity forces the basis functions to
align with features contained in images, while temporal persistence encour-
ages each complex pair to span a local manifold of the data such that image
changes are better described in terms of phase shifts as opposed to changes
in amplitude. In this way, the amplitudes capture local invariances in the
image (form), while the phases capture local transformations (motion).

The second hidden layer is a sparse coding model of the logarithm of
the quantities represented in the first layer. As we shall see, the logarithm,
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in combination with the factorization into amplitude and phase, linearizes
statistical dependencies among the first-layer variables, thus making them
learnable by another linear generative model. The second-layer weights
B thus capture the higher-order form structure contained in the log am-
plitudes, while the secondlayer weights D capture the higher-order mo-
tion structure contained in the time derivative of first-layer phases. These
higher-order form and motion components, which we refer to synony-
mously as amplitude components and phase-shift components, are represented
by the second-layer variables v(t) and w(t), respectively.

Because the hierarchical generative model we propose multiplies sig-
nals related to form and motion, the inference of these properties depends
on each other and can be considered as a factorization problem (Tomasi
& Kanade, 1992; Koenderink & Van Doorn, 1997; Memisevic & Hinton,
2007). Here, the inference of amplitudes in the form pathway depends on
the transformation enabled by phase shifting in the motion pathway. At
the same time, the inference of phase in the motion pathway is guided
by the desire to achieve a sparse and stable representation of amplitude in
the form pathway. Thus, form and motion are not computed independently.
Our first-layer factorization approach is similar to that of Berkes et al. (2009),
in which identity and appearance are factored; however, here we leverage
this factorization with a hierarchical model that learns higher-level prop-
erties of form and motion, which are relevant to intermediate-level visual
representation.

3 First Layer: Sparse and Temporally Persistent Representation

Previous work has shown that many of the observed response properties
of neurons in V1 may be accounted for in terms of a sparse coding model
of images (Olshausen & Field, 1997; Bell & Sejnowski, 1997):

I(x,t) =
∑

i

ui(t)Ai(x) + n(x,t), (3.1)

where I(x,t) is the image intensity as a function of space (x ∈ R2) and time
(t ∈ R+), Ai(x) is a spatial basis function with coefficient ui, and the term n(x,t)

corresponds to gaussian noise with variance σ 2
n that is small compared to the

image variance. Sparsity is imposed by a kurtotic, independent prior over
the coefficients, P(u) = �i

1
Zi

e−S(ui ), where S is typically chosen to correspond
to either a Laplacian or Cauchy distribution. When adapted to an ensemble
of image patches extracted from natural scenes, the Ai(x) converge to a
set of localized, oriented, multiscale functions similar to a Gabor wavelet
decomposition of images.

Here we generalize the sparse coding model to complex variables
(Cadieu & Olshausen, 2009). This step is motivated by a number of findings
from natural scene statistics, neurophysiology, and human psychophysics
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and draws heavily from the work of Christoph Zetzsche described in
Zetzsche, Krieger, & Wegmann (1999). In particular, we are motivated by
two observations: The first is that although the prior over the coefficients in
sparse coding models is typically factorial, the actual joint distribution of
coefficients, even after learning, exhibits strong statistical dependencies in
response to natural images. One particularly prevalent form of dependency
is a circularly symmetric, yet kurtotic, distribution found among pairs of
coefficients with basis functions at nearby spatial positions, scales, or ori-
entations (Wegmann & Zetzsche, 1990). Such a circularly symmetric distri-
bution strongly suggests that these pairs of coefficients are better described
in polar coordinates rather than Cartesian coordinates—that is, in terms of
amplitude and phase. The second observation comes from considering the
dynamics of coefficients through time. As Hyvärinen et al. (2003) pointed
out, the temporal evolution of a coefficient, ui(t), in response to a movie can
be well described in terms of the product of two variables: a smooth or
temporally persistent amplitude envelope multiplied by a quickly chang-
ing variable akin to a carrier. A similar result from Einhauser et al. (2002)
indicates that temporal continuity in amplitude provides a strong cue for
learning local invariances. These results are closely related to the trace learn-
ing rule of Foldiak (1991) and slow feature analysis (Wiskott & Sejnowski,
2002; Berkes & Wiskott, 2005), which attempt to extract slowly changing
signals from time-varying input.

In addition to these theoretical considerations, it should be noted that
simple cells in V1 are highly selective to the local phase of an oriented edge
and show contrast invariance above a saturation value (Albrecht & Geisler,
1991). Such responses are not in agreement with purely linear models. These
nonlinearities suggest that primary visual cortex employs a coding strategy
that is polar separable and not Cartesian separable (as would be assumed
in linear models of simple cell responses). Furthermore, phenomenological
models of simple cells, such as divisive normalization (Heeger, 1991), also
result in similar response profiles and tuning that is selective for phase
and invariant to contrast or amplitude. Other statistical models of natural
images that are linked to neural responses also impose divisive normaliza-
tion of linear responses (Schwartz & Simoncelli, 2001). These observations
at the neurobiological level are supported by human psychophysics. The
sensitivity of human observers to quadrature pair Gabor stimuli is aligned
with a polar decomposition and not a Cartesian decomposition (Zetzsche
et al., 1999). In sum, these observations strongly advocate the use of angular
decompositions, such as those that can be obtained with complex variables,
in models of natural images.

With these observations in mind, we have modified the sparse coding
model by using a complex basis function decomposition as follows:

I(x,t) =
∑

i

�{z∗
i (t) Ai(x)} + n(x,t), (3.2)
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where the basis functions now have real and imaginary parts, Ai(x) =
AR

i (x) + jAI
i (x), and the coefficients are also complex, with zi(t) = ai(t)e

jφi(t).
(∗ indicates the complex conjugate, and the notation �{.} denotes taking
the real part of the argument.) Note that the resulting generative model can
also be written as

I(x,t) =
∑

i

ai(t)
[
cos φi(t) AR

i (x) + sin φi(t) AI
i (x)

] + n(x,t). (3.3)

Thus, each pair of basis functions, AR
i and AI

i , forms a two-dimensional
subspace and is controlled by a common amplitude ai and phase φi that
determine the radius and angle within each subspace. Note that the basis
functions are only functions of space. Therefore, the temporal dynamics
within image sequences will be expressed in the temporal dynamics of
the amplitude and phase. The relationship to the original sparse coding
model, equation 3.1, can be seen by defining variables uR

i = ai cos φi and
uI

i = ai sin φi, which are the coefficients of the basis functions AR
i and AI

i ,
respectively.

The prior over the complex coefficients, z, is designed so as to favor circu-
larly symmetric distributions and smooth-amplitude dynamics as observed
in time-varying natural images. As observed empirically (Hyvärinen et al.,
2003), we expect the structural image content to be persistent through time
or slowly changing. The prior we choose to enforce these constraints is

P(ai(t)|ai(t−1)) ∝ e−λaSpa(ai(t)) − βaSla(ai(t), ai(t−1)). (3.4)

The first term in the exponential imposes a sparse prior on the coefficient
amplitudes. Here we use a Cauchy prior on the amplitude variables:

Spa(ai(t)) = log
(

1 +
(ai(t)

σ

)2
)

. (3.5)

Other kurtotic priors yield similar results. Because the prior over the phases
is uniform, the prior for each subspace specifies a circularly symmetric
kurtotic distribution. The second term in the exponential imposes temporal
stability on the time rate of change of the amplitudes and is given by

Sla(ai(t), ai(t−1)) = (ai(t) − ai(t−1))2. (3.6)

Here we have chosen the l2 distance, but we have found similar results
for the l1 distance, which would allow for sharp changes in motion. This
prior also assumes that the temporal dependencies on the amplitudes form
a Markov chain in time. The multiplicative factors λa and βa control the
relative influence of the sparsity and temporal continuity terms.
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For a sequence of images, the resulting negative log posterior, or energy
function, for the first hidden layer becomes (excluding an additive constant)

− log P(I, a, φ) ∝
∑

x,t

1
σ2

N

[
I(x,t) −

∑

i

�{z∗
i (t) Ai(x)}

]2

+

λa

∑

i,t

Sp(ai(t)) +

βa

∑

i,t

Sl(ai(t), ai(t−1)). (3.7)

The amplitudes a and phases φ of the first hidden layer are computed by
minimizing this function through a gradient descent procedure (see the
appendix). Note that since there is no prior over the phases, they will
essentially steer each basis function over time so as to achieve a sparse and
temporally persistent representation in the amplitudes. The basis functions
are adapted to the statistics of image sequences by following the gradient
of this same energy function using the inferred amplitudes and phases, as
described in the appendix. Thus, we are essentially asking the system to
learn a set of trackable features matched to the structure of images.

While this model by no means captures the full joint distribution of
coefficients, it does at least capture the circular symmetric dependencies
among local groups (pairs) of coefficients, which allows for the explicit
representation of amplitude and phase. As we shall see, this nonlinearity in
the form of a multiplicative interaction between the amplitude and phasor
variables serves as a staging ground for learning higher-order dependencies
over space and time.

After training on an ensemble of natural movies (see the appendix), the
first-layer complex basis functions converge to a set of localized, oriented,
and bandpass functions. Figure 2a shows 16 randomly selected 32 × 32
pixel basis functions in terms of both their real and imaginary parts and
in terms of their amplitude and phase. Each pair exhibits similar tuning
in position, orientation, and spatial frequency, in line with previous results
where temporal persistence is enforced on group amplitudes (Einhauser
et al., 2002; Hyvärinen et al., 2003; Berkes et al., 2009). We can also examine
the joint amplitude and phase of each complex pair. Here we see that the
amplitude envelopes are well localized and have a roughly gaussian profile,
while the phase reveals a smooth ramp in the direction perpendicular to
the basis functions’ orientation. Note that each pair has converged to a
roughly quadrature-pair phase relationship in which the spatial phase of
each element of a pair is shifted by 90 degrees. This relationship was not
enforced; it emerges from the data.
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Figure 2b shows how the entire population of 1024 complex basis func-
tions tiles spatial position (left) and spatial frequency (right). Each dot rep-
resents a different basis function according to the location of its maximum
amplitude in the space domain, or the location of its maximum amplitude
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in the frequency domain computed via the 2D Fourier transform of each
complex pair. Because each basis function is complex and in quadrature,
it produces only a single peak in the spatial frequency plane. The angle
of each dot in the spatial frequency plane is determined by the orienta-
tion of the complex basis function pair, and the radius is determined by
the magnitude of the dominant spatial frequency. Basis functions with low
spatial frequency are represented near the origin, and those with high spa-
tial frequencies are located far from the origin. Similar to previous models
(Olshausen & Field, 1997; Van Hateren & Van der Schaaf, 1998; Karklin &
Lewicki, 2006), the basis functions uniformly tile both domains. Note that
because we consider the basis function’s position to be determined by the
position of the maximum, there is a bias in the space domain toward the
boundaries (all basis functions that have their true maximum of the enve-
lope outside the image patch are projected to the edge of the image patch).
The coverage of the spatial-frequency plane spans spatial frequencies up to
the rolloff of the lowpass filter used in preprocessing. Although we trained
the first layer and second layer separately, we observe a uniform and dense
tiling of the spatial frequency plane. This finding does not match that of
Karklin & Lewicki (2006), which found it necessary to learn a second-layer
model jointly with the first-layer model to achieve such uniform tiling. This
difference may be due to the subspaces we introduce in the complex basis
functions or to a difference in the data sets or learning procedures.

The factorization of the complex basis function coefficients into ampli-
tude and phase provides a staging ground for separating form and motion
structure. We demonstrate the effect of factorization in Figure 3 by showing

Figure 2: Learned first-layer basis functions. (a) Each 2 × 2 panel shows a
learned complex function over the space domain in terms of both its real and
imaginary parts, AR

i (x), AI
i (x), and complex modulus and phase, |Ai(x)|,∠Ai(x),

as shown in the legend at the upper left. Real and imaginary values are dis-
played on a gray-scale color map with zero mapped to the middle of the scale
and the range normalized independently for each complex basis function to
span the maximum range of gray values without clipping. Complex modulus
is displayed on a gray-scale map where a value of 0 corresponds to black and a
normalized value of 1 corresponds to white. Complex phase is displayed using
a circular color map so as not to produce wrap-around discontinuities. Phase
is displayed as gray where the corresponding amplitude falls below 10% of its
maximum value (where phase is not well defined). See the corresponding ani-
mation available online at http : //www.vimeo.com/album/1624584. (b) Tiling
of space and spatial frequency for the entire population of basis functions. Each
dot in either the space domain (left) or spatial-frequency domain (right) corre-
sponds to a learned basis function. Grid clustering is due to quantization of the
Fourier domain. This representation of the first-layer basis functions is used to
visualize the weights learned in the second layer.
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Figure 3: Factorization into amplitude and phase. The first-layer model factors
visual content into amplitude a and phase φ variables, which are more directly
related to image form and motion as compared to the linear coefficients uR

and uI . The left column shows the evolution of these variables for a sharp edge
moving horizontally across the visual field (subsampled sequence shown above
first plot). The right column shows the evolution of these variables for a natural
movie sequence containing complex motion.

the inferred latent variables for a sharp edge moving horizontally across
the image patch (left column) and for a natural movie sequence containing
complex motion (right column). We compare the evolution of linear coeffi-
cients uR and uI to the amplitude a and phase φ (unwrapped through time)
for one complex basis function. The linear coefficients uR and uI exhibit
complex trajectories through time, while the amplitude and phase follow
smooth trajectories. The magnitude of the amplitude indicates the presence
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of the feature within the image, while the phase is related to the absolute
position of the edge within the image. Importantly, the time derivative of
phase is directly related to the speed at which the edge moves through
space.2 Thus, the amplitudes and phases effectively separate, or factor, the
presence of edge structure from the movement of the edge structure.

4 Second Layer: Representation of Form and Motion

The goal of the second layer is to provide an efficient representation of
structure contained in the amplitudes and phases inferred from the first-
layer factorization. We assume for now that the structure in amplitude and
phase is independent, and thus we learn separate models for each set of
variables. We first show how form-selective invariances may be learned
from the log amplitudes, which we refer to as amplitude components. We
then show how motion-selective invariances may be learned from the time
derivative of phases, which we refer to as phase-shift components. Finally,
we evaluate the ability of the model to represent form- and motion-selective
invariances on a set of test image sequences.

4.1 Amplitude Components. The complex basis function model as-
sumes independence between the subspace amplitudes and ignores depen-
dencies among larger groups of units. A number of researchers have pointed
out the dependencies of nearby linear filters among groups substantially
larger than two, such as in the variances of nearby filters (Simoncelli, 1997;
Schwartz & Simoncelli, 2001; Lyu & Simoncelli, 2009) or in the circular joint
distributions of neighboring filters (Wegmann & Zetzsche, 1990). Extensions
of ICA also model dependencies among cliques of filters, as in topographic
ICA (Hyvärinen, Hoyer, & Inki, 2001), or among large groups of filters, as
in independent subspace analysis (Hyvärinen & Hoyer, 2000).

To learn the joint structure among amplitudes in the first layer, we use
another sparse coding model in the second layer (see Figure 1). However
instead of modeling the amplitude values directly, we model the log am-
plitudes. This is similar to the approach of Karklin and Lewicki’s (2005)
density components model where here the amplitudes a play the role of
the scale factors λ in their model. We model the logarithm of the ampli-
tudes because it maps the highly skewed, nonnegative amplitude values
to a more uniform (or approximately gaussian) distribution occupying the
entire real domain. Note that transforming the marginal distributions of
coefficients has been utilized by a number of image modeling researchers
(Chen & Gopinath, 2000; Shan, Zhang, & Cottrell, 2007; Lyu & Simoncelli,

2The linear relationship between the time derivative of phase and motion is a different
effect from the linearization of the joint distribution dependencies of phase derivatives.
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Figure 4: (a–c) Log amplitudes exhibit linear dependencies. Shown are the
joint distribution of pairs of log amplitudes. Along each axis are shown the
real, imaginary, amplitude, and phase plots for the corresponding complex
basis function. There are clear linear correlations in the joint distributions of
coefficients with basis functions overlapping in space (a: correlation coefficient
= 0.46), nearby in space (b: cc = 0.28), and of different spatial frequency (c: cc
= 0.12). (d–f) Phase derivatives exhibit linear dependencies. Shown are the joint
distribution of pairs of phase derivatives. There are clear linear correlations in
the joint distributions of coefficients with basis functions overlapping in space
(d: high spatial frequency, correlation coefficient = 0.48; e: low spatial frequency,
cc = 0.43), and at nonoverlapping spatial positions (f: cc = −0.27).

2009) and has an interesting relation to divisive normalization (Simoncelli,
1997; Schwartz & Simoncelli, 2001; Sinz & Bethge, 2008).

The logarithm of the amplitudes also has the property of linearizing
dependencies between amplitudes, as demonstrated in Figures 4a to 4c.
Here we show the joint distribution of log amplitudes for three different
pairs of first-layer units. The amplitudes were generated by inferring the
coefficients in the first layer for an ensemble of natural movie sequences.
As one can see, the log amplitudes corresponding to basis functions at
similar orientations and spatial positions show high linear correlations (see
Figure 4a, correlation coefficient = 0.46). Coefficients with larger separations
in space and scale show weaker linear correlations (see Figure 4b cc =
0.28, Figure 4c cc = 0.12). The presence of these correlations indicates clear
dependencies among these variables that are well suited to be captured by
a linear generative model.
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The generative model for the log amplitudes is given by

log ai(t) = γ 0
i +

∑

j

Bi jv j (t) + ρi(t), (4.1)

where γ 0
i is a constant that sets the operating point for the linear model and

ρi(t) is additive gaussian noise with variance σa. The resulting prior on the
amplitudes is then

P(ai(t)|v(t)) ∝ e

− 1
2σ 2

a

⎡

⎣log ai(t) − γ 0
i −

∑

j

Bi jv j (t)

⎤

⎦
2

,

(4.2)

where each column of B is an amplitude component basis function (in the
space of the log amplitudes) that is multiplied by its respective scalar coeffi-
cient v j (t). The term σa corresponds to the noise variance in the log amplitude
domain, which is small compared to the variation in the log amplitudes.
We seek a small number of causes for the amplitude structure and expect
that the representation of this structure will change slowly through time (it
will be temporally stable). Therefore, we place a sparse and slow prior on
the amplitude component coefficients:

P(v j (t)|v j (t−1)) ∝ e−λvSpv(v j (t)) − βvSlv(v j (t), v j (t−1))
. (4.3)

For these simulations, we use Spv(v j (t)) = |v j (t)|, corresponding to a Lapla-
cian prior and Slv(v j (t), v j (t−1)) = (v j (t) − v j (t−1))2.

The resulting negative log posterior or energy function for the amplitude
portion of both the first- and second-layer model (ignoring an additive
normalization constant) is given by

− log P(a, v) =
∑

t,i

1
2σ 2

a

[
log ai(t) − γ 0

i −
∑

j

Bi jv j (t)

]2

+

λv

∑

j,t

Spv(v j (t)) +

βv

∑

j,t

Slv(v j (t), v j (t−1)). (4.4)

Currently we infer the second-layer units by minimizing this function with
respect to v only, holding the amplitudes a fixed to their values inferred
using equation 3.7. The amplitude components of the second layer B are
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Figure 5: Structure of learned amplitude components. Each panel (a–f) illus-
trates the structure of a representative amplitude component from the popula-
tion learned on natural movies. For each component, we provide two visualiza-
tions: (left) learned amplitude component weights and (right) exemplar image
patches yielding large positive and negative responses. The learned weights
(left) are visualized in the space of the first-layer basis functions (see the text).
Image patches that produce a large positive or negative coefficient v (right) are
selected from a large corpus of natural movies.

then learned by gradient descent on this same function, using the inferred
values of a and v (see the appendix).

Some representative examples of amplitude components learned from
natural movies are shown in Figure 5. Depicting what each amplitude com-
ponent has learned is challenging because the weights live in the space of
the first-layer units, and since the mapping is highly nonlinear, one cannot
simply display the result in the image domain. We illustrate the forms of
structure learned in the amplitude components by (1) depicting the weights
in the space of the first-layer basis functions, (2) showing image patches that
highly activate specific amplitude components, and (3) selecting exemplars
from subpopulations that represent different types of amplitude compo-
nent structure. For method 1, we depict the learned weights by utilizing
the organization of the first-layer basis functions in the space and spatial-
frequency domains, following the convention of Karklin & Lewicki (2005).
Using the tiling of first-layer basis functions shown in Figure 2b, we il-
lustrate an amplitude component j by coloring each dot corresponding to
a first-layer unit, i, by its weight Bij. Positive values of Bij are mapped to
shades of red, negative values are mapped to shades of blue, and values
close to zero are mapped to gray.

We focus on prominent types of structure that emerge in the population
of 625 learned amplitude components:



Learning Representations of Form and Motion 843

Texture boundary: A large number of amplitude components are selective
for spatial texture boundaries. For example, the amplitude component de-
picted in Figure 5a has learned a texture boundary at roughly 45 degrees
and localized at a particular position in space. In the space domain, the
first-layer units with large positive weights and those with large negative
weights show a clear separation in space and meet at a diagonal boundary.
The organization of the weights for this function in the spatial frequency
domain lacks clear structure. Therefore, this function is selective for the
spatial pattern of image content but is invariant to the composition of the
orientation and spatial frequency structure. Because the weights of the
amplitude components are coupled to the logarithm of the amplitude coef-
ficients, large negative weights will attenuate the corresponding amplitude
coefficient toward zero, whereas large positive weights will amplify the
amplitude coefficient toward a large positive value (for v j > 0). This will ef-
fectively suppress the presence of image contrast or structure in one spatial
region and enhance the contrast of image structure in the other region.

In the right portion of Figure 5a, we show 16 randomly selected image
patches that produce a high positive response for this amplitude compo-
nent and 16 randomly selected image patches that produce a high negative
response. These image patches generally reflect the texture-boundary selec-
tivity of this component. The insensitivity of this amplitude component to
orientation and spatial frequency makes it invariant to the structure within
a region of texture, yet the space domain selectivity makes it sensitive to
the spatial envelope.

Collinear: Another prominent type of amplitude component groups to-
gether first-layer functions that are collinear and contiguous, and span a
broad spectrum of spatial-frequencies, as seen in Figure 5b. This function
has large positive weights to first-layer units that are spatially organized in
a diagonal pattern at roughly 45 degrees. The preferred orientation of these
first-layer units is collinear with this diagonal pattern. Also note that this
function has large weights to basis functions that span low, medium, and
high spatial frequencies. It has a broadband organization that integrates
across spatial frequency. Image patches that produce a highly positive in-
ferred coefficient all exhibit some collinear structure in the 45 degree direc-
tion. Image patches that produce a highly negative inferred coefficient are
less similar since the negative weights are rather diffuse, but there is a clear
lack of elongated contour structure of the preferred orientation and spatial
location.

Cross-orientation: We also observe a large population of amplitude com-
ponents that exhibit cross-orientation tuning, as seen in Figure 5c. Inter-
estingly, the orientation difference is not perpendicular, or 90 degrees, but
closer to 60 degrees. The spatial pattern also has a characteristic structure,
with basis functions tuned to one orientation having a somewhat collinear
organization and basis functions tuned to the 60 degrees offset orientation
being more spatially homogeneous and lacking clear collinearity. Image
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patches that produce large positive responses all have a predominant ori-
entation structure at about −30 degrees and patches that produce large
negative responses have image structure at about +30 degrees. Note that a
number of aspects of the image structure have high variability, such as the
exact position of prominent edges or the spatial frequency content of the
edges.

In Figures 5d, 5e, and 5f, we show some additional learned amplitude
components. In Figure 5d, we show an amplitude component that is ori-
entation selective and has broad spatial tuning. Note the strong preference
for textures across the entire image patch. In Figure 5e, we show an ampli-
tude component that has antagonistic selectivity to spatial frequency. This
component is differentially selective for low versus high frequencies and
has a slight orientation selectivity. We also observe a number of amplitude
components that are not as easily classified. In Figure 5f, we depict an am-
plitude component with an interesting differential tuning to a narrowly
selective horizontal frequency structure and a broadly orientation tuned
structure at about 45 degrees. We have observed such amplitude compo-
nents on multiple runs of our algorithm and at varying spatial positions
and orientations.

We illustrate the prominent subpopulations of amplitude components
and their tiling properties in Figure 6. Each column corresponds to a differ-
ent subpopulation, with exemplars of each shown by row. Note that each
column shows only a small subsample for each of these subpopulations.
Figure 6a shows five exemplar amplitude components that are selective
for texture boundaries. These components span a range of spatial positions
and orientations. The first three components are of the same boundary ori-
entation and tile spatial position; the last two show evidence for the tiling
in orientation. Figure 6b shows a similar tiling of space and orientation for
components selective for an elongated edge structure. Figure 6c shows the
range of structure in the cross-orientation selective components. While these
components are broadly tuned spatially, they do show clear localization in
space (the component in the first row is spatially localized in the lower left
region of space). Note also the clear tendency for orientation opponency at
roughly 60 degrees. Figure 6d shows the organization of components that
have smooth variations in space and sometimes weak orientation tuning.

4.2 Phase-Shift Components. The dynamics of moving objects or ob-
server motion over short epochs are encoded in the time rate of change of the
entire population of phase variables. Local motion in the image domain that
would otherwise produce nonlinear trajectories in the basis function coeffi-
cients u̇R

i (t) or u̇I
i (t) will now be linear in the corresponding phase derivative

φ̇i = φi(t) − φi(t−1) (as demonstrated in Figure 3). However, complex natu-
ral motions will exhibit dependencies in the joint distribution of phase
derivatives (dependencies among multiple phase derivative variables). Im-
portantly for our use of a generative model in the second layer, the process
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Figure 6: Amplitude component subpopulations. Each column illustrates a typ-
ical group of learned amplitude component functions. (a) Texture-boundary.
(b) Collinear edge. (c) Cross-orientation. (d) Broad spatial tuning and broad ori-
entation tuning. The texture-boundary selective components and the collinear
edge components span a range of spatial positions and orientations. The cross-
orientation components are more broadly tuned spatially but also span a range
of orientations and spatial positions (the component in the first row is spatially
localized to the lower-left region of space). The components in d are broadly
tuned in space and orientation.

of factorization and taking the phase derivative produces a linearization
of these dependencies in the joint distribution. We next demonstrate that
the joint statistics between multiple phase derivatives show clear linear
dependencies.

Figures 4d to 4f show the joint phase derivative distribution for three
pairs of complex basis functions. These distributions are produced by in-
ferring the first-layer variables for an ensemble of natural movies. Complex
basis functions with similar orientation, position, and spatial frequency
show high correlations (Figure 4d, cc = 0.48). Functions with different ori-
entation also show high correlations (Figure 4e, cc = 0.43), likely due to
coherent motion of textures in natural movies. Functions with nearly no
spatial overlap also show correlation of significant magnitude (Figure 4f,
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cc = −0.27). Note that the negative correlation (versus positive) is arbitrary
and is determined by the handedness of the complex basis functions, which
is symmetric in the model formulation and determined only by the initial
condition before learning. Just as with the observed log-amplitude correla-
tions, the presence of linear correlations of the phase derivatives indicates
clear dependencies among these variables that are well suited to be learned
in a linear generative model. Therefore, the process of factorization and
taking the phase derivative produces a linearization of the dependencies in
the joint phase distribution.

The generative model for the time derivative of the phase variables is
given by

φ̇i(t) =
∑

k

Dik wk(t) + νi(t), (4.5)

where D is the basis function matrix specifying how the high-level vari-
ables wk influence the phase shifts φ̇i. The additive noise term, νi, represents
uncertainty or noise in the estimate of the phase time-rate of change. The
generative model is shown schematically in Figure 1. As before (see equa-
tion 4.3), we impose a sparse and slow prior on the second-layer coefficients
wk:

P(wk(t)|wk(t−1)) ∝ e−λwSpw(wk(t)) − βwSlw(wk(t), wk(t−1)), (4.6)

with the sparse cost function in this case given by Spw(wk(t)) = log(1 +
w2

k (t)/σ 2) and the slowness penalty given by Slw(wk(t), wk(t−1)) = (wk(t) −
wk(t−1))2. Slowness in this case corresponds to our expectation that mo-
tions in the visual world are persistent through time; for example, objects
moving rightward tend to continue to move rightward over time (a direct
consequence of physical momentum).

The uncertainty of the generated phase shifts is given by a von Mises
distribution: p(νi) ∝ exp(κ cos(νi)), which is a univariate generalization of
the gaussian distribution to an angular variable. The resulting conditional
distribution of the first-order time derivative of the phase, given the coeffi-
cients w, is

P(φ̇i(t)|w(t)) ∝ eκ cos(φ̇i(t) − [Dw(t)]i). (4.7)

The notation, [Dw(t)]i indicates the ith row of the matrix product.
When the priors on the first- and second-layer variables are combined,

the resulting negative log posterior for the phase portion of the model
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(ignoring an additive normalization constant) is given by

− log P(φ,w) = −
∑

t

∑

i∈{ai(t)>ε}
κ cos(φ̇i(t) − [D w(t)]i) +

λw

∑

k,t

Spw(wk(t)) +

βw

∑

k,t

Slw(wk(t), wk(t−1)). (4.8)

Note that because the phase of a complex variable with amplitude close to
zero is undefined, we exclude φi(t) where either ai(t) or ai(t−1) is less than a
small constant, ε.

As with the amplitude model, we infer the second-layer units by mini-
mizing equation 4.8 with respect to the w only, holding the first-layer phases
φ to their values inferred from equation 3.7. The phase-shift components
D are then learned by gradient descent on equation 4.8, using the inferred
values of φ and w (see the appendix).

We next describe the properties of the phase-shift components D learned
from natural movies. We attempt to convey the structure of these compo-
nents by examining their weights, estimating motion vectors from gener-
ated transformations, and illustrating the tiling properties of the population.

In Figure 7, we depict six representative components. The phase shift
component in Figure 7a is perhaps easiest to understand because it cor-
responds to vertical translation throughout the entire image patch. In the
space domain, there are large weight values distributed over all positions,
while in the frequency domain, there is a ramp in the vertical direction.
This latter structure is due to the fact that coherent translations in the im-
age domain are produced by phase shifts that are proportional to spatial
frequency and also depend on the alignment between a unit’s orientation
and the direction of motion. Basis functions represented by mirror symmet-
ric points in the 2D Fourier plane will precess in opposite directions for a
positive change in their coefficients’ phases.

We also visualize the effect of the image domain transformation by es-
timating local motion vectors from image domain transformations pro-
duced by a phase-shift component (see the appendix for details). Using this
method, we display the spatial aspects of the induced transformation on
the right in Figure 7a, which illustrates the global vertical motion induced
by this phase shift component.

We have found that generating movies using each phase-shift compo-
nent is highly instructive for discerning what the component has learned.
To produce such a movie, we select a single static image patch and infer
the amplitude and phase coefficients for the first layer. Given these ampli-
tude and phase coefficients, we then produce a phase shift by holding a
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a) Phase-Shift Component Weights Estimated Motion Vectors b) Phase-Shift Component Weights Estimated Motion Vectors

c) d)

e) f)

Figure 7: Structure of learned phase-shift components. Each panel illustrates
the structure of a representative phase-shift component from the population
learned on natural movies. For each subpanel, we provide two illustrations:
(left) learned phase-shift component weights and (right) motion vectors esti-
mated from generated transformations. The learned weights are visualized in
the space of the first-layer basis functions using the same convention as the
amplitude components in Figure 5. Motion vectors indicate the image domain
motion produced by a positive contribution of the corresponding phase-shift
component (see the appendix). Each component produces a unique transfor-
mation in the image domain. The components are (a) global vertical trans-
lation, (b) local vertical translation, (c) rotation, (d) dilation, (e) temporal-
aliased structure, and (f) complex translation. Movies showing generated im-
age transformations for each of these components can be found online at
http : //www.vimeo.com/album/1624584.

second-layer unit wk at a constant value over a number of frames, causing
a certain pattern of phase precession. (The resulting movies may be viewed
online at http://www.vimeo.com/album/1624584.) In these movies, it is
perceptually evident that each of the animated image patches undergoes a
similar transformation, even though their spatial structure is quite differ-
ent. This is perhaps the strongest evidence that these learned components
reflect motion-selective invariances.

In addition to global phase-shift components, the model also learns spa-
tially localized phase-shift components as in Figure 7b. This component
produces a vertical translation localized to a spatial region just to the right
of the center of the image patch, which is also evident in the estimated



Learning Representations of Form and Motion 849

motion vectors. The generated motion is most prevalent in image patches
that have horizontally oriented image content in the relevant image region.
Note that the image regions outside this zone are left unaltered by this
component.

While translation operators comprise the majority of the learned com-
ponents, a large number exhibit other forms of interesting structure. The
component in Figure 7c, for example, produces a rotational warping in the
image domain around a point that appears to be in the lower left of the
image patch. This is evident in the weight pattern for this component as the
magnitude of the weights in the lower left of the image patch are quite small
and the estimated motion vectors spiral around this point. The component
in Figure 7d produces a type of dilation or expansion in the image domain.
The left and right portions of the image patch exhibit motion in opposite
directions. When the right portion undergoes a translation to the right, the
left portion translates to the left. As the induced transformation changes
sign, the right portion of the image translates leftward, and the left portion
translates rightward. The weight pattern also suggests a particular spatial
selectivity for this component with the upper left and lower right of the
image patch remaining static for the transformation, which is reflected in
the estimated motion vectors.

The model also learns a number of phase-shift components that we ei-
ther did not expect or for which we have not found precise interpretations.
The phase-shift component depicted in Figure 7e we believe is related to
temporally aliased motion structure. The weight pattern is unexpected as it
implies that high-frequency phases should advance in the opposite direc-
tion as low-frequency first-layer phases. Indeed, when we animate image
patches using this component, the motion that is produced appears to be
two transparent layers distinguished by their spatial frequency and mov-
ing in opposite directions (leftward or rightward). Upon inspecting movie
sequences where these components are used, it appears that this struc-
ture is due to temporal aliasing of motion in the movies, which occurs in
the horizontal direction. This is a consequence of the presence of many
movie sequences in the data set that contain fast horizontal motion in the
background as animals are being tracked in the foreground. Therefore this
structure is likely due to an insufficient temporal sampling rate for the
observed motions. The component in Figure 7f produces a transformation
that appears to be a translation. However, the weight pattern for this trans-
formation has a peculiar structure in the spatial frequency domain with
two wedge shapes not aligned with the radial direction. Although we do
not have a concise interpretation of this learned pattern, it does appear
significantly often in the learned population.

We illustrate the variety of the learned phase-shift components within
each class in Figure 8. Figure 8a illustrates different directions of motion
within the population that are selective for global translation (spanning
directions +45◦,+90◦,+135◦,+180◦). Figure 8b shows the range of spatial
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a) b) c)Direction Tiling Spatial Tiling (medium) Spatial Tiling (small)

Figure 8: Phase-shift component subpopulations. Each column depicts four ex-
emplar phase-shift components. (a) Components selective for global translation
are selective for different directions of motion. (b) Components of medium spa-
tial extent with selectivity for horizontal motion tile spatial position, from top
to bottom: top right, lower right, lower left, top left. (c) Components of small
spatial extent selective for horizontal motion tile space.

positions of components selective for motion of the same direction, from
top to bottom: upper right, lower right, lower left, and upper left. Figure 8b
shows part of the spatial tiling for components of medium spatial extent,
and Figure 8c shows the same tiling property for components with small
spatial extent. Note that only a small fraction of the entire population for
each class is shown here. The variety of spatial sizes, positions, and direc-
tions in the phase-shift components can be seen as forming a multiscale,
compositional code for describing image translation over arbitrarily shaped
regions, thus providing a possible mechanism for motion segmentation.

4.3 Testing Form- and Motion-Selective Invariance. To test form- and
motion-selective invariance in our model, we generated movies that vary
either the image form or the image motion. We used these movies to as-
sess the degree of variation among different layers in response to changing
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Figure 9: Testing form- and motion-selective invariance. The degree of variation
in each set of variables in the model (u, v, w) was measured in response to
changes in image motion (gray) or to changes in image form (black).

either the image form and keeping the image motion fixed or changing
the image motion and keeping the image form fixed. We compare the
amplitude-component coefficients v to the phase-shift component coeffi-
cients w and use the first-layer coefficients uR as a control comparison (see
the appendix). Figure 9 shows the results of this test. As expected, the
first-layer coefficients show no significant difference (determined by t-test,
p = 0.12) in mean variance when changing the image motion or the im-
age form (the variation in these coefficients is due equally to changes in
motion and changes in image content). However, the amplitude compo-
nents show higher variance as image form changes and lower variance as
image motion changes (p = 1.3 × 10−13). This indicates that the amplitude
components are selective for image form and invariant to image motion.
Conversely, the phase-shift components show low variance across changing
image form and show higher variance across changing the image motion
(p = 7.2 × 10−5). Therefore, these components are selective for image mo-
tion and invariant to image form.

5 Discussion

We have proposed a hierarchical model of image representation and have
shown that it is capable of learning rich representations of form and motion
contained in natural image sequences. In this section, we discuss the forms
of structure learned in the first and second layers, the relationship of our
model to other models of visual processing, the importance of factorization
and its implications for models for form and motion processing in visual
cortex, and the limitations of the particular model we have proposed.

5.1 Complex Basis Function Representation. The complex basis func-
tion representation used in the first layer of our model shares similarities
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with other natural image models. A number of investigators have extended
the sparse coding model to include dependencies among statistically depen-
dent filters by either imposing or learning groupings among features, such
as independent subspace analysis (Hyvärinen & Hoyer, 2000), topographic-
ICA (Hyvärinen et al., 2001), and the mcRBM model (Ranzato & Hinton,
2010). Each of these models imposes certain restrictions on the dependen-
cies, or groupings, that are allowed between filters. The complex basis
function model used here may be viewed as the most restrictive along this
axis as it allows only pairwise dependencies. However, the main purpose
served by the complex representation is simply to allow for an explicit
factorization into amplitude and phase from which higher-order groupings
can be learned by the second layer. In this sense, the complex pairing simply
mediates factorization; it is not an end goal of the representation in itself.

Slowness, or temporal persistence, has also been a recurring theme in the
study of natural image statistics. Models taking advantage of slowness also
find similar image structure as our first-layer model: for example Wiskott
and Sejnowski (2002), Einhauser et al. (2002), Berkes & Wiskott (2005) each
find groupings of oriented filters that span subspaces invariant to phase. In
our model, we have extended the slowness constraints to the second-layer
representations of form and motion.

5.2 Learned Amplitude Components. The higher-order structure
learned by the amplitude components is qualitatively similar to that learned
by other models of amplitude or variance modulation of image filters. In
particular, because of its similar mathematical form, Karklin and Lewicki’s
density component model exhibits similar learned structure to that shown
here (Karklin & Lewicki, 2003a). This is not surprising as the structure is dic-
tated by natural images. However, a novel class of second-layer functions
emerges in our model that is not seen in the published work on the den-
sity components model (Karklin & Lewicki, 2003a, 2003b, 2005) or related
models (Schwartz et al., 2006). This class of functions represents elongated,
collinear edge structure in the image domain (see Figure 5b). It has not been
shown if more recent models, similar to the density components model,
do in fact capture this elongated edge structure (Karklin & Lewicki, 2008).
There is evidence that the multilayer ICA model (Hyvärinen, Gutmann,
& Hoyer, 2005) captures multiscale edges, but the diversity of structure
learned by this model is limited compared to the amplitude components
presented here.

The ability to learn elongated, collinear edge structure is likely due to the
local translation invariance that is provided by the amplitudes of first-layer
units. The multiplicity of positions and orientations that an extended con-
tour takes on within a 32×32 pixel image patch would make it impractical
for a set of basis functions to completely tile this space. This combinatorial
explosion is mitigated in our model by the phase shifting that occurs in the
first-layer units. The result is that a given amplitude pattern specified by
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the second layer can actually correspond to a wide variety of contours with
slightly different positions, orientations, or relative phase offsets along the
contour. By contrast, in the density components model, the value of each
first-layer unit will be highly sensitive to these variations, making it more
difficult for the second layer to learn the underlying form invariance of
elongated contours. This difference also highlights the importance of fac-
torization in our model: since variations in spatial position can be explained
away by phase, the amplitude is free to carry the underlying invariant in-
formation about the presence of edges. Without this explaining away that
occurs in the first layer, form and spatial variation (motion) would still be
entangled, and the underlying form invariances would be less visible to the
second layer.

One complication in our model that is introduced by modeling the log
amplitudes is that amplitude values close to zero get mapped to large nega-
tive numbers. Although the difference between ai = 0.01 and ai = 0.000001
may be insignificant, it will become highly significant in the log domain
and penalized due to the l2 distance in equation 4.2. The sensible thing to
do in this case would be to set ai = 0, but the logarithm function does not
allow this. One possibility is to use a thresholded log function that takes the
logarithm only for values above a threshold, setting values below threshold
to zero. This or other solutions should be explored in future work.

Finally, it is important to note that other types of form-related informa-
tion are not captured by the amplitude components. Namely, the absolute
phase in the first-layer units carries important information about relative
spatial relationships among image features. Currently there is no prior over
the absolute phase (only the phase derivative). As a consequence, it is still
not possible to generate realistic images from the model. How to model
the structure in absolute phase is an important and difficult open problem.
Some recent progress has been made on this issue through the development
of multivariate models of phase dependencies (Cadieu & Koepsell, 2010a,
2010b), and incorporating these ideas into the model is a goal of ongoing
work.

5.3 Learned Phase-Shift Components. The structure learned by the
phase-shift components captures a rich variety of transformations that oc-
cur in natural image sequences. This is in contrast to the first-layer units
or other single-layer models of time-varying images such as Olshausen
(2002), which cannot explicitly represent motion because their units are
highly localized in space, orientation, and spatial frequency and are thus
not invariant to these properties of the moving structure. The second layer of
our model overcomes this problem by integrating across phase derivatives
in the first layer that are consistent with a certain type of image transfor-
mation, thus forming an explicit representation of motion that is invariant
to local orientation and spatial frequency structure.
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The use of phase to represent local image shifts is also not unique to
our model and has been used previously by other investigators to compute
motion (Fleet & Jepson, 1990; Magarey & Kingsbury, 1998). One of the ad-
vantages of phase is that it is insensitive to contrast variations. Here we
utilize in addition the fact that phase linearizes curved trajectories in coef-
ficient space and thus allows the second layer to capture the higher-order
motion structure via a simple linear generative model (see Figures 3 and 4).
The insensitivity of phase to contrast variations is also key to the motion-
selective invariance achieved by the phase-shift components. Another class
of models of biological motion processing (Simoncelli & Heeger, 1998; Rust,
Mante, Simoncelli, & Movshon, 2006) implicitly removes form information
by dividing out the local image contrast. This divisive normalization opera-
tion is analogous to the separation of amplitude and phase in the first layer
of our model. We can make this relationship explicit by expressing the time
derivative of the phase in terms of quadrature-pair simple cell responses,
uc and us,

d
dt

φ(t) = d
dt

arctan
(

us

uc

)
= u̇suc − usu̇c

u2
c + u2

s
= usu

t−1
c − ut−1

s uc

u2
c + u2

s
, (5.1)

where the last equality is achieved by approximating the time derivative
with a first-order difference. This relationship, described by Simoncelli
(1993), shows an alternative way to compute the phase-shift variables in
our model in terms of variables that are readily available in divisive nor-
malization models (Simoncelli & Heeger, 1998; Rust et al., 2006).

The structure that emerges within the phase-shift components reflects the
dynamics and structure contained in natural movies. The diversity of this
structure has not been addressed by previous models of motion processing
(Nowlan & Sejnowski, 1995; Zhang et al., 1993; Grimes & Rao, 2005; Rolls &
Stringer, 2007). One of the most important questions in computing motion
is how to build a complete representation that tiles the joint domain of space
(spatial position) and motion (speed and direction). The model in Simoncelli
and Heeger (1998), for example, proposes specific weight patterns among
spatiotemporal filters that are hand-tuned to reproduce physiological data,
but the question of how to design an entire population of such units to
encode the complex motion that actually occurs in dynamic natural scenes
is unaddressed. These details are precisely what is learned by our model:
the majority of phase-shift components correspond to image translation
operators that are localized within different regions of the space domain and
extend over different spatial scales, allowing for the complex segmentation
of motion in time-varying natural images. Previous models of biological
motion processing (Simoncelli & Heeger, 1998; Rust et al., 2006) have not
specified over what spatial extent motion should be computed, and indeed
it would seem difficult to determine this from first principles. Here the
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solution is learned by the weight patterns in the second layer of our model
to match the statistics of natural image motion.

5.4 Factorization in Visual Models. Factorization plays a key role in
our model and theoretically extends back to early proposals of visual layers
(Barrow & Tenenbaum, 1978). More recent models have shown how factor-
ization can be used to separate style and content in image data (Tenenbaum
& Freeman, 2000), and related approaches have been utilized in computer
vision problems (Tomasi & Kanade, 1992; Koenderink & Van Doorn, 1997).
Importantly, factorization is not a feedforward computation. In factoring a
number, for example, one is not free to choose each factor independently;
the computation of one factor necessarily influences the other. In our model,
this interaction occurs in the factorization of amplitude (which signals the
presence of edge structure) and phase (which encodes relative position) in
the first-layer units. The slow and sparse prior on amplitudes encourages
representations in which image features persist over time. The phase must
then accommodate to account for changes in the image data. The inference
of one parameter (presence of a feature) depends on the other (position),
and vice versa. Note that the slowness prior on the amplitude plays a role
akin to the constant brightness assumption in motion estimation (Horn &
Schunck, 1981), and the phase plays the role of the shift parameter.

Factorization has played an important role in other models of natural
images. In particular, the bilinear model of Grimes and Rao (2005) factors the
position of a filter component apart from the amplitude of that component.
However, in that model, the position variable is shared globally among
all features in the representation and is thus more restrictive. Our less
restrictive approach of having a position (phase) variable for each feature
enables us to learn the structure of motion from unsupervised exposure
to natural images, as opposed to using controlled artificial motions as in
Grimes and Rao (2005). The model in Berkes et al. (2009) is closely related to
the first layer of our model and has some specific advantages. This model
factors the image filter coefficients into a binary presence variable and an
appearance component. The learned subspaces can be larger than two and
also group together units of similar spatial position, orientation, and scale.
However, our model uses the factorization in the first layer merely as a
staging ground for learning higher-order structure in the second layer. It
seems likely that structure similar to that found in our second-layer model
could be learned from the first-layer representation in Berkes et al. (2009).

5.5 Neurobiological Implications. The development of this model was
motivated by considerations about the structure contained in natural im-
ages and how to extract invariances rather than by the desire to explain
or account for specific neurobiological phenomena. However, to the ex-
tent that the visual system has been adapted to the structure of dynamic
natural images, we may expect to find a relationship between the types
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of form and motion representations discovered by our model and neural
representations found in the brain. Indeed, the separation of form and mo-
tion processing in our model would seem to mirror the what and where
streams found in visual cortex. There is an important distinction, however,
between the manner in which form and motion are computed in our model
and the standard models of form and motion processing in visual cortex
(Simoncelli & Heeger, 1998; Serre et al., 2007). Namely, we propose that
these properties are extracted using a factorization process in which the
two computations interact rather than being computed independently. It
may be possible to test if this is the case by generating stimuli that violate
the constancy assumption in form and look at how the representations of
form and motion are affected. Certain psychophysical phenomena such as
motion silencing (Suchow & Alvarez, 2011) seem to be consistent with the
idea that the assumption of object constancy overrides local changes in an
object when it is moving.

An obvious question that arises is how this model would be implemented
in terms of neurobiological substrates and mechanisms. At first glance, the
representation of complex numbers and quantities such as phase may seem
rather implausible from what we know of the existing physiological data.
However, as we have seen from the discussion, there are ways to repre-
sent phase and phase derivatives that are consistent with existing divisive
normalization models of simple cells. The first-layer units of our model
would thus seem most directly related to complex cells and normalized
simple cells in V1. The second-layer units could possibly be instantiated at
higher levels of representation such as V2 (for form) or MT (for motion). The
learned amplitude and phase-shift components could be used as a basis for
exploring representations in these higher-level areas, either by regressing
the recorded activity of neurons against the activity of second-layer units in
the model in order to see how well they predict neural activity or by gener-
ating stimuli from the model and examining how visual neurons respond
to individual amplitude or phase-shift components. Regardless of whether
the model has any validity from a neurobiological standpoint, it does offer a
valid tool to explore visual representations in the brain because it provides
a parameterized description of higher-order structure in dynamic natural
images.

5.6 Caveats. A number of simplifying assumptions are built into our
model that may limit its scope. For example, the first-layer basis functions
are only a function of space and not time. This is an obvious discrepancy
with responses commonly observed in primary visual cortex, where neu-
rons are known to have nonseparable temporal and spatial receptive fields
(DeAngelis, Ghose, Ohzawa, & Freeman, 1999). The data we use for train-
ing do not include color, binocularity, or natural fixational eye movements.
These aspects of natural vision likely play important roles in determin-
ing the structure in intermediate visual cortex. In addition, the inference
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procedure we use to learn model parameters is noncausal. It is unknown
how constraining the inference and learning procedure to be causal would
affect the results. Another modeling aspect we have not explored is the level
of overcompleteness in the model, which has been shown to drastically af-
fect the qualitative structure that is explicitly captured by one-layer sparse
coding models (Olshausen, Cadieu, & Warland, 2009).

While the second-layer model captures dependencies in amplitude and
phase shift, it ignores dependencies in instantaneous phase. In separate
work, we have proposed statistical models that may be relevant for captur-
ing these unmodeled dependencies (Cadieu & Koepsell, 2010a, 2010b), and
it will be important to include these forms of structure in order to develop
a complete model of higher-order form and motion.

A valid concern about the structure imposed by our model is the pair-
ing of first-layer basis functions. Through learning on natural movies, the
basis functions become quadrature pairs. The hypothesis that neurons in
primary visual cortex are paired in quadrature was entertained by Pollen
and Ronner (1981), but little evidence was found to support the hypothesis.
In light of these negative results, we do not advocate an explicit pairing
of neurons in primary visual cortex, but rather subscribe to models that
specify arbitrary pairings of filters (Hyvärinen & Hoyer, 2000; Berkes et al.,
2009; Karklin & Lewicki, 2008). The pairings we have used are a simplifica-
tion that enabled us to tractably arrive at localized amplitude components
with dynamic phase variables. An important aspect of the models that learn
this grouping structure is that even though a multidimensional subspace
is learned, the dynamics within the subspace during inference of moving
stimuli often follows a low-dimensional trajectory, usually 1D (Berkes et al.,
2009; Culpepper & Olshausen, 2009). This indicates that our approximation
of these trajectories with a one-dimensional phase may be consistent when
the dimensionality of the subspaces is learned, but the proper way to learn
and represent these trajectories is still an open problem.

Appendix: Simulation Details

A.1 Learning and Inference. We seek to learn the parameters for the
basis functions, A, B, and D, in both layers from image sequences. We used
a variational learning algorithm to adapt the basis functions in both layers.
First we infer the maximum a posteriori (MAP) estimate of the variables
a, φ, v, and w for the current values of the basis functions. Given the MAP
estimate of these variables, we then perform a gradient update on the basis
functions. The two steps are iterated until convergence.

To infer coefficients in the first hidden layers, we perform gradient de-
scent with respect to the coefficients of the cost function (see equation 3.7).
The resulting gradients for the amplitudes and phases in the first layer are
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given by

�ai(t) ∝ �{bi(t)} − λaSp′(ai(t)) − βaSl′(ai(t), ai(t−1)), (A.1)

�φi(t) ∝ 	{bi(t)} ai(t), (A.2)

with bi(t) = 1
σ2

N
e− jφi(t)

∑

x

Ai(x)

[
I(x,t) −

∑

i

�{z∗
i (t) Ai(x)}]. 	{.} denotes the imag-

inary part. Note that here we consider inference only in the first layer
independent of the second layer.

The gradients for the second-layer coefficients vj and wk are given by

�v j (t) ∝ 1
σ 2

a

∑

i

[
log ai(t) − γ 0

i − [Bv(t)]i

]
Bi j − λvSp′

v(v j (t)) (A.3)

and

�wk(t) ∝
∑

i∈{ai (t)>0}
κ sin(φ̇i − [Dw(t)]i) Dik − λwSp′

w(wk(t))

−βwSl′(wk(t), wk(t−1)). (A.4)

The learning rule for the first-layer basis functions is given by the gra-
dient of equation 3.7 with respect to Ai(x), using the MAP estimates of the
complex coefficients:

�Ai(x) ∝ 1
σ 2

N

∑

t

[
I(x,t) −

∑

j

�{z∗
j (t) Aj (x)}

]
zi(t). (A.5)

The learning rule for the amplitude components is given by the gradient
of equation 4.4 with respect to Bij, using the MAP estimates of the values of
a and v:

�Bi j ∝ 1
σ 2

a

∑

t

[
log ai(t) − γ 0

i − [Bv(t)]i

]
v j (t). (A.6)

The learning rule for the second-layer basis functions �Dik is given by the
gradient of equation 4.8 with respect to Dik, using the MAP estimates of the
values of φ and w:

�Dik ∝ κ
∑

t∈ai (t)>0

sin(φ̇i − [Dw(t)]i)wk(t). (A.7)
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After each gradient update, the length of each basis function is nor-
malized to have unit length (l2 norm). We also found that convergence
improved when we orthogonalized the real and imaginary parts of each
complex basis function using the Gram-Schmidt process after each update.

A.2 Data Sets and Simulation Details. We used natural scene data sets
for training the model. For our experiments using natural movies, we used
natural image sequences obtained from Hans van Hateren’s repository,
available at https://github.com/cadieu/twolayer . The movies were spa-
tially low-pass-filtered and whitened as described previously (Olshausen &
Field, 1997). No whitening in time was performed because the hierarchical
model will learn the temporal structure. The movies consisted of footage
of animals in grasslands along rivers and streams. They contain a variety
of motions due to the movements of animals in the scene, camera motion,
tracking (which introduces background motion), and motion borders due
to occlusion.

We use stochastic variational learning to train the basis functions in
both the first and second layers. In this learning algorithm, we estimate
MAP estimates of the latent variables on small batches of data and then
descend the gradient on the basis functions given these MAP estimates.
We repeat this procedure until convergence. We trained on 32 × 32 pixel
image patches using 1024 complex basis functions in the first layer ini-
tialized to random values, and 625 basis functions for both the B and D
functions, also initialized to random values. In the initial learning phase,
we first trained the first-layer model using only the terms in equation 3.7
to infer the a and φ variables. We estimated MAP values on randomly se-
lected movie sequences of 128 frames. We determined that the first layer
had converged after 240,000 iterations and annealed the learning rate. We
began training the second-layer basis functions B and D only after the first
layer had converged. The second-layer bases were trained on the MAP es-
timates of the first layer. We also performed stochastic gradient descent on
the second-layer basis functions with batches of 128 movies frames and re-
peated for 180,000 iterations. We used Matlab for the code implementation
and the Jacket GPU interface by Accelereyes. A version of this code can be
found online at: https://github.com/cadieu/twolayer (this code also sup-
ports additional priors not discussed here and implements a patch-based
whitening procedure instead of the frame-based procedure described here).
Ideally, we should adapt both the first layer basis functions and the second
layer functions to reach a global optimum, but here we make an approxima-
tion and consider the first layer and second layer independently. We have
run the algorithm multiple times and have observed qualitatively similar
results on each run.

A.3 Selecting Highly Active Amplitude Component Images. We
demonstrate the visual selectivity of the amplitude components by showing
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images that produce responses of high magnitude in Figure 5. We attain
these responses by performing inference on randomly selected image se-
quences selected from the corpus of natural movies. Following the proce-
dure we use for learning, we first infer MAP estimates of the first-layer
amplitudes and phases. We then infer the MAP estimate of the amplitude
component coefficients v. Because the magnitude of the vj coefficients is
influenced by the contrast of the image sequence and we are more inter-
ested in pattern selectivity than contrast modulation, we perform a soft
normalization on the vj MAP estimates to rank images for visualization of
a specific amplitude component:

v̄ j (t) =
v j (t)√

.1 + ∑
j′ v

2
j′ (t)

. (A.8)

Given the normalized values, v̄ j, of a large number of image sequences, we
select the eight most positively active image patches and the bottom eight
most negatively activity image patches to visualize a specific amplitude
component (see Figure 5, top right, in each panel).

A.4 Estimating Motion Vectors from Image Transformations. We es-
timated local motion vectors on image domain transformations produced
by specific phase-shift components (see Figure 7, top right in each panel).
To estimate localized motion vectors, we used a grid pattern containing
broadband frequency content across the entire visual field (this pattern can
be seen in Figure 7 bottom, middle row, last image). Using this image pat-
tern we followed the procedure to generate image domain manipulations
for a specific phase-shift component with positive coefficient w0

k = 4π/5
(described in section A.5). For each motion vector, we selected a region of
the original image patch and computed the mean-squared error between
this patch and corresponding regions in the image patch generated from
the phase-shift component. We computed this error for motion vector off-
sets between 0 and 4 pixels in .25 pixel increments in both the horizontal
and vertical directions. We used bilinear interpolation for subpixel motion
vectors. For each region, we selected the motion vector that minimized the
mean-squared error. Repeating this over a grid of reference image patches
produced a grid of motion vector estimates as seen in the top right of panels
in Figure 7.

A.5 Generating Phase-Shift Component Manipulations. In order to
show the influence of the generative phase-shift components, we manip-
ulate the inferred phase patterns of specific image patches according to a
phase-shift component of interest. The resulting image manipulations are
shown as movies online at http://www.vimeo.com/album/1624584. To
create these manipulations, we select an image patch and infer the MAP
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estimates of amplitude â and phase φ̂ for this image patch. We then add
a multiple of the phase-shift component vector to the phase vector φ̂. The
phase-shift component vector is thus the phase difference between these
two phase patterns. The component-wise addition is thus

φ̂i + Dikw
0
k = φ̃ik. (A.9)

where k indexes the phase-shift component we are examining. The magni-
tude of w0

k is determined such that the range of the phase difference reaches
a value: maxi Dik|w0

k | = 4π/5, and the sign is either +w0 or −w0. This gives
two new phase pattens, φ̃+, and φ̃−. We then use each of these phase patterns
to generate an image (using the original MAP estimates of the amplitudes).
These images demonstrate the influence of a positive and negative addi-
tion of a phase-shift component to an image. In the corresponding movies
provided online at http://www.vimeo.com/album/1624584 , we smoothly
vary the value of w0

k through its maximum extent to create a smooth image
domain manipulation between the extremes.

A.6 Testing Form- and Motion-Selective Invariance. To test the se-
lectivity and invariance of the inferred variables in our model, we con-
structed movie sequences by generating translation sequences of an image
patch over an image taken from our training data set. We generated 20
smooth translation trajectories (producing different motions) and selected
20 different images (producing different form information). We combined
all combinations of trajectories and images, giving 400 movie sequences.
We then inferred the latent variables in our model for each sequence. In
Figure 9, we compare the first-layer variables, uR, the amplitude compo-
nents, v, and the phase-shift components, w. For each coefficient type, we
normalized the total variance over all 400 movies sequences, all variables,
and all time points within the sequences to 1. To determine the variation in
each variable type due to either changing motions or changing the image,
we computed the variance of each variable at each time point within the
sequence. The variance was calculated either across the different images (to
determine selectivity to the transformation and invariance to the image) or
across the different trajectories (to determine selectivity to the image and
invariance to the motion). For each variable type in the comparison, we
then averaged the computed variances over individual variables and over
the time points within the sequences. This produced a distribution of 20
values for each coefficient type by computing the variance across either
images or transformations. The mean of these distributions is plotted in
Figure 9, and the standard deviation is shown as error bars around the
mean. Significance was determined with a standard t-test. In summary, the
results indicate that the variation in the first-layer coefficients is due equally
to different motions and different images, the variation of the amplitude
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components is largely due to changes in the image, and the variations of
the phase-shift components are largely due to changes in the transforma-
tion. This indicates that the amplitude components are selective for the
image form and invariant to the image motion and that the transformation
components are selective for the image motion and invariant to the image
form.
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