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Coupled oscillators are prevalent throughout the physical world. Dy-
namical system formulations of weakly coupled oscillator systems have
proven effective at capturing the properties of real-world systems and
are compelling models of neural systems. However, these formulations
usually deal with the forward problem: simulating a system from known
coupling parameters. Here we provide a solution to the inverse prob-
lem: determining the coupling parameters from measurements. Starting
from the dynamic equations of a system of symmetrically coupled phase
oscillators, given by a nonlinear Langevin equation, we derive the corre-
sponding equilibrium distribution. This formulation leads us to the max-
imum entropy distribution that captures pairwise phase relationships. To
solve the inverse problem for this distribution, we derive a closed-form
solution for estimating the phase coupling parameters from observed
phase statistics. Through simulations, we show that the algorithm per-
forms well in high dimensions (d = 100) and in cases with limited data
(as few as 100 samples per dimension). In addition, we derive a regu-
larized solution to the estimation and show that the resulting procedure
improves performance when only a limited amount of data is available.
Because the distribution serves as the unique maximum entropy solution
for pairwise phase statistics, phase coupling estimation can be broadly
applied in any situation where phase measurements are made. Under the
physical interpretation, the model may be used for inferring coupling
relationships within cortical networks.

1 Introduction

Many complex natural phenomena can be modeled as networks of cou-
pled oscillators. Examples can be drawn from the physical, chemical, and
biological worlds. Oscillator models have been effective at describing the
dynamics of coupled pendula, coupled Josephson junctions, reaction diffu-
sion systems, circadian rhythms, oscillating neural networks, and even the
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coupling of firefly luminescence (see, e.g., Buzsaki, 2006; Kuramoto, 1984;
Mirollo & Strogatz, 1990; Strogatz, 2003; Winfree, 2001).

Oscillatory dynamics are prevalent in neural systems, and their com-
putational use is critical to many theories of neural function. There is ex-
perimental evidence for oscillations in a variety of neural systems, from
primary sensory effectors, through local cortical networks, and up to the
cortico-hippocampal network (Buzsaki & Draguhn, 2004). Oscillations in
the olfactory system are present in the olfactory bulb (Adrian, 1942) and are
thought to subserve the computation of similarity between odorant patterns
(Hopfield, 1995). There is growing evidence for oscillations at many levels
of the visual system. Some of the first evidence for oscillations in the human
brain came from recordings using EEG over the occipital lobe (Berger, 1929),
and more recent findings have shown that subpopulations of pyramidal
neurons exhibit gamma-band oscillations in response to visual stimulation
(Gray, König, Engel, & Singer, 1989; Eckhorn et al., 1988). In retina, it has
been found that some retinal ganglion cells exhibit periodic firing, and this
periodicity provides an extra channel for information transmission to LGN
and cortex (Koepsell et al., 2009). Evidence for oscillatory activity in the
auditory system extends from the periphery to the cortex. Inner hair cells
exhibit characteristic frequencies tuned to different bandwidths (Crawford
& Fettiplace, 1981), cochlear projections transmit phase-locked responses
to subcortical regions (Rose, Brugge, Anderson, & Hind, 1967), and stimu-
lus mediated gamma oscillations have been observed in primary auditory
cortex (Brosch, Budinger, & Scheich, 2002). In the hippocampus, oscillatory
patterns are well studied and are thought to subserve memory formation
(Jutras, Fries, & Buffalo, 2009) and communication between hippocampus
and entorhinal cortex (Chrobak & Buzsaki, 1996; Colgin et al., 2009).

Although the presence of oscillatory dynamics in the brain is largely
accepted, the role of these oscillations is widely debated. While it is likely
that neural oscillations assume multiple roles in neural systems, and maybe
even multiple roles in the same neural system, we have found that it is use-
ful to keep in mind a model of intracortical communication that is mediated
by neural oscillations in different populations of neurons. Under the pro-
posed theory of communication through coherence, only groups of neurons
that are coherently oscillating can interact effectively (Varela, Lachaux, Ro-
driguez, & Martinerie, 2001; Fries, 2005). This implies that if we are able to
measure neural synchrony, we can infer the actively communicating cortical
populations. Such inter-area cortical synchronization is thought to mediate
perceptual binding (Pareti & De Palma, 2004), attentional feedback (Siegel,
Donner, Oostenveld, Fries, & Engel, 2008), and the transfer of memory
from hippocampus to cortex (Fell et al., 2001). The formation of synchro-
nized networks is also thought to be dynamic and indicative of behavioral
and cognitive functional state (Fox et al., 2005).

Many studies that investigate the presence, dynamics, and behavioral
dependence of neural synchrony have used measures closely related to
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phase correlation. Phase correlation is a pairwise measurement that deter-
mines the second-order statistical dependency between two oscillations,
which can include both the strength of the phase dependency and the
phase offset of the dependency. A variety of measurements based on phase
correlation have been used recently: phase correlation (Siapas, Lubenov,
& Wilson, 2005), phase locking value (Lachaux, Rodriguez, Martinerie, &
Varela, 1999; Le Van Quyen et al., 2001; Wang, Hong, Gao, & Gao, 2006;
Siegel, Warden, & Miller, 2009), phases locking factor (Palva, Palva, &
Kaila, 2005), phase coherence (Spencer et al., 2003; Saalmann, Pigarev, &
Vidyasagar, 2007; Womelsdorf et al., 2007), and coherence statistic (Jarvis
& Mitra, 2001; Buschman & Miller, 2007). These measurements have pro-
vided powerful evidence for phase synchrony in cortex, however, all fail
to define a proper probabilistic model or the dynamics of a system that
would produce such measurements. As we will show in section 2.2, phase
correlations are only indirectly related to the parameters of a probabilistic
distribution and thus indirectly related to the network interactions in the
dynamical system we propose. Therefore, taking phase correlations at face
value may lead to false inferences about network interactions.

Given the wealth of evidence for neural oscillations, the myriad hypoth-
esized roles for oscillatory dynamics in the brain, and the prevalent use of
phase correlation measurements, it is important that we develop tools for
inferring the connectivity within oscillatory networks from measurements
using probabilistic models. The process of inferring network connectivity
from measurements is known as the inverse problem and must be solved if we
are to scientifically investigate the role of oscillatory dynamics in networks
of neurons.

In statistical mechanics, the inverse problem is typically solved by
proposing a probability distribution and estimating the distribution’s pa-
rameters from measurements. A natural choice for the estimation, a highly
underdetermined problem, is given by the unique maximum entropy distri-
bution that reproduces the statistics of the measurements (Jaynes, 1957). A
number of such distributions and estimation techniques are used through-
out the science and engineering communities. In the real-valued case the
multivariate gaussian distribution, and in the binary case the Ising model,
serve as widely used multivariate maximum entropy distributions con-
sistent with second-order statistics. Each of these cases has well-known
estimation techniques for inferring the distribution’s parameters from ob-
servations. The availability of these techniques has led to a number of
applications, for example, the Ising model and its corresponding estima-
tion techniques have been used to infer the coupling in networks of retinal
ganglion cells (Shlens et al., 2006; Schneidman, Berry, Segev, & Bialek, 2006;
Cocco, Leibler, & Monasson, 2009). However, for the phase variables that
are of interest in networks of oscillators, there has been little work on pro-
viding a corresponding multivariate probabilistic distribution or deriving
estimation techniques to infer the distribution’s parameters from data. We
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review related work on multivariate phase distributions and solutions to
the inverse problem in section 4.

In this letter, we provide a solution to the inverse problem for systems
of symmetrically coupled phase oscillators. We begin by presenting the
Langevin dynamics for a generalized form of the Kuramoto model of cou-
pled phase oscillators. Solving for the equilibrium distribution yields a
multivariate probability distribution of coupled phase variables. This prob-
abilistic formalism allows us to derive a novel estimation technique for
the coupling terms from phase variable measurements. We show that this
technique performs robustly in high dimensions, and we introduce a regu-
larization on the solution that provides better estimates under limited data.
We close with a discussion of the technique as a statistical and physical
model and express the limitations of the physical interpretation imposed
by the model’s assumptions.

2 Phase Coupling Estimation

2.1 A Model of Coupled Phase Oscillators. Consider a network of d
identical coupled oscillators with intrinsic frequency ω. In the limit of weak
coupling, the amplitude of the oscillators can be assumed to be constant,
and the equations of motion can be formulated in terms of d phase variables
0≤θi <2π , i =1, . . . , d . A popular choice for the dynamics of such a system
is given by the Kuramoto model (Kuramoto, 1984), which has constant
coupling between oscillators. Such models have been used to simulate neu-
ral systems (Vicente, Arenas, & Bonilla, 1996; Hoppensteadt & Izhikevich,
1995). We can generalize this model to include inhomogeneous couplings
and inhomogeneous phase offsets between oscillators. The dynamic equa-
tion is then given by

∂

∂t
θi (t)= ω −

d∑

j=1

κi j sin(θi (t)−θ j (t)−µi j ) + νi (t), (2.1)

where κi j is the coupling strength and µi j is the preferred phase between
two oscillators i and j . We consider only the case of symmetric coupling
(κi j =κ j i , µi j =−µ j i ). The constant intrinsic frequency, denoted by ω, is iden-
tical for all oscillators. The noise fluctuations, νi (t), are zero-mean gaussian
distributed with δ covariance functions and variance β−1, corresponding to
the temperature of the system:

〈νi (t)〉 = 0, 〈νi (t)ν j (t′)〉 = 2 β−1δi jδ(t − t′) . (2.2)

The equations of motion given in equation 2.1, for our system of coupled
oscillators can be considered as a nonlinear Langevin equation describing
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Brownian motion on a d-torus in the presence of the potential E(θ; K) given
by

E(θ; K) = −1
2

d∑

i, j=1

κi j cos(θi − θ j − µi j ) , (2.3)

where θ is now a d-dimensional vector with components θi and K is the d ×
d-dimensional parameter matrix with elements K jk = κ jkeiµ jk . Note that by
applying the transformation θi (t) = θ̃i (t) − ωt to equation 2.1, we can assume
ω=0 without loss of generality.

By changing the coordinates from the angular representation, θ , to the
complex representation, {x∈Cd | |xk |=1} with components xk = eiθk , we can
rewrite equation 2.3 more compactly as the (real-valued) quadratic Hermi-
tian form:

E(x; K) = − 1
2 x†Kx, (2.4)

where x† denotes Hermitian conjugation of the vector x and K is the d × d
Hermitian matrix defined above. This energy function, equation 2.3, is
closely related to the XY-model (Barouch, McCoy, & Dresden, 1970), which
has only homogeneous nearest-neighbor couplings (ki j = const.) and no
phase offsets (µi j = 0). This generalization is analogous to the extension of
the homogeneous Ising model to spin glasses.

It is known (see, e.g., Risken, 1989) that the probability density p(θ; K, t)
of a system governed by Langevin dynamics evolves according to the
Fokker-Planck equation,

∂p(θ; K, t)
∂t

= −
∑

i

∂

∂θi
Di p(θ; K, t) +

∑

i j

∂2

∂θi∂θ j
Di j p(θ; K, t) , (2.5)

with drift and diffusion coefficients given by

Di = −∂ E(θ; K)
∂θi

, Di j = β−1δi j . (2.6)

Since the drift coefficient Di is a gradient field and the diffusion coef-
ficient Di j is constant, we can solve the Fokker-Planck equation, given by
equation 2.5, for the stationary solution in closed form and obtain

p(θ; K) = 1
Z(K)

exp[−βE(θ; K)] (2.7)
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with the energy function E(θ; K) given by equation 2.3, and partition func-
tion Z(K).

2.2 Phase Correlations. Given a probability distribution of multivari-
ate phase variables, we can now show that phase correlations in systems of
coupled phase oscillators are only indirectly related to the coupling parame-
ters. Phase correlations, a pairwise measurement often used to characterize
oscillator systems, have a direct relationship to the marginal distribution of
phase differences but not to coupling parameters. The form of the marginal
distribution can be derived by examination of the individual factors in the
definition

p(θk −θl; K) ∼
∫ d∏

i, j=1

exp
[
κi j cos(θi − θ j − µi j )

]
dθd−2 , (2.8)

in which the integration is over all phases θm with m *=k, l. After applying the
variable substitution θm = θ̃m + θl , all terms in equation 2.8 either depend on
the phase difference θk −θl , or are independent of θk and θl . The independent
terms integrate to a constant, and the remaining terms combine to a von
Mises distribution in the pairwise phase difference,

p(θk −θl; K) = 1
Z(γkl )

eγkl cos(θk −θl −*kl ), (2.9)

with mean phase *kl and concentration parameter γkl . The parameters of the
distribution (2.9) can be estimated from the first circular moment 〈ei(θk−θl )〉=:
rkl ei*kl : the mean phase *kl is the complex angle of the first moment, and
the concentration parameter γkl can be obtained by numerically solving the
equation rkl = I1(γkl )/I0(γkl ) and the normalization constant Z(γkl ) is given
by Z(γkl )=2 π I0(γkl ). I0(x) and I1(x) denote the modified Bessel functions
of zeroth and first order, respectively. The value of γkl is related to the
coupling parameters K through equation 2.8. Therefore, there is a nontrivial
relationship between the measured phase correlations and the coupling
parameters.

Because of this nontrivial relationship, pairwise measurements can of-
ten lead to false interpretations of the true coupling. To demonstrate this
point, we simulated three model systems and present the results in Figure 1.
Each system demonstrates a case in which taking phase correlations at face
value will lead to false conclusions about the network connectivity. The
first system (see row 1, column 1 in Figure 1) is a network of three coupled
oscillators in which the two oscillators labeled A and B are not directly
coupled (κAB = 0). Although these oscillators are not directly coupled, the
empirical distribution of their phase difference shows a strong peak (second
column, γAB = 0.4). In the third column, we depict the network coupling
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Figure 1: Phase coupling estimation recovers the true coupling from measure-
ments in situations where phase correlations alone produce false inferences
about network coupling. True coupling (first column): depicts the network cou-
pling used to simulate a system of oscillators; Pairwise distribution (second
column): the empirical distribution of the phase difference between oscillators
A and B. Phase correlations (third column): inferred network coupling using
phase correlations alone. Phase coupling estimation (fourth column): inferred
network coupling using our estimation technique. Each row presents a different
situation in which phase correlations provide incorrect inference about oscilla-
tor interactions. Row 1, spurious coupling: phase correlations indicate coupling
between A and B when the true coupling and coupling estimated using our
model are 0. Row 2, missing coupling: phase correlations indicate a lack of cou-
pling between A and B when there is an interaction between A and B, which
is correctly inferred using our estimation technique. Row 3, incorrect offset:
phase correlations indicate that oscillator A leads oscillator B, when the true
relationship, and relationship inferred by our technique, is that the interaction
between oscillator A and oscillator B is a phase lag.

that is implied by using phase correlations as a proxy for underlying net-
work coupling. In this case, phase correlations indicate that oscillators A
and B are directly coupled when their true coupling is zero.

Phase correlations can also indicate that there is no coupling when the
true system is coupled (see Figure 1 row 2) and can indicate phase lead
when the true system interacts with a phase lag (see Figure 1 row 3). In the
second example, oscillators A and B are coupled with κAB =0.5. However,
the pairwise empirical distribution shows no significant coupling (γAB =
0.0), and inference of the network connectivity using phase correlations
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(column 3) leads to the incorrect inference that oscillators A and B are not
coupled. In the final example, oscillators Aand B are coupled with κAB =0.3
and µAB =−0.8. However, the empirical distribution indicates a phase offset
of the opposite sign (*AB =0.6), and the phase correlation indicates that A
leads B. These incorrect inferences arise because phase correlations are a
measurement and do not provide a model of the interactions within the
system. In other words, phase correlations alone fail to account for the
interactions between oscillators that arise through intermediate oscillators
and detailed network connectivity.

2.3 Closed-Form Solution. We wish to solve the inverse problem for the
general case of coupled phase oscillators in equation 2.7. Stated explicitly,
the problem is to infer the distribution’s parameters (coupling terms κi j and
phase offsets µi j ) from measurements of the network’s state, θ .

The inverse problem is typically solved by following a maximum like-
lihood estimation procedure. Given an empirical data distribution defined
by a set of N-independent measurementsD := {θ1, . . . , θ N} and a likelihood
distribution p(θ; K), which is the probability distribution under the model
for a given set of parameters K, the log-likelihood function +(D; K) is de-
fined as the joint density distribution of the observations θ i considered as a
function of K:

+(D; K) =
N∑

i=1

log p(θ i ; K) = N〈log p(θ; K)〉D, (2.10)

where 〈. . .〉D denotes the expectation value taken over the data distribution.
The maximum likelihood of the observed data with respect to the distribu-
tion parameters can be computed by setting the derivative of the average
log-likelihood function to zero:

1
N

∂+(θ; K)
∂Ki j

= −
〈

∂ E
∂Ki j

〉

D
+

〈
∂ E
∂Ki j

〉

p(θ;K)

!= 0 , (2.11)

where 〈. . .〉D and 〈. . .〉p(θ;K) denote the expectation values taken over the
data and model distribution, respectively. In our situation, a closed-form
solution to this equation does not exist. However, we can find a solution
by iteratively descending the gradient. This procedure has a number of
drawbacks: the procedure is inherently iterative, estimating the expecta-
tion under the estimated distribution p(θ; K) in equation 2.11 involves a
computationally expensive sampling procedure, and the sampling proce-
dure may suffer from a variety of problems due to the landscape of the
energy function.

To avoid the pitfalls of the maximum likelihood approach, we now derive
a closed-form solution to the inverse problem for phase-coupled oscillators.
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We use the score matching method introduced by Hyvärinen (2005, 2007).
Score matching allows the fitting of probability distributions of the expo-
nential form for real-valued data without computation of the normalization
constant Z. If the energy depends linearly on the distribution parameters,
the solution can be computed in closed form by setting the derivative of the
score function to zero (Hyvärinen, 2007).

We follow this approach to estimate the distribution parameters for our
distribution in equation 2.7. The score matching estimator of K is given by
K̂ = arg minK JSM(K), and the score function JSM(K) is given by

JSM(K) =
〈 1

2 [∇θ E(θ; K)][∇θ E(θ; K)]T − ∇2
θ E(θ; K)

〉
D ,

with the expectation value, 〈. . .〉D, taken over the data distribution. Using
the quadratic form of the energy in equation 2.7 and the Jacobian Di j :=
∂xi/∂θ j , we compute

∇θ E = − 1
2 x†KD − 1

2 xT K∗D∗

∇2
θ E = x†Kx − Tr(D†KD) = −2 E

[∇θ E][∇θ E]T = 1
2 x†KKx + 1

4 x†KDDT KT x∗

+ 1
4 xT K∗D∗D†Kx,

where M∗ denotes complex conjugation, MT denotes transposition, and
M† denotes Hermitian conjugation of the matrix M. The estimator K̂ is
computed by setting the derivative of the score function ∂/∂Ki j JSM(K) to
zero. This produces a system of linear equations,

d∑

k,l=1

(δ jlCik + δikCl j − δ jkCil jk − δilCil jk) K̂kl = 4 Ci j , (2.12)

where the expectation values are defined as Ci j = 〈xi x∗
k 〉 and Ci jkl =

〈xi xj x∗
k x∗

l 〉. By setting the diagonal elements of K to zero, we can remove the
corresponding equations where i = j from the system of equations. We can
solve the resulting system of linear equations using standard techniques.

2.4 Regularized Solution. In situations with limited or noisy data, it
is desirable to use a regularized estimate of the phase coupling param-
eters. Because the solution in equation 2.12 is a linear system of equa-
tions, many standard regularization techniques may be used. Here we pro-
vide the commonly used Tikhonov regularizer (Tikhonov, 1963) for phase
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coupling estimation. This approach is also known as ridge regression. We
first rewrite the system of linear equations in matrix form,

A vec K̂ = vec C, (2.13)

where the rows of the matrix A are referenced by the index I := (i, j) where
i *= j , and the columns are referenced by the index K := (k, l) where k *= l:

AI,K := δ jlCik + δikCl j − δ jkCil jk − δilCil jk . (2.14)

The notation vec M is the column vector defined by the index I := (i, j):

(vec M)I = Mi j .

In Tikhonov regularization, a regularization term is added to the stan-
dard linear least squares solution to give

||A vec K̂ − vec C||2 + ||" vec K̂||2, (2.15)

where " is the Tikhonov matrix. This matrix can be chosen to bias the so-
lution based on a variety of previous information or assumptions about
the system. For example, the matrix can be chosen to incorporate informa-
tion about known anatomical or physical coupling mechanisms between
oscillators, or to bias for local coupling in networks with rigorous spatial
arrangements (e.g., in 2D grids of oscillators). Here we focus on the case
where the Tikhonov matrix is chosen to be the identity matrix "=λ I with
scale parameter λ. This choice gives preference to solutions with smaller
coupling strengths. The resulting regularized solution is given as

vec K̂ =
(
AT A + λ2I

)−1
AT vec C. (2.16)

Under a Bayesian interpretation, this regularizer assumes that the coupling
strengths ki j are chosen from a Rayleigh distribution, and the preferred
phase offsets µi j are uniformly distributed or, equivalently, the real and
imaginary components of Ki j are independent, zero-mean gaussian random
variables.

3 Results

3.1 Coupling Estimation in Small Networks of Oscillators. In the fol-
lowing, we show that phase coupling estimation recovers the parameters of
simulated coupled oscillator models. We begin by estimating the coupling
parameters of the example systems shown in Figure 1. Given samples of the
simulated phase variables θ , we compute the correlations, Ci j , and required
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four-point functions, Ci jkl , and invert the linear system in equation 2.12. This
produces an estimate of the coupling parameters. Phase coupling estima-
tion recovers the true coupling parameters as shown in the fourth column
of Figure 1. In each of the three example systems, phase coupling estimation
recovers the true system parameters when a direct interpretation of phase
correlations would lead to false inferences about the network (as shown in
column 3). This is a result of the fact that phase coupling estimation makes
explicit an underlying model of the dynamical system and recovers the
parameters of the model that are necessary to produce the observed phase
correlations.

3.2 Performance of Phase Coupling Estimation. We now systemati-
cally analyze the performance of phase coupling estimation: the ability of
the technique to recover the distribution parameters from data. The proce-
dure is as follows. We begin by sampling a set of distribution parameters K.
Given these parameters, we then sample phase variables by numerically in-
tegrating equation 2.1. We then estimate the parameters given the sampled
data using equation 2.12. The real and imaginary entries of the complex ma-
trix K are sampled from a normal distribution, Re{Ki j }, Im{Ki j } ∼ N(0, 1),
and the diagonal entries are set to zero: Kii =0. Note that this produces a
dense coupling matrix.

In the first column of Figure 2, we graphically display the element-wise
amplitude and phase of a sample matrix K where d =16. Using this ma-
trix, we sampled N=2560 phase vectors. The recovered parameters are
shown in the second column of Figure 2. While it is clear that these ma-
trices are visually similar, we quantified the error using two different met-
rics. First, we calculate the mean squared error of the matrix elements,
mse= 1

2d2

∑
i, j |Ki j − K̂ i j |2, where K̂ i j is the estimated parameter. In the third

column of Figure 2 we display the element-wise error before averaging.
We also computed a metric indicating the quality of the recovered pa-
rameters borrowed from Timme (2007): Q.95 = 1

d2

∑
i, j u(1− .95*Ki j ), where

*Ki j = |Ki j − K̂ i j |/2Kmax, u is the Heaviside step function, and Kmax is the
maximum absolute value of all matrix entries Ki j and K̂i j . For the example
in Figure 2, mse=0.02, and Q.95 =0.75.

We computed these error metrics over a range of dimensions and sam-
ples per dimension. The error metrics for each dimension and samples
per dimension were averaged over 20 trials and are plotted in Figure 3.
The algorithm achieves highly accurate parameter recovery for as few as
100 samples per dimension and achieves full recovery of parameters as the
number of samples per dimension reaches 1000. This indicates that recovery
of true parameters is quite feasible in many real-world settings.

3.3 Performance of Regularized Phase Coupling Estimation. We next
examine the performance of the regularized phase coupling estimator in
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Figure 2: Phase coupling estimation for a system of 16 coupled oscillators with
random coupling. (a) True coupling matrix K: true system parameters for d = 16
(first row, element-wise amplitude; second row, element-wise angle with alpha
channel scaled by the amplitude of the corresponding element, best viewed
in color). (b) Estimated coupling matrix K̂ : estimated parameters recovered
from 2560 time samples of θ using equation 2.12. (c) Estimation error: first row
element-wise mse (note scaling), second row estimation error measurements,
mse, and Q.95 (see text for definition).
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Figure 3: Performance of phase coupling estimation. mse metric as a function of
samples per dimension for various dimensions, d =8, 16, 32, 64, 100. Q.95 metric.
The example displayed in Figure 2 is indicated by the black diamond. Values
are averaged over 20 trials. For visual clarity, standard error bars are displayed
only for d =8 and d =100. Phase coupling estimation accurately recovers the
system parameters with only 100 samples per dimension and achieves nearly
perfect recovery with 1000 samples per dimension.
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Figure 4: Regularized phase coupling estimation. The error of the estimated
phase coupling parameters plotted as a function of the regularization scale
parameter λ. Error is measured as mean squared error between the recovered
matrix elements and the true matrix elements. To aid visualization, the phase
coupling parameter is normalized by the dimensionality of the oscillator system
(λ/d). The mean squared error is normalized by the mean squared error achieved
by the unregularized solution (λ/d = 0). We simulated systems of 12, 16, and
20 oscillators and estimated the parameters using the regularized solution from
40 phase samples per dimension (480, 640, and 800 samples, respectively, for
each system). Note that the unregularized estimate is plotted at λ = 0, and more
accurate estimates are achieved for λ/d between 0.2 and 0.4.

equation 2.16. For systems with 12, 16, and 20 oscillators, we again sam-
pled coupling parameters from a normal distribution: Re{Ki j }, Im{Ki j } ∼
N(0, 1), and the diagonal entries are set to zero: Kii =0. We then simulated
the dynamical system given by equation 2.1 and randomly drew phase
samples to give 40 samples per dimension, N=40d . We then solved the
regularized system given by equation 2.16 for a range of scale parame-
ters λ. We evaluated the performance of the estimate using the mse of the
matrix elements. The results are shown in Figure 4. For graphical display,
we normalized the scale parameter λ by the dimensionality of the system
and graph the mse as a fraction of the mse for the unregularized solution
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(λ/d =0). We leave the methodology of choosing an optimal value of λ

to future work, but standard resampling-based procedures that optimize
the distance of the estimated parameters to parameters estimated using
randomized surrogates may be used (see, e.g., Biessmann et al., 2010).

4 Discussion

In this section, we discuss the interpretation of the model and other ap-
proaches to solving the inverse problem in networks of oscillators. We may
interpret the model and estimation technique from a statistical and a phys-
ical systems perspective. In practice, the distribution and estimator may
be applied in any situation where multivariate phase measurements are
taken. There are two important aspects to the interpretation of the resulting
parameters. First, the estimated parameters may be viewed as purely sta-
tistical quantities, and second, under certain assumptions, the parameters
may correspond to interactions of an underlying physical process.

4.1 Statistical Interpretation. The pairwise distribution in equation 2.7
provides the most parsimonious statistical model of the joint multivariate
phase distribution given only pairwise phase measurements. The corre-
sponding estimator in equation 2.12 provides the unique maximum entropy
solution. Maximum entropy solutions serve as the least biased estimate of
the distribution possible and can be used when the true joint distribution is
unknown. For this reason, phase coupling estimation can potentially pro-
vide a contribution in a variety of situations of interest to scientists and
engineers. In applications where the true joint distribution is unknown, it is
possible to test the validity of the pairwise maximum entropy assumption
by comparing higher-order moments of the empirical distribution to the
maximum entropy distribution. Such tests would indicate to what extent
the true joint distribution is captured by the pairwise model.

4.1.1 Other Statistical Models of Phase. Our multivariate phase distribu-
tion and estimation technique can be compared to a number of previous
efforts to characterize statistical dependencies in circular phase variables.
Examples from the statistics community include the von Mises distribu-
tion, the von Mises–Fisher distribution (Fisher, 1953), the Kent distribution
(Kent, 1982), and the cosine model (Mardia, Taylor, & Subramaniam, 2007).
The von Mises distribution is a widely used distribution when dealing with
circular variables. It is a univariate, unimodal distribution for a circular vari-
able that is analogous to a univariate gaussian for a scalar variable. The von
Mises–Fisher distribution is a directional distribution that extends the uni-
variate von Mises distribution to the hypersphere. Unfortunately, the von
Mises–Fisher distribution does not model densities on the d-dimensional
torus (instead it models distributions on the d-dimensional sphere), and it
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fails to capture the pairwise dependencies in dynamical systems models
of coupled oscillators. The cosine model (Mardia et al., 2007) describes the
pairwise statistics between two phase variables. This distribution has a sim-
ilar functional form to the one in equation 2.7, however, it models only two
variables and does not have an efficient estimation procedure. The general-
ized cosine model (Mardia, Hughes, Taylor, & Singh, 2008) does formalize
particular pairwise phase relationships, but estimation techniques for more
than two phase variables have not been produced. Other work in the statis-
tics community has addressed univariate phase distributions by extending
the unimodal von Mises distribution to multimodal distributions (Mardia,
1975; Jammalamadaka & Sengupta, 2001). This work may be of interest
for further alterations to the dynamical system model we have proposed,
but it is not directly relevant because they do not address multivariate
distributions.

4.2 Physical Interpretation. Physical models can bridge the gap be-
tween measurements and physical interactions by formulating the trans-
formation from physical process to measurement. Using such a model, it is
then possible to provide concrete predictions that can either advance our
understanding or falsify the model. Inevitably, a physical model must make
assumptions about the underlying physical processes.

The procedure we have described takes a model of a physical system,
which makes specific assumptions, finds the corresponding steady-state
distribution, and estimates the parameters of the distribution. The attribu-
tion of the parameters in the probabilistic model to physical processes or
interactions is predicated on the validity of the assumptions made by the
physical model. The mapping from dynamical systems to steady-state dis-
tributions is not unique, and thus many physical systems can produce the
same estimated coupling parameters.

Although the assumptions made by the physical model in equation 2.1
may be violated in real-world situations, central aspects of the system may
still be captured. On a case-by-case basis, the assumptions and predictions
of the physical model must be tested to determine if the attribution of the
coupling parameters to physical processes is valid. As the assumptions of
the model are violated, the degree to which the model parameters cor-
respond to the true physical interactions will deteriorate. We discuss the
assumptions imposed by the model and limitations related to physical in-
terpretation in the next section.

4.2.1 Assumptions and Limitations. The assumptions of the physical
model of coupled oscillators fall into three categories. First, the model as-
sumes that there is no structured external input to the system. In equa-
tion 2.1, the external input is modeled as unstructured white noise. Gener-
ally it is not possible to predict how structured external inputs would affect
the interactions of the oscillators and the estimate of their coupling terms.
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It may be possible to explicitly model unknown input as unobserved oscil-
lators that interact with the observed oscillators. (For a relevant statistical
approach, see Zemel, Williams, & Mozer, 1995.)

Second, the model assumes that the oscillators interact symmetrically
and instantaneously. Because our model captures only the steady-state
distribution, it is blind to time reversal and cannot model directed inter-
actions. Therefore, the model cannot be used for inferring directionality
of interactions. However, extending the analysis to include multiple time
slices may provide an extension capable of modeling directed interactions
(for a d =2 example, see Rosenblum & Pikovsky, 2001). Closely related to
modeling directed interactions is the study of causality. Like all other sta-
tistical models, the distribution and model we have introduced here does
not directly address the issue of causality. However, our distribution and
estimation technique may be instrumental in attempts to infer causality in
high-dimensional phase spaces.

Finally, the model in its current form assumes that the oscillators all share
the same intrinsic frequency (ω) and interact through a cosine function.
Because differences in the intrinsic frequencies enter the dynamic equations
in a similar way as structured external inputs, it is likely that they would
lead to misestimation of the network interactions. (For a technique that
does attempt to estimate the interaction functions and frequencies of the
oscillators, see Tokuda, Jain, Kiss, & Hudson, 2007).

4.3 Inverse Problems. Despite great progress in solving the inverse
problem for coupled phase oscillators, current methods suffer from a num-
ber of drawbacks that our method addresses. Some methods require in-
tervention by perturbing a single isolated oscillator (Kuramoto, 1984; Sak-
aguchi, Shinomoto, & Kuramoto, 1988; Kiss, Zhai, & Hudson, 2005) or
the entire system (Timme, 2007). Such intervention techniques may not be
feasible in many real-world situations. Other techniques model only two-
oscillator systems and do not generalize to arbitrarily large systems (Galán,
Ermentrout, & Urban, 2005; Miyazaki & Kinoshita, 2006; Kralemann, Cim-
poneriu, Rosenblum, Pikovsky, & Mrowka, 2008). The technique most re-
lated to our own is that of Tokuda et al. (2007). This technique addresses the
inference of coupling from multivariate statistics; however, in its current
form it is restricted to homogeneous coupling.

5 Conclusion

In this letter, we have introduced a closed-form solution to the inverse
problem for systems of coupled phase oscillators using a maximum entropy
approach. We derived the solution by formulating a dynamical system
and showed that the estimation technique recovers the parameters of the
model in high dimensions and from noisy measurements. Phase coupling
estimation provides a rigorous framework for analyzing neural systems
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that exhibit oscillatory dynamics and phase synchronization. Because phase
coupling estimation successfully recovers the true network connectivity of
the specified dynamical system in situations where phase correlations alone
lead to false conclusions, this technique may be instrumental in elucidating
the presence and role of dynamic functional networks in cortex.
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