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The performance of unsupervised learning models for natural images is evaluated quantitatively by means of
information theory. We estimate the gain in statistical independence (the multi-information reduction)
achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whit-
ening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can
be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the
Haar wavelet are included in the comparison as well. The comparison of all these methods is carried out for
different patch sizes, ranging from 2 X 2 to 16 X 16 pixels. In spite of large differences in the shape of the basis
functions, we find only small differences in the multi-information between all decorrelation transforms (5% or
less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive
coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In con-
clusion, the edge filters found with ICA lead to only a surprisingly small improvement in terms of its actual
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1. INTRODUCTION

Many image processing tasks rely either explicitly or im-
plicitly on modeling the statistical dependencies between
pixel intensities in images.l’2 Within a given class of im-
age models, unsupervised learning can be used to find an
optimal candidate. Independent component analysis
(ICA) is an unsupervised learning method that optimizes
over a class of multivariate distributions that can be de-
rived from a linear mapping of a reference random vari-
able with factorial distribution (for an early review and a
recent textbook, see Refs. 3 and 4, respectively). Over the
last decade, ICA has become a very successful tool, and it
is now used in hundreds of different applications by a di-
verse range of disciplines. In addition, ICA initiated a
large movement in developing new unsupervised learning
techniques.

In the context of visual neuroscience, the extraction of
statistically independent components has been proposed
as an objective of early sensory processing, shaping the
receptive fields of neurons in the retina, LGN, and pri-
mary visual cortex. Referring to the standard view of neu-
rons in the early stages of visual processing, the concept
of a receptive field is well described by linear—nonlinear
cascade models of neurons that include a linear filter at
their first stage (see Ref. 5 for an overview). This filter
computes the correlation s, =(w;,x) between the pixel in-
tensities x of the stimulus and a filter kernel w;,, which is
referred to as the receptive field of neuron %. The second
stage of this model describes how spikes are generated
from the filter outputs. In the simplest and most wide-
spread case, the spike generation is modeled as a Poisson
process whose intensity y, (the expected firing rate of
neuron k) is computed via a nonlinear half-rectifying and
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saturating activation function y,=f}(s;). For a set of neu-
rons k=1,...,N, it is convenient to summarize the filter
kernels into a single matrix W=[wy,...,wy]T, which al-
lows one to write compactly

s=Wx, (1)

so that the kth row of the filter matrix W determines the
receptive field properties of neuron k.

As long as the number of neurons N is smaller than or
equal to the dimensionality of x, second-order correlations
between the rate responses of all neurons can always be
removed completely via linear filtering, and there is some
evidence that retina and LGN indeed act as whitening fil-
ters in response to natural stimuli.® The objective of
second-order decorrelation by itself, however, is not suffi-
cient to predict the receptive field properties, because ad-
ditional constraints or demands are necessary to deter-
mine the filter kernels uniquely. For illustration, the six
different bases shown in Figs. 1 and 2 are all equivalent
with respect to second-order statistics.

In ICA, this ambiguity is resolved by seeking to remove
higher-order correlations in the input as well. A striking
result of ICA image models when applied to natural im-
ages is the emergence of edge filters,”® which resemble
important aspects of simple cell receptive fields in the pri-
mary visual cortex’: The basis images are localized, ori-
ented, and bandpass. This finding suggests that the pri-
mary visual cortex seeks to remove higher-order
dependencies, while the retina and LGN are concerned
with second-order decorrelation only.

The components found with ICA algorithms can be in-
dependent only if the data distribution is indeed a linear
mixture of independent sources. For the statistics of natu-
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Fig. 1. Comparison of the basis image patches for the six different decorrelation transforms.
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Fig. 2. The first 25 basis functions other than the DC component are shown for each method for better visibility.
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ral images, this is not the case. If one examines the edge
filters learned by ICA, for instance, nearby filters of simi-
lar orientation exhibit correlations in the magnitude.l'10
Since images are not a linear mixture of independent
sources, ICA seeks to make the filter outputs as indepen-
dent as it can within the restrictions of the linear model.
More precisely, the objective function of ICA is the multi-
information, which can be defined as the Kullback—
Leilbler (KL) divergence between the joint distribution
and the product of its marginals:

Lyl S1=Dgy, [p (s)

Hpk(sk>] =S hS,]-kIS], (2)
k k

where h[S]=-/p(s)log p(s)ds denotes the differential en-
tropy with the understanding that S can be either one of
the scalar-valued random variables S;, or a vector-valued
random variable S. Throughout the paper, we adopt the
convention of using uppercase letters to refer to random
variables, and we use bold font to distinguish vector vari-
ables from scalar variables.

In the special case when S is only two dimensional,
1,4 1s equal to the mutual information between the two
components. Therefore I,,,;,; itself is often called mutual
information in the ICA literature according to the idea
that I,,,,;,; may be seen as a generalization of the mutual
information to the case of more than two dimensions. To
avoid confusion with the mutual information between two
subspaces in higher-dimensional spaces, however, we
adopt the less ambiguous (but less established) terminol-
ogy of Ref. 11.

While for natural images the minimization of the
multi-information reliably results in the well-known im-
age ICA basis, it has never been tested quantitatively how
much this representation actually reduces the multi-
information in comparison with plain second-order meth-
ods for natural images. However, it has been tested in
Ref. 12 how large the gain in coding efficiency is for a cer-
tain mean square error. The important difference between
efficient coding and the objective function of ICA will be
addressed in the discussion. For now, we emphasize that
here we do not evaluate coding efficiency but rather test
the gain of (noiseless) ICA with respect to its own objec-
tive function. Using precise estimates of changes in the
multi-information, we find that the distinct receptive
fields found with ICA lead to only a very small improve-
ment in the reduction of statistical dependencies com-
pared with that of other linear decorrelation filters.

2. SEARCHING FOR THE LEAST
DEPENDENT COMPONENTS

ICA, principal component analysis (PCA), zero-phase
whitening, and predictive coding algorithms all have been
extensively used with a diverse range of variations as
adaptive models of sensory coding. In this section, we pro-
vide a short overview of the different assumptions that
they make.

A. Second-Order Optimization
Instead of minimizing the multi-information (2) directly,
second-order methods minimize the upper bound!?
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via diagonalization of the covariance matrix (Cg);;
=E[S;S;]-E[S;JE[S;]. It is assumed throughout the paper
that all eigenvalues of the covariance matrix are positive.
While PCA is the only orthogonal transform for which all
second-order correlations vanish, there are many nonor-
thogonal transforms that diagonalize the covariance ma-
trix as well. The set of all decorrelation transforms can be
written as

{W: W =DyVD,Upca}, (4)

where Upcy is the orthogonal matrix used in PCA, whose
rows are the eigenvectors of the covariance matrix. D is a
diagonal matrix with the square roots of the inverse ei-
genvalues as nonzero entries, V is an arbitrary orthogonal
transform, and D, is an arbitrary diagonal matrix. The
whitening transform represented by D;Upcy makes sure
that the covariance matrix remains diagonal for all pos-
sible choices of V and D,. Nevertheless, the multi-
information in general depends on V, whereas the choice
of Dy has no effect on the multi-information.

PCA can be motivated as the special case of isometric
decorrelation, where the term “isometric” refers to the ad-
ditional constraint that the total filter matrix W must not
change the metric of the input space.14 Since the metric is
conserved only if W is orthogonal, the optimum with re-
spect to isometric decorrelation is uniquely determined
regardless of any higher-order correlations whenever the
eigenvectors of the covariance matrix of the data are all
mutually different. If additionally the orthogonal mixture
model is correct, PCA recovers the independent sources
(even if they are not Gaussian).

The statistics of natural images, however, cannot be
modeled correctly as an orthogonal mixture of indepen-
dent sources. Instead of postulating orthogonality, one
can require the mixing matrix to be patterned in a differ-
ent way. If the data can be described by a symmetric mix-
ing of independent sources, symmetric decorrelation (or
zero-phase whitening if D, is the identity) is known to re-
cover the independent axes. If the mixing matrix is trian-
gular, triangular decorrelation will achieve this goal. Both
methods constitute nonorthogonal second-order decorre-
lation transforms, which are simple to compute and natu-
rally lead to highly localized receptive fields. In contrast
to symmetric decorrelation,® triangular decorrelation has
not been compared with ICA before. In Appendix A, we
show that triangular decorrelation is the transform cod-
ing version of optimal linear predictive coding. Predictive
coding not only plays an important role in lossless image
compression'®!® but has also been proposed early on for
the information-theoretical function of the retina.'”

In principle, any set of d(d—-1)/2 linearly independent
constraints could be used to determine V in a unique way.
This can be shown, for instance, by using the Cayley pa-
rameterization of orthogonal matrices V=(1+A4)"1(1-A),
where the antisymmetric matrix A has only d(d-1)/2 free
parameters. For the sake of comparison, we also include a
random whitening transform, which is defined by the fol-

lowing choice of V: First, a random matrix V is con-



1256 J. Opt. Soc. Am. A/Vol. 23, No. 6/June 2006

structed by randomly drawing its column vectors from an
isotropic Gaussian distribution. Subsequently, Vzyp is ob-

tained from V via symmetric orthogonalization, that is,
Vanp=V(VIV)~12,

B. Higher-Order Optimization

Instead of minimizing the second-order upper bound on
the multi-information, one can additionally or alterna-
tively seek to minimize the multi-information directly. In
“prewhitened ICA,” a higher-order correlation contrast
function is used to pick an optimal orthogonal transform
V after the whitening step D Upc,. FastICA (Ref. 18) be-
longs to this class of ICA algorithms and is the one that
we present in our comparison. Another well-known ICA
algorithm, which does not restrict the solution to be a
whitening transform, is Bell-Sejnowski ICA.' Its search
space is a proper superset of that of FastICA, so that in
principle one might find a better solution with Bell-
Sejnowski ICA. This is not guaranteed, however, because
the performance of any ICA algorithm substantially de-
pends on how well it estimates the multi-information.
Bell-Sejnowski ICA has been applied to natural images
before,® and we also included it in our study. For the sake
of brevity, however, we do not show the results for this al-
gorithm, as it performs very similarly to FastICA. It ex-
hibits slightly weaker performance than FastICA if one
uses the tanh activation function as used in Ref. 8. It may
perform better, however, if one uses the cumulative distri-
bution function of the exponential power family as activa-
tion function.?*?!

Finally, we also included the Haar wavelet®” as a para-
metric basis in the comparison. More specifically, we set
the rows of V to be equal to the basis vectors of the or-
thogonal two-dimensional Haar basis, so that the total fil-
ter matrix W is still a decorrelation transform. It is in-
structive to see that despite its simplicity and its
blockiness the Haar wavelet turns out to perform almost
as well as the ICA basis.

In Section 3, we give a short description of the data set
and the variety of methods used for the quantitative com-
parison of the multi-information gain. Details will be ex-
plained in the appendices. The results obtained with the
different transforms applied to natural image patches of
different sizes are presented in Section 4. The insights
about neural representations of natural images gained
from this comparison are discussed in Section 5.

3. QUANTITATIVE ANALYSIS OF
MULTI-INFORMATION REDUCTION

A. Description of the Data Sets

The natural image patch ensembles analyzed in this pa-
per are constructed by sampling from the first ten images
of the van Hateren data base?® (center parts, 1024
X 1024 pixel, strictly linear intensity scale, image content
dominated by woods and greens). Following Ruderman
and Bialek,” we decided to use the pixel contrast
[log(I(x)/1,)] instead of linear intensities, which are much
more similar to the common gray-level scale used in elec-
tronic image data formats. The log-intensity scale seems
to be a good compromise between modeling the contrast
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sensitivity profile of the retina and simplicity. In Appen-
dix B, we discuss why this choice may also enhance the
robustness of the multi-information estimates. From con-
trol studies, however, we know that the multi-information
reduction obtained with a linear intensity scale is almost
identical to the multi-information reduction in the case of
log intensities presented in this paper.

As another preprocessing step, we applied a simple dy-
namic range adaptation for each image, such that its
overall log-intensity distribution is centered around zero
and rescaled to unit variance before any patches have
been sampled. In addition, we added an invisible amount
of Gaussian noise with standard deviation 278 in order to
compensate for the artificial alignment of intensities due
to the analog/digital conversion. Again, we found that this
preprocessing does not have a substantial effect on the
measured multi-information. Only PCA performs slightly
better relative to the other decorrelation transforms after
this dynamic range adaptation.

To control for overfitting, we generated training and
test sets for all studied patch sizes (39,690 image patches
each), as described in detail in Appendix C. In addition,
we enhanced the robustness of our results against the
particular choice of the image data set by separating the
DC component before adaptation of the basis images from
any of the decorrelation transforms. While the histogram
of the DC component of local image patches can change
dramatically from image to image, the histograms of the
pixel intensities after subtraction of the DC component is
much more stable. In agreement with earlier
observations,?>?% the marginals of any randomly picked
component in this space exhibit a kurtotic shape. An in-
teresting, nonorthogonal basis that spans the DCO space
(i.e., the space of all zero-mean signals) is given by the
d-1 difference values between neighboring pixels. For
symmetry reasons, they all have the same distribution,
which is shown for our data set in Fig. 3. The histogram
closely resembles a Laplacian distribution, which helps to
improve the reliability of the necessary entropy estima-
tions.

It is important to note that the outcome of PCA, sym-
metric, and triangular whitening depends on the basis of
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Fig. 3. Alog histogram of the log-intensity differences approxi-
mates the shape of a Laplacian distribution in the case when the
content of the images is dominated by woods and greens.
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the input space. In fact, any whitening basis can be ob-
tained by any second-order method if the input space is
transformed appropriately beforehand. Therefore, to keep
the input basis as close as possible to the pixel basis, we
decided to use an orthogonal basis for the separation of
the DC component, as it does not change the metric of the
usual pixel basis. More specifically, an orthogonal DCO
basis that preserves the localization of the pixel basis is
obtained by Gram—Schmidt orthogonalization of the
modified identity transform, for which the first basis vec-
tor has been replaced by the DC vector whose entries are
all identical.

B. Estimating the Multi-Information Gain

Direct estimation of the multi-information for high-
dimensional random variables is very difficult due to the
curse of dimensionality. Although an explicit multi-
information estimator has very recently been presented27
based on order statistics, we found that its precision is not
sufficient for our purposes. Instead, we will resort to the
same technique commonly exploited in ICA, where only
the difference in the multi-information between two dif-

ferent transforms Y=£;(X) and ?:fg(X) is estimated:

AL =10, Y1 = 1yl Y1

= h[Y,]-A[Y]- (2 h[¥,]- hm)
k k

wl 3]
()]

Any possible mapping y={f(x)} can be modified such that
either the first two terms or the last two terms on the
right-hand side vanish while the multi-information stays
the same. The two distinct choices of this gauge invari-
ance are known as Bell-Sejnowski ICAY and volume-
conserving ICA,® respectively (see Appendix D). In the
case of volume-conserving ICA, the evaluation of the
multi-information difference requires one to estimate only
the marginal entropies:

=2mn}2mﬁthg
k k

—E[log

multi multi

AT=IyC Y- 10 Y] = D RY,] - 2 AY,]. (6)
k k

Negative values of Al correspond to statistical depen-
dency reduction, while positive values reflect an increase
in multi-information. In the special case when Y=S and

Y=X, we obtain the multi-information change achieved
by a particular filter s=Wx.

In the remainder of this section, we present four en-
tropy estimators that are later used to evaluate the multi-
information reduction [Eq. (6)] for the different image
patch transforms. The first two estimators, labeled MAL
and OPT in the following, make the assumption that the
coefficient distributions can be well fitted by the exponen-
tial power family29
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Fig. 4. Kurtosis « of the exponential power family depending on
the shape parameter a.

pa,a'(y) = eXP[— (A|y|)a]: (7)

2I'(1/ @)

which is also called a generalized Gaussian, or general-
ized Laplacian, distribution. This family has 2 degrees of
freedom: The decay constant A can be expressed as a
function of the variance ¢®>=Var[Y] and the shape param-

eter q, i.e.,
A 1 /T'3/a)
=A@ =\ T @

The shape parameter « of this family makes it possible to
tune the kurtosis xk=E[Y*]/E?[Y?] of the distributions
from platykurtic (k<3 for a>2) to leptokurtic («>3 for
a<2) in a monotonic fashion (see Fig. 4):

I'1l/a)I'(5/a)

e )
In fact, most ICA models for natural images optimize the
kurtosis or a similar measure of the sparseness or
peakedness of a distribution as a contrast function. For
our quantitative analysis, however, we will take a differ-
ent, more robust approach to determine the shape param-
eter of the exponential power family.

In addition to the parametric approach, we also use two
nonparametric estimators to control for the bias caused
by the choice of the exponential power family. These esti-
mators are labeled NPL and VAS in the following. Subsec-
tion 3.C describes all four estimators in more detail. The
reader who is interested to take a shortcut may jump to
Subsection 3.D right away, where the performance of the
estimators is compared for artificially generated samples
from a Laplacian distribution.

C. Description of the Entropy Estimators

A simple upper bound for the entropy of such random
variables can be obtained from the variances by using the
maximum entropy property of the normal distribution:
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R[Y}] < 5 logy(2meVar(Y,)) =: G[Y},]. (10)

We will call G[X},] the Gaussian entropy bound. More pre-
cisely, one can decompose the entropy into two terms:

h[Y}]= G[Y}] - Dy [V, 1 Y§e],
=J[Y}) (11)

where J[Y},] denotes the negentropy,®° that is, the KL di-
vergence of the distribution of Y}, from a normal distribu-
tion of same variance. For our data set, we find that after
removal of the DC component all filter outputs can be well
approximated by the exponential power family (in agree-
ment with earlier studies®®).

For the exponential power family, it is possible to com-
pute the negentropy explicitly as a function of the shape
parameter « (see Fig. 5):

11 7T(3/a) \ bits
JWil=5 - +loe\ e\ o5 | 1oey (12

The negentropy takes its minimum at a=2 (the Gaussian
case) and is monotone increasing toward both directions
away from a=2. In the sub-Gaussian case, J converges
from below to logyy/me/6 bit~0.255 bit for a— o (uniform
distribution), so that the gain in negentropy is rather lim-
ited. For the sparse, or leptokurtic, branch of the expo-
nential power family, the negentropy increases without
bound, diverging as «— 0. In the special case of the La-
placian distribution (a=1), the negentropy equals
[log(m)-1]/[2 1log(2)] bit=0.1 bit.

The first absolute moment of the exponential power
family is given by

E,  [[Y]]=oyM(a), (13)

where

o
o

o
o

o
>

Negentropy [bits}]

©
¥}

0

10”"

shape parameter o

Fig. 5. The solid curve indicates the true negentropy of the ex-
ponential power family depending on the shape parameter a. The
inset shows a magnification of the region around a=1, which is
most relevant to the modeling of natural image statistics when
using log intensities. The dotted—dashed curve is the quadratic
approximation of the negentropy utilized in the FastICA algo-
rithm using g(«) =|u|, which has been shown to be asymptotic op-
timal in the case of a Laplacian distribution.
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M) = — S = fUarGa’

(14)

Together with the sample estimators for the first absolute
moment and the variance, one can use Eq. (14) to com-
pute an estimate for the shape parameter.® Having de-
termined the shape parameter «, we use Egs. (11) and
(12) to obtain a consistent plug-in estimator for the en-
tropy. In the following, this estimator will be labeled the
MAL estimator because it was proposed first by Mallat.?

A simple way to check and to visualize how well the as-
sumption of the exponential power family is met by the
data®! is to consider loglog[p(0)/p(Y})] as a function of
log(|Y.]), where p denotes the density or, in practice, a
density estimate of |Y},|. For the exponential power family,
this function has to be linear, and, in principle, one could
also get an estimate of the shape parameter « via linear
regression between log log(p(0)/p(Y)) and log(|Y3)).

Here, we will pursue another, more accurate strategy to
test the goodness of fit, using the cumulative distribution
function of the exponential power family,

1 sgn(y)
2 (/e

1
F([A(aaa)b/]av_)’ (15)

a

as a squashing function, similar to the practice in Bell-
Sejnowski ICA. T'(u,a)=[§t* ! exp(~¢t)d¢ is known as the
(lower) incomplete gamma function, and T'(a)
=lim, ... I'(z,a) denotes the (complete) gamma function.
If the fit is correct, the output should be uniformly distrib-
uted between zero and one. In fact, we found a very good
agreement between the histograms of 39,690 uniformly
distributed random numbers generated with MATLAB
and the histograms of the empirical marginal distribu-
tions after squashing with the fitted cumulative distribu-
tion functions. An appropriate way to quantify the good-
ness of fit in this context is to compare the plug-in entropy
estimates for both histograms. Since the uniform distri-
bution has maximum entropy for all distributions with
bounded support, any misfit would lead to a smaller en-
tropy. In addition, it holds that the entropy of the
squashed distribution equals the negative KL divergence
of the true distribution p(y) from the model distribution
whose cumulative distribution function equals the chosen
squashing function®:

2= F(y) = h[Z] == Dgi[py) | F' ()] (16)

This method has the advantage that it can easily deal
with the problem of estimating densities with unbounded
support, such as the exponential power family. This is dif-
ficult otherwise for large |y;|, where the density converges
to zero. For this reason, expression (16) may also provide
an attractive alternative for fitting the parameter « of the
exponential power family: The OPT estimator determines
the optimal «, for which the entropy of the squashed dis-
tribution takes a maximum. After that, again, Eqs. (11)
and (12) are used to compute the entropy.

The definition of the OPT estimator still requires one to
specify how to estimate the empirical distribution of Z,
k=1,...,N. To get a robust nonparametric density esti-
mate, it is desirable to make the outcome equally sensi-
tive to all data points. This can be achieved with the fol-
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lowing consistent estimate of the empirical distribution
function, which is based on the order statistics. That is,
we assume in the following that the samples z;<zy<:--
<zp are sorted in ascending order. Similar to the sample
median, we define

Z'm+z'm 1
B=——f— (17)

as the “inner” (N/m-1) binning borders (assuming here
for simplicity that N/m is an integer). Furthermore, the
support of the distribution is confined to the output range
of the squashing function, given by the interval (0, 1).
Therefore we can take By=0 and By;,=1 as the left and
right “outer” binning borders. In this way, we have the
same number of m data points within each bin, and hence
the density estimate within each bin reads as

m
pz)=——— for 8,1 <z <. (18)
N BJ _ ﬁj-l j-1 J
The plug-in entropy estimate follows immediately:
N mN/m
hlZ]=log, —+— >, loga(B;— Bi_y) bits.  (19)
m Nj=1

In the data analysis presented below, we set m =210, so
that the corresponding histogram with variable bin width
has N/m=39,690/210=189 bins. Taken together, the OPT
estimator uses the MAL estimate as initial guess and
then minimizes Eq. (19) via optimization of « using a
standard line search algorithm.

The nonparametric entropy estimator just described for
the estimation of Z,, k=1,..., N, can also be applied di-
rectly to the coefficients Y, k=1,..., N. This nonpara-
metric plug-in estimator is called the NPL estimator.

Finally, we apply the nonparametric m-spacing estima-
tor, which was introduced by Vasicek.?® The VAS estima-
tor does not require estimating the density first, but it re-
duces the asymptotic variance of the estimator, loosely
speaking, by averaging over (m—1) shifted versions of the
m-spacing estimator presented above. More specifically,
we use the bias-corrected version

Y]z ———3 N-m log@[y(“m) —y<i>]) - yfm)

Nlog(2)i3 m

+ log(m) bits,

where ¢=-0,log(I'(x)) denotes the digamma function.
This estimator is part of the MATLAB toolbox of the ICA
algorithm RADICAL presented in Ref. 36, and the estimator
is explained in the review in Ref. 37 as well.

D. Comparison of the Four Estimators

To get an idea of how well these different estimators per-
form, we compare all of them on artificially generated
data. Using the MATLAB random number generator
for the uniform distribution, we generated 10* trials
of 39,690 samples from a Laplacian distribution of vari-
ance 2 [for t=1:10000, x=log(rand(39690,1)). sign
X (randn(39690,1)),..., end]. We chose the Laplacian dis-
tribution because the empirical distributions look very
similar (some of them are slightly sparser, and some oth-
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Table 1. Bias and Variance of the Four Different
Entropy Estimators in the Case of a Laplacian
Random Variable

Estimator
Parameter
(bits) MAL OPT NPL VAS
Bias 0.0026 0 0.0023  -0.0371
\Variance 0.0072  0.0073  0.0073 0.0072
\Total squared error 0.0077  0.0073  0.0077 0.0378

ers are also a bit less kurtotic). Since the true entropy of a
Laplacian distribution is determined by its variance to be
(1+log\2 Var[s;])/log(2) bits, we can estimate not only
the variance but also the bias of the different entropy es-
timators used. The results of this test are summarized in
Table 1. It turns out that the OPT estimator performs
best while the VAS estimator is the least favorable.

4. RESULTS

Now that we have explained the details of the individual
transforms and the different ways of estimating the
multi-information, we are ready to compare them. Specifi-
cally, we consider PCA, zero-phase whitening, triangular
whitening, ICA, the Haar wavelet, and a random decorre-
lation filter. The nonlinearity that we used in the contrast
function of FastICA was g(u)=1-exp(-u«?), and the opti-
mization was done by using the symmetric approach. All
basis functions of the different transforms are shown in
Figs. 1 and 2.

The results of the OPT estimator (the one that per-
formed best on artificial data) are summarized in Fig.
6(a). Each curve shows I[Y]-I[Yryp] as a function of
patch size, and the different curves correspond to the dif-
ferent transforms that generated Y. From this figure, one
can directly read out the absolute differences in the multi-
information reduction between the different transforms.
As expected, the random decorrelation filter achieves the
least reduction in the multi-information, and ICA
achieves the maximal reduction. The slightly worse per-
formance of symmetric decorrelation relative to the ran-
dom decorrelation basis for patch sizes smaller than or
equal to 4 X4 can be seen as an artifact due to the sepa-
ration of the DC component. While this preprocessing
helps to make the results more stable against the particu-
lar choice of the data set, it affects the shape of the basis
functions, especially for small patch sizes. Finally, it is in-
teresting to note that the nonadaptive Haar wavelet deco-
rrelation basis performs only slightly weaker than ICA
despite the blockiness of the basis functions.

Apart from the fact that the absolute differences be-
tween the different transforms are small, it is interesting
that these differences between all transforms stay con-
stant over different patch sizes except for those with PCA.
Apparently, PCA is a good choice for small image patches,
but it is likely to perform worse than triangular whiten-
ing and zero-phase whitening for large image patches. A
heuristic explanation for this finding is the lack of local-
ization of the PCA basis in the spatial domain. The per-
formance gap between zero-phase whitening and triangu-
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Fig. 6. (a) Multi-information estimates obtained from the OPT estimator. The six curves represent the absolute difference in multi-
information relative to random whitening for random whitening (stars), symmetric whitening (circles), triangular whitening (triangles),
PCA (squares), Haar wavelet (dashed curve with diamond), and ICA (diamonds) respectively, as a function of patch size. Due to con-
struction, the difference has to vanish for random whitening. (b)-(d) Same as (a) but for results from different estimators: (b) MAL es-
timator, (c) NPL estimator, (d) VAS estimator. For all estimators, the maximum difference is smaller than 0.1 bits/pixel.

lar whitening might be due to the fact that the receptive
fields of triangular whitening are more anisotropic (see
Fig. 2). Referring to the predictive coding interpretation
the reason for this anisotropy is the asymmetric sequen-
tial raster scheme with which triangular whitening pre-
dicts each pixel from the previous ones.

For control, the results of the three other estimators as
well are shown in Figs. 6(b)-6(d). Additionally, the good-
ness of fit of the OPT estimator is shown in Fig. 7 by using
the KL divergence between the optimized fit with the ex-
ponential power family and the nonparametric distribu-
tion estimate. Finally, we also inspected the fits by eye.
All three control methods indicate that the presented es-
timates are highly reliable.

To appreciate how small the relative differences in
multi-information reduction are between the different
transforms, it is necessary to determine the total depen-
dency reduction I[Y]-I[X] relative to the pixel represen-
tation X including the DC component. The inclusion of the
DC component was not necessary in the previous com-
parison, where we considered only differences between
the outputs of the different transforms, because by con-

Goodness of fit
0.02 . .

0.015;

max DKL [nats]
o
<

0.005; 4

12x12
patch size

9x2 8x8 16x16
Fig. 7. Maximum empirical KL divergence over all dimensions
after optimization (i.e., worst case). The theoretical optimum is
indicated by the dotted—dashed line, which gives the empirical
KL divergence for an artificially generated sample from a Laplac-
ian distribution of the same size (IN=39,690).
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space including the DC component. The black line corresponds to
the NPL estimator of the actual multi-information gain Al given
by Eq. (19) in the case of PCA. The gray region around the solid
curve indicates the range within which the multi-information
gain varies for the different decorrelation methods. The upper
bound of the gray region is given by random whitening, while the
lower bound is given by ICA.
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Fig. 9. Comparison of the excess kurtosis spectra for all meth-

ods in the case of 16 X 16 patches.

struction all transforms separate the same DC component
with the same marginal entropy. To determine I[Y]-1[X]
for all transforms, we used the NPL estimator to evaluate
the sum of the marginal entropies of the pixel represen-
tation because those cannot be fitted so well with the ex-
ponential power family. It is clear that this estimate can-
not be of the same precision as that of the estimates for
the output entropies, and it will also be more dependent
on the particular data set used. Nevertheless, we may as-
sume the precision to be of the order of 0.1 bits/pixel,
which is sufficient to give a good ballpark figure. The total
gain in the case of PCA, which includes the decorrelation
of the DC component, is shown in Fig. 8. The shaded re-
gion indicates the tight range within which Al varies for
the entire spectrum of decorrelation transforms, where
the upper bound coincides with the curve of random deco-
rrelation and the lower bound with that of ICA. As one
can appreciate by eye from this graph, the relative differ-
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ences in performance are very small, in fact, always
smaller than 5%. Triangular whitening, in particular,
achieves 98% of the multi-information reduction achieved
with FastICA for all patch sizes.

Finally, to see how differently the individual compo-
nents contribute to the multi-information gain, we show
in Fig. 9 the excess kurtosis spectra for all transforms in
the case of 16 X 16 patches. The bases of random whiten-
ing, zero phase, and triangular whitening exhibit very flat
spectra, indicating that all components are equally
sparse. Intuitively, this is to be expected, since all the
components look pretty much the same apart from the lo-
cation of their center peaks. In contrast, the sorted kurto-
sis spectra of the anisotropic bases of PCA, ICA, and the
Haar wavelet are steadily decaying. For PCA, the low
spatial frequencies exhibit the highest kurtosis. In the
case of ICA, the most elongated edge filters are the most
kurtotic. For the Haar wavelet, the kurtosis is roughly
correlated with the scale of the basis functions such that
the components at the smallest scale have the least kur-
tosis. In addition, the coefficients of the diagonal elements
of the Haar basis exhibit less kurtosis than the vertical
and horizontal components.

5. DISCUSSION

This study provides the first quantitative analysis of the
multi-information reduction achieved with different lin-
ear filtering models of natural image statistics. Special
care has been taken to make the required estimates as re-
liable as possible. The main result is that after second-
order decorrelation, higher-order decorrelation with lin-
ear transforms amounts to a surprisingly small extra gain
in terms of multi-information for natural images. As a
consequence, this finding challenges the functional inter-
pretation of V1 simple cell receptive fields as linear
higher-order decorrelation filters.

We should be careful about the interpretation of this re-
sult. Foremost, this study seeks to be more precise about
what we can conclude from the similarities between V1
simple cell receptive fields and the shape of linear ICA fil-
ters. The lack of a distinct advantage for the ICA edge fil-
ters in terms of statistical independence should not be
taken as evidence against the approach of using the sta-
tistics of natural images to find better image representa-
tions. It rather demonstrates that the basic model of V1
simple cells as linear Gabor-like filters is not very effec-
tive as a means of factorial coding for natural images.

In general, the restriction to linear processing heavily
constrains the range of possible computations. Given that
the linear independent components still exhibit higher-
order correlations, it is likely that more flexible, nonlinear
mappings may achieve a much larger gain in the multi-
information reduction. In terms of image analysis, the
computational limitations of linear signal processing also
give reason to be skeptical about the common view of V1
function. Oftentimes, the investigation of V1 simple cells
builds on the notion that filtering with Gabor-like recep-
tive fields effectively encodes for the presence of edges.



1262 J. Opt. Soc. Am. A/Vol. 23, No. 6/June 2006

This idea, however, ignores the fact that the detection of
the outline of an object in natural images is an unsolved
problem in computer vision, which crucially relies on the
appropriate choice of nonlinearities. Moreover, the com-
putational limitations of linear image analysis are
complemented by the physiological fact that a large frac-
tion of the variance in V1 simple cell responses cannot be
explained with the classical linear response model (for a
recent critique of the standard model of early visual pro-
cessing, see Ref. 38).

In addition to the need for more flexible nonlinear im-
age models, it is also necessary to reexamine the assump-
tions underlying factorial coding. In particular, the pre-
sented quantitative evaluation of image models in terms
of statistical independence should not leave us with the
impression that factorial coding is the only thing that we
need to consider in order to build better image models or
to come up with better hypotheses about neural image
representations. Traditionally, ideas about coding effi-
ciency borrowed from information theory played a strong
component in the motivation of factorial coding in neu-
ronal representations.13’39411 It is important to note, how-
ever, that maximal statistical independence is not neces-
sarily optimal for coding efﬁciency,42 and coding efficiency
is not sufficient as an ultimate design principle for useful
image representations.

In the following, we will first discuss the principal ca-
veats of factorial coding in terms of coding efficiency. In
particular, we will discuss ICA from the rate-distortion
theoretical perspective of transform coding.***3 Next, we
will explain the conceptual limitations of blind source
separation (BSS) in the context of natural images. Fi-
nally, we will explore how unsupervised learning provides
a viable approach to the problem of optimal representa-
tion learning.

A. Factorial Coding Is Not Sufficient for Coding
Efficiency
ICA is equivalent with the task of finding a lossless map-
ping of a given multivariate random variable such that
the new output random variable is uniformly distributed
(see Appendix D). This task coincides with the problem
that one has to solve in redundancy reduction in the case
of discrete sources. In the case of continuous sources,
however, the reduction of statistical dependencies per se
does not imply any compression, because the lossless de-
scription length of real numbers is always divergent.44
Clearly, it is easy to construct a discrete code from ICA
via quantization of the output coefficients. It is also easy
to construct a discrete-valued maximum entropy code
with uniform distribution if the density over the
continuous-valued ICA coefficients is uniform. Similarly,
one may include output noise instead of quantization to
turn the ICA transform into a channel with finite capac-
ity. As has been pointed out in Refs. 19 and 45, the goal of
a uniform output distribution in the presence of additive
noise is equivalent with a maximization of the mutual in-
formation between input and output. In fact, if the neural
noise model does not depend on the filter matrix W, then
maximizing the mutual information between input and
output is equivalent with maximizing the entropy of the
output of the channel, as is done in Bell-Sejnowski ICA.
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Things become more involved, of course, if the channel
noise cannot be assumed to be W-independent. In the case
of independent Poisson noise, for instance, the optimal
neural activation functions with respect to information
maximization are staircase functions® (also cf. Refs. 47
and 48). The optimization for W-dependent noise, how-
ever, may be regarded as a subsequent step in the context
of information maximization.

As long as one is concerned only about error-free trans-
mission of a discrete signal (i.e., channel coding), informa-
tion maximization is a valid design principle. However,
information maximization per se is meaningless if the
task is to find an efficient description of continuous-
valued data (i.e., source coding). Intuitively speaking, the
representation of a continuous source via a channel with
finite capacity always requires one to discard infinitely
many bits because only a finite number of bits can be
transmitted. Therefore the most important question in
source coding is how to decide which bits or, more pre-
cisely, which changes of the signal are most worthy to be
represented. This bit-selection problem can be decided on
the basis of perceptual relevance or task relevance only.
Hence, to judge a coding scheme, one always has to verify
how good the perceptual or performance quality is for a
given information rate.

In the context of ICA, this problem can be demon-
strated if we actually compare the perceptual distortion of
the different linear transforms in the presence of noise or
after quantization of the output. As an illustrative ex-
ample, we show the Lena image for the pixel basis, the
orthogonal PCA basis (that is, s=Upgsx), the PCA whit-
ening basis (that is, s=D{Upcax), and the ICA whitening
basis (that is, s=V;o4D1Upcax) after independent and
equidistant quantization of the output coefficients. As one
can see in Fig. 10, the perceptual quality of orthogonal
PCA is by far the best although its information rate has
been chosen to be the smallest. The comparison of or-
thogonal PCA and PCA whitening bases shows that the
whitening step has a large drawback in terms of percep-
tual quality. So orthogonal PCA can be interpreted as the
better compromise between the advantageous pixel met-
ric and statistical independence.49

The obvious alternative to PCA would be to try orthogo-
nal ICA, where the multi-information is minimized under
the same constraint that W is orthogonal. However, the
rate-distortion gain will be very small, since the restric-
tion that W be orthogonal implies that PCA is the only
transform for which all second-order correlations vanish.
The power spectrum obtained from the pixel intensities of
natural images is not flat.’ In addition, the present study
has demonstrated that the difference in negentropy be-
tween ICA and PCA is small. Taking these two facts to-
gether, it is likely that the optimal transform in the rate-
distortion sense is much closer to the PCA filters than to
the ICA filters: If the input signal of orthogonal ICA is not
white to begin with, then any rotation away from the PCA
basis in order to increase the total negentropy comes at
the cost of an increase in the Gaussian entropy bound.

The fact that maximal statistical independence is not
necessarily optimal for coding efficiency is well-known in
transform coding research.*” For independent coefficient
quantization, there is no competitor to discrete cosine
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Fig. 10. Comparison of perceptual distortion between different transforms using uniform quantization of the output coefficients: (a)
quantization in the original pixel basis with maximum rate (0.23 bits/pixel), (b) quantization in the orthogonal PCA basis with minimum
rate (0.13 bits/pixel), (c) quantization in the PCA whitening basis with second largest rate (0.20 bits/pixel), (d) quantization in the ICA

whitening basis with second smallest rate (0.17 bits/pixel).

transform coding and most people today are still using
the old JPEG still image compression standard. The
slight advantage of wavelet coding used in the more re-
cent JPEG 2000 standard®! can be achieved only as em-
bedded zero-tree wavelet coding,?® which gives up the in-
dependence assumption of the transform coefficients. In
conclusion, the results of transform coding suggest that
plain ICA is rather less efficient than PCA in terms of cod-
ing efficiency. This underlines the basic fact of rate-
distortion theory that factorial coding and information
maximization are not sufficient for efficient coding.

B. Blind Source Separation Is Not Sufficient for Optimal
Representation Learning

Although coding efficiency is frequently used to motivate
factorial coding and unsupervised learning, we agree with
the view in Refs. 53 and 54 that compressive coding is not
actually the ultimate goal of early vision. While neuronal
representations of sensory inputs in the brain are re-
quired to avoid a waste of the physiological resources, it
would be very limiting if one sought to understand neural
representations from this constraint only. Foremost, we
need to answer the following question: How does neural
processing transform the retinal image into useful repre-

sentations that make explicit the behaviorally relevant
structure and geometry of the environment?

An important motive underlying the use of ICA-like al-
gorithms in image coding is the goal of extracting mean-
ingful parameters by means of statistical learning. Origi-
nally, ICA had been developed in the context of BSS.? The
attribute “blind” stands for the fact that within the class
of linear models no further assumptions are required to
identify non-Gaussian source signals up to scaling factors
from the statistics. For the purpose of image representa-
tion learning, however, the concept of BSS needs to be
modified: Strictly speaking, BSS makes statements only
about the case when the generative model used is correct.
The optimization in BSS is used only to find a unique an-
swer. The theory of BSS does not really care about
gradual improvements in the objective function, because
it does not require that the objective function express a
desirable feature. It is just an arbitrary contrast function.

In the case of ICA, this means that the multi-
information does not necessarily express the most desir-
able objective and that other criteria might be used
equivalently. A way to illustrate this fact is to consider
data generated by the following linear time-invariant
generative model:
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X, =As;. (20)

With the assumption that all source signals are mutually
independent, one can recover the matrix A of basis func-
tions either with FastICA or with Molgedey and Schuster
ICA,” which use different objective functions. More spe-
cifically, Molgedey and Schuster ICA does not use higher-
order correlations but decorrelates the time-delayed cross
covariance in order to find a unique answer. If both meth-
ods are applied to wildlife movies, one still finds the edge
filters with FastICA while the basis functions determined
with Molgedey and Schuster ICA look very different from
those (see Fig. 11). From the BSS point of view, the dis-
crepancy in the answer between the two methods simply
means that the linear time-invariant model (20) is wrong
for time-varying natural images. BSS does not tell us why
we may prefer the answer given by FastICA over the an-
swer given by Molgedey and Schuster ICA or vice versa.

In image representation learning, it is not assumed
that the generative models are actually correct. There-
fore, the solutions cannot be interpreted in terms of BSS.
The only way to assess a given answer meaningfully in
this case is how well it performs as measured by the
stated objective function.

C. Optimal Representation Learning: Unsupervised
Learning Meets Efficient Coding

In this final part of the discussion, we name some ex-
amples of unsupervised learning models that are more
closely related to the goal of efficient coding than plain
ICA is. An important extension of ICA is independent fac-
tor analysis”!%%%57 «IFA)” (originally called sparse cod-
ing, sometimes also called noisy ICA). Like ICA, it uses a
generative model that assumes non-Gaussian sources. In
contrast to ICA, however, IFA allows one to describe the
input as a superposition of an arbitrary number of
sources plus noise. The use of the noise model is not lim-

Fig. 11. Basis functions for 16 X 16 image patches learned with
Molgedey and Schuster ICA from a wildlife movie.
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ited to the case where noise is actually present in the
data. Intuitively speaking, a noise model can also be used
as a means to specify the importance of different bits. In
fact, the frequently chosen isotropic Gaussian noise model
corresponds to the assumption of the Euclidean metric as
distortion measure. Consequently, the choice of the vari-
ance corresponds to a parameter related to the rate-
distortion trade-off.

A quantitative analysis of coding efficiency has been
carried out by Lewicki and Olshausen in Ref. 12. They
compared the discrete coefficient histogram entropy of the
image basis learned with IFA with that of other image
bases for a given mean square reconstruction error, which
attested its good performance. However, the learning as
well as the performance evaluation was carried out with
respect to the Euclidean metric in the whitened space. It
would be very interesting to know the results of applying
IFA to images in the pixel metric.

Another possible extension is to combine ICA with a
multiscale representation such as the Laplacian
pyramid.®® Intuitively speaking, we may think of prewhit-
ened ICA as the optimal transform with respect to the Eu-
clidean metric in the whitened space. It might well be
possible that plain ICA can successfully be used to encode
the individual levels of the Laplacian pyramid because
within each level the covariance matrix of the image
patches has a rather flat spectrum to begin with. There is
some recent work along these lines, where people started
to optimize wavelets with respect to the statistics of the
signal to be represented.?%%°

As a final example, the issue of efficient coding in neu-
ral representations can be addressed most explicitly by
utilizing a joint-source channel coding approach. In addi-
tion to a distortion measure, it also assumes a specific
neural noise model and a certain type of decoder. In a
minimalist model, for instance, we may assume that each
V1 simple cell belongs to a group of neurons whose coding
objective is to minimize the mean square error recon-
struction of a certain image patch in pixel space. This
model can be seen as a combination of current neural im-
age coding models with current models of optimal neural
population codes: Neural image coding models put strong
emphasis on the input statistics to inform the model but
rarely address the effect of neural noise on the optimal
code. Instead, most models of optimal neural population
coding have been used mainly to investigate the effect of
different neural noise models, while the input signal is
simply assumed to be a random variable with a conve-
nient distribution without any further specifications.

All aspects of efficient coding, stimulus statistics, neu-
ral noise, and perceptual distortion can be combined in
such an optimal joint-source channel coding approach.61
As an interesting example, one may study the minimum
mean square error reconstruction for Gaussian noise
achieved with a linear readout mechanism,%? which can
significantly change the shape of optimal image represen-
tations. This setting is very close to the standard trans-
form coding setting,*? as it essentially replaces the quan-
tization by Gaussian noise. From previous work on
optimal population coding, we can expect even larger
changes in the shape of optimal neural image representa-
tions by choosing a Poisson noise model and a nonlinear



Matthias Bethge

minimum mean estimator  for  the
reconstruction.*”48:63

In the above list of examples, we have focused on the
aspect of coding efficiency, but other objectives besides
coding efficiency can be optimized as well. The crucial
point in optimal representation learning is that the objec-
tive function really define the criterion according to which
one would like to judge the performance of the represen-
tation. Quantitative comparisons such as the one pre-
sented in this paper can then be used to clarify how sen-
sitive the representation is to the goal defined by the
objective function.

square

APPENDIX A: TRIANGULAR
DECORRELATION

We included triangular decorrelation in our comparison
because it can be seen as the transform coding version of
linear predictive coding. A convenient way to determine a
triangular decorrelation transform is to apply the
Cholesky decomposition to the covariance matrix, Cx
=LLT, where L is lower triangular. Since the Cholesky de-
composition is unique, it recovers the true mixing matrix
A=L whenever the assumption of a triangular mixing
matrix is correct. Furthermore, the inverse matrix of a
triangular matrix is again triangular. Thus Wypg;=A"!
=L defines the filter matrix of the triangular whitening
transform. In the next section we provide a motivation
showing that triangular decorrelation can be seen as the
transform coding version of predictive coding.

Triangular decorrelation and predictive coding. To
make the interpretation of triangular decorrelation trans-
forms in terms of predictive coding most straightforward,
we now require all entries on the main diagonal of the tri-
angular decorrelation matrix W to be equal to minus one.
This choice is possible because, after whitening, an arbi-
trary diagonal transform D, can be applied that does not
change the off-diagonal elements of the covariance ma-
trix. Then each output coefficient is given by

= 2 Wit = 2.
J<k
-

=2 (A1)

Because of the triangular structure, one can minimize the
component variances in a greedy fashion without loss of
optimality. The minimization of each individual Var(yk]
corresponds to the problem of optimal linear prediction of

x;, from the previous £—1 components (xq,...,%;_1):
£ = 2 W, (A2)
J<k

Therefore the triangular decorrelation matrix can also be
determined by using the linear minimum mean square es-
timator. If x is a random variable in R" with E[x]=0, then
the linear minimum mean square estimator of the kth
component as a function of the previous £—1 components
is given by®*

x5, = Elxp(xq, ... >xk—1)]01;}1(x1: ,xk_l)T.
(W1 s Whia-1) (A3)

Vol. 23, No. 6/June 2006/J. Opt. Soc. Am. A 1265

where C,, denotes the covariance matrix of the first m
components:

Cm ZE[(xb s ’xm)T(xb e ,xm)]' (A4)

Consequently, triangular decorrelation can be expected to
work well whenever predictive coding is expected to work
well. That is, triangular decorrelation will lead to good re-
sults in the case of autoregressive processes. Note that in
the case of spatially predictive coding, as used for still im-
age coding, it is not obvious what the optimal ordering of
the pixels is. More generally, the performance of triangu-
lar whitening depends on the particular basis of the input
space. In the case when the input space is given by the
pixel basis, one has the freedom only to choose a permu-
tation of the ordering of the dimensions. In this paper, we
use a simple rowwise raster scan through the patch to
specify the ordering of the dimensions.

APPENDIX B: LOG INTENSITIES VERSUS
LINEAR INTENSITIES

The multi-information is not invariant under nonlinear
transforms of the pixel intensities. A principled approach
to finding the “right” pixel intensity representation is to
model the data as a postnonlinear (PNL) mixture.®® A fit
of the PNL model, however, is beyond the scope of this pa-
per. We decided to use log intensities mainly because it is
a common way to model the dynamic range adaptation of
photoreceptors in the retina. In comparison with the oc-
casionally used linear intensities, the choice of log inten-
sities leads to less kurtotic pixel intensity distributions.
Small kurtosis is not only more plausible in terms of a
postnonlinear mixture model® but it also enhances the
reliability of the marginal entropy estimates: After “DCO
filtering” (that is, removing the DC component), we find
that the shape of all marginal distributions becomes very
close to that of a double-sided exponential (or Laplacian)
distribution and the fit with the exponential power family
(which contains the Laplacian distribution as a special
case) is excellent when using the log-intensity scale. This
finding is typical for images whose content is dominated
by greens and woods (see also Fig. 1(c) in Ref. 24). Images
with a different content typically lead to marginal distri-
butions with higher kurtosis.

APPENDIX C: SAMPLING SCHEME

For the sake of maximal reproducibility, we decided to use
a deterministic sampling scheme, but the results do not
rely on this choice. To generate the training set, we first
sampled, from each of the ten images, 632 patches of the
maximal size (16X 16 pixels). These patches were
sampled without overlap, such that tiling them together
in the correct order would recover the entire given image
apart from the lowest 16 rows and the rightmost 16 col-
umns (see Fig. 12). In this way, we obtained 10X 632
=39,690 samples. For the test set, we got the same num-
ber of samples from the same ten images by choosing
those 632 patches that tile the center part of each image
instead of the upper left. That is, a margin of 8 pixel
width is left out at all four edges of the given image in this
case. The training and test sets for smaller image patches
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are obtained from these, simply by taking only a certain
fraction of each 16 X 16 patch (we always took the upper
left part).

The basis functions are learned by using only the data
from the training set. The multi-information gain is
evaluated not only for the training set but also for the test
set. A large difference between both measurements would
indicate overfitting. In all measurements carried out in
this study, the difference between both measurements is
negligible.

APPENDIX D: GAUGING THE
MULTI-INFORMATION GAIN

1. Bell-Sejnowski Gauge

In the Bell-Sejnowski gauge, a pointwise nonlinear map-
ping (a “squashing function”) is applied to each individual
output channel such that f,(x)=g;(s;), where

Y ’=gk(sk)=f p(8)ds, (D1)

is set to be the cumulative distribution function of each
individual component S;,. In general, pointwise nonlinear
mappings of the source variables S, do not affect the
multi-information. Since the squashing functions are here
chosen to be the distribution functions of the Sy, it follows
that the individual output components Y, are uniformly
distributed in the unit interval (0,1), so that their differ-
ential entropies vanish. In this case, we have

- h[X], (D2)

I8r

(9Sk

d
S, Y]=-h[Y]=-E llogldet(ﬂ’) +2, log
k=1

which formally translates the minimization of multi-
information into a maximum entropy problem. Since the
uniform distribution is the maximum entropy distribu-
tion on the unit interval, it is also possible to estimate the
distribution functions simultaneously by maximizing the
entropy.

2. Volume-Conserving Gauge

For the purpose of precise estimation of the achieved sta-
tistical dependency reduction, the choice of volume-
conserving ICA has some advantages. In linear volume-
conserving ICA, we do not have the pointwise
nonlinearities; rather, the entire mapping f is linear:

Fig. 12. Graphic demonstrating the scheme used to sample the
image patches from the van Hateren images: training set (left),
test set (right).
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y = Wx. (D3)

The constraint of volume conservation implies that
|det(W)|=1, so that the log determinant is always zero.
Consequently, the joint output entropy equals the joint in-
put entropy, and thus the multi-information between the
output components is
Ll ¥1= 2, h[Y;] - AIX].
k

multi

|

=c[Yq....Y,] (D4)

This means that differences in the efficiency between dif-
ferent codes require only the evaluation of differences in
c[Yy,...,Y,], the sum of marginal entropies.

The restriction to volume-conserving transforms does
not affect the ICA solution up to a global rescaling factor,
because the multi-information function is invariant with
respect to a global rescaling of the filter matrix. In other
words, for any given filter matrix W, the rescaled matrix
W/\/det(W)d, where d denotes the dimensionality of X
and Y, is equivalently optimal with respect to the output
multi-information. Conversely, Eq. (D2) can also be inter-
preted as the (marginally stable) Lagrangian way to solve
the problem of minimizing ¢[Y7,..., Y,] under the side
constraint det(W)=constant.
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