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Factorial coding of natural images: how effective
are linear models in removing higher-order

dependencies?

Matthias Bethge
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The performance of unsupervised learning models for natural images is evaluated quantitatively by means of
information theory. We estimate the gain in statistical independence (the multi-information reduction)
achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whit-
ening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can
be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the
Haar wavelet are included in the comparison as well. The comparison of all these methods is carried out for
different patch sizes, ranging from 2�2 to 16�16 pixels. In spite of large differences in the shape of the basis
functions, we find only small differences in the multi-information between all decorrelation transforms (5% or
less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive
coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In con-
clusion, the edge filters found with ICA lead to only a surprisingly small improvement in terms of its actual
objective. © 2006 Optical Society of America

OCIS codes: 000.5490, 100.2960, 100.3010.
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. INTRODUCTION
any image processing tasks rely either explicitly or im-

licitly on modeling the statistical dependencies between
ixel intensities in images.1,2 Within a given class of im-
ge models, unsupervised learning can be used to find an
ptimal candidate. Independent component analysis
ICA) is an unsupervised learning method that optimizes
ver a class of multivariate distributions that can be de-
ived from a linear mapping of a reference random vari-
ble with factorial distribution (for an early review and a
ecent textbook, see Refs. 3 and 4, respectively). Over the
ast decade, ICA has become a very successful tool, and it
s now used in hundreds of different applications by a di-
erse range of disciplines. In addition, ICA initiated a
arge movement in developing new unsupervised learning
echniques.

In the context of visual neuroscience, the extraction of
tatistically independent components has been proposed
s an objective of early sensory processing, shaping the
eceptive fields of neurons in the retina, LGN, and pri-
ary visual cortex. Referring to the standard view of neu-

ons in the early stages of visual processing, the concept
f a receptive field is well described by linear–nonlinear
ascade models of neurons that include a linear filter at
heir first stage (see Ref. 5 for an overview). This filter
omputes the correlation sk= �wk ,x� between the pixel in-
ensities x of the stimulus and a filter kernel wk, which is
eferred to as the receptive field of neuron k. The second
tage of this model describes how spikes are generated
rom the filter outputs. In the simplest and most wide-
pread case, the spike generation is modeled as a Poisson
rocess whose intensity yk (the expected firing rate of
euron k) is computed via a nonlinear half-rectifying and
1084-7529/06/061253-16/$15.00 © 2
aturating activation function yk= fk�sk�. For a set of neu-
ons k=1, . . . ,N, it is convenient to summarize the filter
ernels into a single matrix W= �w1 , . . . ,wN�T, which al-

ows one to write compactly

s = Wx, �1�

o that the kth row of the filter matrix W determines the
eceptive field properties of neuron k.

As long as the number of neurons N is smaller than or
qual to the dimensionality of x, second-order correlations
etween the rate responses of all neurons can always be
emoved completely via linear filtering, and there is some
vidence that retina and LGN indeed act as whitening fil-
ers in response to natural stimuli.6 The objective of
econd-order decorrelation by itself, however, is not suffi-
ient to predict the receptive field properties, because ad-
itional constraints or demands are necessary to deter-
ine the filter kernels uniquely. For illustration, the six

ifferent bases shown in Figs. 1 and 2 are all equivalent
ith respect to second-order statistics.
In ICA, this ambiguity is resolved by seeking to remove

igher-order correlations in the input as well. A striking
esult of ICA image models when applied to natural im-
ges is the emergence of edge filters,7,8 which resemble
mportant aspects of simple cell receptive fields in the pri-

ary visual cortex9: The basis images are localized, ori-
nted, and bandpass. This finding suggests that the pri-
ary visual cortex seeks to remove higher-order

ependencies, while the retina and LGN are concerned
ith second-order decorrelation only.
The components found with ICA algorithms can be in-

ependent only if the data distribution is indeed a linear
ixture of independent sources. For the statistics of natu-
006 Optical Society of America
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Fig. 1. Comparison of the basis image patches for the six different decorrelation transforms.
Fig. 2. The first 25 basis functions other than the DC component are shown for each method for better visibility.



r
fi
l
S
s
d
M
i
L
a

w
t
t
r
c
v
a

I
c
i
t
i
a
s
a
o

m
a
m
i
o
R
t
e
a
h
t
t
m
fi
m
p

2
D
I
w
e
a
v
t

A
I
s

v
=
t
W
s
t
t
w

w
r
d
g
t
w
t
s
i
o

d
d
c
c
s
r
e
m
m
(

m
d
c
e
i
z
c
g
m
l
r
t
n
s
i
c
c
t

c
T
r
w
p
r
l

Matthias Bethge Vol. 23, No. 6 /June 2006/J. Opt. Soc. Am. A 1255
al images, this is not the case. If one examines the edge
lters learned by ICA, for instance, nearby filters of simi-

ar orientation exhibit correlations in the magnitude.1,10

ince images are not a linear mixture of independent
ources, ICA seeks to make the filter outputs as indepen-
ent as it can within the restrictions of the linear model.
ore precisely, the objective function of ICA is the multi-

nformation, which can be defined as the Kullback–
eilbler (KL) divergence between the joint distribution
nd the product of its marginals:

Imulti�S� = DKL�p�s��	
k

pk�sk�
 = �
k

h�Sk� − h�S�, �2�

here h�S�=−�p�s�log p�s�ds denotes the differential en-
ropy with the understanding that S can be either one of
he scalar-valued random variables Sk or a vector-valued
andom variable S. Throughout the paper, we adopt the
onvention of using uppercase letters to refer to random
ariables, and we use bold font to distinguish vector vari-
bles from scalar variables.
In the special case when S is only two dimensional,

multi is equal to the mutual information between the two
omponents. Therefore Imulti itself is often called mutual
nformation in the ICA literature according to the idea
hat Imulti may be seen as a generalization of the mutual
nformation to the case of more than two dimensions. To
void confusion with the mutual information between two
ubspaces in higher-dimensional spaces, however, we
dopt the less ambiguous (but less established) terminol-
gy of Ref. 11.

While for natural images the minimization of the
ulti-information reliably results in the well-known im-

ge ICA basis, it has never been tested quantitatively how
uch this representation actually reduces the multi-

nformation in comparison with plain second-order meth-
ds for natural images. However, it has been tested in
ef. 12 how large the gain in coding efficiency is for a cer-

ain mean square error. The important difference between
fficient coding and the objective function of ICA will be
ddressed in the discussion. For now, we emphasize that
ere we do not evaluate coding efficiency but rather test
he gain of (noiseless) ICA with respect to its own objec-
ive function. Using precise estimates of changes in the
ulti-information, we find that the distinct receptive

elds found with ICA lead to only a very small improve-
ent in the reduction of statistical dependencies com-

ared with that of other linear decorrelation filters.

. SEARCHING FOR THE LEAST
EPENDENT COMPONENTS

CA, principal component analysis (PCA), zero-phase
hitening, and predictive coding algorithms all have been
xtensively used with a diverse range of variations as
daptive models of sensory coding. In this section, we pro-
ide a short overview of the different assumptions that
hey make.

. Second-Order Optimization
nstead of minimizing the multi-information (2) directly,
econd-order methods minimize the upper bound13
Imulti�S� �
1

2�
k=1

n

log2„2�e�CS�kk… − h�S� �3�

ia diagonalization of the covariance matrix �CS�ij
E�SiSj�−E�Si�E�Sj�. It is assumed throughout the paper

hat all eigenvalues of the covariance matrix are positive.
hile PCA is the only orthogonal transform for which all

econd-order correlations vanish, there are many nonor-
hogonal transforms that diagonalize the covariance ma-
rix as well. The set of all decorrelation transforms can be
ritten as


W: W = D2VD1UPCA�, �4�

here UPCA is the orthogonal matrix used in PCA, whose
ows are the eigenvectors of the covariance matrix. D1 is a
iagonal matrix with the square roots of the inverse ei-
envalues as nonzero entries, V is an arbitrary orthogonal
ransform, and D2 is an arbitrary diagonal matrix. The
hitening transform represented by D1UPCA makes sure

hat the covariance matrix remains diagonal for all pos-
ible choices of V and D2. Nevertheless, the multi-
nformation in general depends on V, whereas the choice
f D2 has no effect on the multi-information.

PCA can be motivated as the special case of isometric
ecorrelation, where the term “isometric” refers to the ad-
itional constraint that the total filter matrix W must not
hange the metric of the input space.14 Since the metric is
onserved only if W is orthogonal, the optimum with re-
pect to isometric decorrelation is uniquely determined
egardless of any higher-order correlations whenever the
igenvectors of the covariance matrix of the data are all
utually different. If additionally the orthogonal mixture
odel is correct, PCA recovers the independent sources

even if they are not Gaussian).
The statistics of natural images, however, cannot be
odeled correctly as an orthogonal mixture of indepen-

ent sources. Instead of postulating orthogonality, one
an require the mixing matrix to be patterned in a differ-
nt way. If the data can be described by a symmetric mix-
ng of independent sources, symmetric decorrelation (or
ero-phase whitening if D2 is the identity) is known to re-
over the independent axes. If the mixing matrix is trian-
ular, triangular decorrelation will achieve this goal. Both
ethods constitute nonorthogonal second-order decorre-

ation transforms, which are simple to compute and natu-
ally lead to highly localized receptive fields. In contrast
o symmetric decorrelation,8 triangular decorrelation has
ot been compared with ICA before. In Appendix A, we
how that triangular decorrelation is the transform cod-
ng version of optimal linear predictive coding. Predictive
oding not only plays an important role in lossless image
ompression15,16 but has also been proposed early on for
he information-theoretical function of the retina.17

In principle, any set of d�d−1� /2 linearly independent
onstraints could be used to determine V in a unique way.
his can be shown, for instance, by using the Cayley pa-
ameterization of orthogonal matrices V= �1+A�−1�1−A�,
here the antisymmetric matrix A has only d�d−1� /2 free
arameters. For the sake of comparison, we also include a
andom whitening transform, which is defined by the fol-
owing choice of V: First, a random matrix Ṽ is con-
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tructed by randomly drawing its column vectors from an
sotropic Gaussian distribution. Subsequently, VRND is ob-
ained from Ṽ via symmetric orthogonalization, that is,

RND� Ṽ�ṼTṼ�−1/2.

. Higher-Order Optimization
nstead of minimizing the second-order upper bound on
he multi-information, one can additionally or alterna-
ively seek to minimize the multi-information directly. In
prewhitened ICA,” a higher-order correlation contrast
unction is used to pick an optimal orthogonal transform

after the whitening step D1UPCA. FastICA (Ref. 18) be-
ongs to this class of ICA algorithms and is the one that
e present in our comparison. Another well-known ICA
lgorithm, which does not restrict the solution to be a
hitening transform, is Bell–Sejnowski ICA.19 Its search

pace is a proper superset of that of FastICA, so that in
rinciple one might find a better solution with Bell–
ejnowski ICA. This is not guaranteed, however, because
he performance of any ICA algorithm substantially de-
ends on how well it estimates the multi-information.
ell–Sejnowski ICA has been applied to natural images
efore,8 and we also included it in our study. For the sake
f brevity, however, we do not show the results for this al-
orithm, as it performs very similarly to FastICA. It ex-
ibits slightly weaker performance than FastICA if one
ses the tanh activation function as used in Ref. 8. It may
erform better, however, if one uses the cumulative distri-
ution function of the exponential power family as activa-
ion function.20,21

Finally, we also included the Haar wavelet22 as a para-
etric basis in the comparison. More specifically, we set

he rows of V to be equal to the basis vectors of the or-
hogonal two-dimensional Haar basis, so that the total fil-
er matrix W is still a decorrelation transform. It is in-
tructive to see that despite its simplicity and its
lockiness the Haar wavelet turns out to perform almost
s well as the ICA basis.
In Section 3, we give a short description of the data set

nd the variety of methods used for the quantitative com-
arison of the multi-information gain. Details will be ex-
lained in the appendices. The results obtained with the
ifferent transforms applied to natural image patches of
ifferent sizes are presented in Section 4. The insights
bout neural representations of natural images gained
rom this comparison are discussed in Section 5.

. QUANTITATIVE ANALYSIS OF
ULTI-INFORMATION REDUCTION

. Description of the Data Sets
he natural image patch ensembles analyzed in this pa-
er are constructed by sampling from the first ten images
f the van Hateren data base23 (center parts, 1024
1024 pixel, strictly linear intensity scale, image content

ominated by woods and greens). Following Ruderman
nd Bialek,24 we decided to use the pixel contrast
log„I�x� /I0…� instead of linear intensities, which are much
ore similar to the common gray-level scale used in elec-

ronic image data formats. The log-intensity scale seems
o be a good compromise between modeling the contrast
ensitivity profile of the retina and simplicity. In Appen-
ix B, we discuss why this choice may also enhance the
obustness of the multi-information estimates. From con-
rol studies, however, we know that the multi-information
eduction obtained with a linear intensity scale is almost
dentical to the multi-information reduction in the case of
og intensities presented in this paper.

As another preprocessing step, we applied a simple dy-
amic range adaptation for each image, such that its
verall log-intensity distribution is centered around zero
nd rescaled to unit variance before any patches have
een sampled. In addition, we added an invisible amount
f Gaussian noise with standard deviation 2−8 in order to
ompensate for the artificial alignment of intensities due
o the analog/digital conversion. Again, we found that this
reprocessing does not have a substantial effect on the
easured multi-information. Only PCA performs slightly

etter relative to the other decorrelation transforms after
his dynamic range adaptation.

To control for overfitting, we generated training and
est sets for all studied patch sizes (39,690 image patches
ach), as described in detail in Appendix C. In addition,
e enhanced the robustness of our results against the
articular choice of the image data set by separating the
C component before adaptation of the basis images from
ny of the decorrelation transforms. While the histogram
f the DC component of local image patches can change
ramatically from image to image, the histograms of the
ixel intensities after subtraction of the DC component is
uch more stable. In agreement with earlier

bservations,25,26 the marginals of any randomly picked
omponent in this space exhibit a kurtotic shape. An in-
eresting, nonorthogonal basis that spans the DC0 space
i.e., the space of all zero-mean signals) is given by the
−1 difference values between neighboring pixels. For
ymmetry reasons, they all have the same distribution,
hich is shown for our data set in Fig. 3. The histogram

losely resembles a Laplacian distribution, which helps to
mprove the reliability of the necessary entropy estima-
ions.

It is important to note that the outcome of PCA, sym-
etric, and triangular whitening depends on the basis of

ig. 3. A log histogram of the log-intensity differences approxi-
ates the shape of a Laplacian distribution in the case when the

ontent of the images is dominated by woods and greens.
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he input space. In fact, any whitening basis can be ob-
ained by any second-order method if the input space is
ransformed appropriately beforehand. Therefore, to keep
he input basis as close as possible to the pixel basis, we
ecided to use an orthogonal basis for the separation of
he DC component, as it does not change the metric of the
sual pixel basis. More specifically, an orthogonal DC0
asis that preserves the localization of the pixel basis is
btained by Gram–Schmidt orthogonalization of the
odified identity transform, for which the first basis vec-

or has been replaced by the DC vector whose entries are
ll identical.

. Estimating the Multi-Information Gain
irect estimation of the multi-information for high-
imensional random variables is very difficult due to the
urse of dimensionality. Although an explicit multi-
nformation estimator has very recently been presented27

ased on order statistics, we found that its precision is not
ufficient for our purposes. Instead, we will resort to the
ame technique commonly exploited in ICA, where only
he difference in the multi-information between two dif-
erent transforms Y=f1�X� and Ỹ=f2�X� is estimated:

�I = Imulti�Y� − Imulti�Ỹ�

= �
k

h�Yk� − h�Y� − ��
k

h�Ỹk� − h�Ỹ��
= �

k
h�Yk� − �

k
h�Ỹk� + E�log�det�df1

�x ��

− E�log�det�df2

�x ��
 . �5�

ny possible mapping y= 
f�x�� can be modified such that
ither the first two terms or the last two terms on the
ight-hand side vanish while the multi-information stays
he same. The two distinct choices of this gauge invari-
nce are known as Bell–Sejnowski ICA19 and volume-
onserving ICA,28 respectively (see Appendix D). In the
ase of volume-conserving ICA, the evaluation of the
ulti-information difference requires one to estimate only

he marginal entropies:

�I = Imulti
VC �Y� − Imulti

VC �Ỹ� = �
k

h�Yk� − �
k

h�Ỹk�. �6�

egative values of �I correspond to statistical depen-
ency reduction, while positive values reflect an increase
n multi-information. In the special case when Y=S and
˜ =X, we obtain the multi-information change achieved
y a particular filter s=Wx.
In the remainder of this section, we present four en-

ropy estimators that are later used to evaluate the multi-
nformation reduction [Eq. (6)] for the different image
atch transforms. The first two estimators, labeled MAL
nd OPT in the following, make the assumption that the
oefficient distributions can be well fitted by the exponen-
ial power family29
p�,��y� =
�A

2��1/��
exp�− �A�y����, �7�

hich is also called a generalized Gaussian, or general-
zed Laplacian, distribution. This family has 2 degrees of
reedom: The decay constant A can be expressed as a
unction of the variance �2=Var�Y� and the shape param-
ter �, i.e.,

A = A��,�� =
1

�
���3/��

��1/��
. �8�

he shape parameter � of this family makes it possible to
une the kurtosis �=E�Y4� /E2�Y2� of the distributions
rom platykurtic (�	3 for �
2) to leptokurtic (�
3 for
	2) in a monotonic fashion (see Fig. 4):

� =
��1/����5/��

���3/���2 . �9�

n fact, most ICA models for natural images optimize the
urtosis or a similar measure of the sparseness or
eakedness of a distribution as a contrast function. For
ur quantitative analysis, however, we will take a differ-
nt, more robust approach to determine the shape param-
ter of the exponential power family.

In addition to the parametric approach, we also use two
onparametric estimators to control for the bias caused
y the choice of the exponential power family. These esti-
ators are labeled NPL and VAS in the following. Subsec-

ion 3.C describes all four estimators in more detail. The
eader who is interested to take a shortcut may jump to
ubsection 3.D right away, where the performance of the
stimators is compared for artificially generated samples
rom a Laplacian distribution.

. Description of the Entropy Estimators
simple upper bound for the entropy of such random

ariables can be obtained from the variances by using the
aximum entropy property of the normal distribution:

ig. 4. Kurtosis � of the exponential power family depending on
he shape parameter �.
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h�Yk� �
1
2 log2�2�eVar�Yk�� ¬ G�Yk�. �10�

e will call G�Xk� the Gaussian entropy bound. More pre-
isely, one can decompose the entropy into two terms:

�11�

here J�Yk� denotes the negentropy,3,30 that is, the KL di-
ergence of the distribution of Yk from a normal distribu-
ion of same variance. For our data set, we find that after
emoval of the DC component all filter outputs can be well
pproximated by the exponential power family (in agree-
ent with earlier studies31).
For the exponential power family, it is possible to com-

ute the negentropy explicitly as a function of the shape
arameter � (see Fig. 5):

J�Yk� =
1

2
−

1

�
+ log��� ���3/��

2���1/���3� bits

log�2�
. �12�

he negentropy takes its minimum at �=2 (the Gaussian
ase) and is monotone increasing toward both directions
way from �=2. In the sub-Gaussian case, J converges
rom below to log2��e /6 bit�0.255 bit for �→� (uniform
istribution), so that the gain in negentropy is rather lim-
ted. For the sparse, or leptokurtic, branch of the expo-
ential power family, the negentropy increases without
ound, diverging as �→0. In the special case of the La-
lacian distribution ��=1�, the negentropy equals
log���−1� / �2 log�2�� bit�0.1 bit.

The first absolute moment of the exponential power
amily is given by

E�,���Y�� = ��M���, �13�

here

ig. 5. The solid curve indicates the true negentropy of the ex-
onential power family depending on the shape parameter �. The
nset shows a magnification of the region around �=1, which is

ost relevant to the modeling of natural image statistics when
sing log intensities. The dotted–dashed curve is the quadratic
pproximation of the negentropy utilized in the FastICA algo-
ithm using g�u�= �u�, which has been shown to be asymptotic op-
imal in the case of a Laplacian distribution.32
M��� =
E�,���Y��2

�2 =
�2�2/��

��1/����3/��
. �14�

ogether with the sample estimators for the first absolute
oment and the variance, one can use Eq. (14) to com-

ute an estimate for the shape parameter.33 Having de-
ermined the shape parameter �, we use Eqs. (11) and
12) to obtain a consistent plug-in estimator for the en-
ropy. In the following, this estimator will be labeled the
AL estimator because it was proposed first by Mallat.33

A simple way to check and to visualize how well the as-
umption of the exponential power family is met by the
ata31 is to consider log log�p�0� /p�Yk�� as a function of
og��Yk��, where p denotes the density or, in practice, a
ensity estimate of �Yk�. For the exponential power family,
his function has to be linear, and, in principle, one could
lso get an estimate of the shape parameter � via linear
egression between log log�p�0� /p�Yk�� and log��Yk��.

Here, we will pursue another, more accurate strategy to
est the goodness of fit, using the cumulative distribution
unction of the exponential power family,

1

2
+

sgn�y�

2��1/��
���A��,���y���,

1

�
� , �15�

s a squashing function, similar to the practice in Bell–
ejnowski ICA. ��u ,a�=�0

uta−1 exp�−t�dt is known as the
lower) incomplete gamma function, and ��a�
limu→� ��u ,a� denotes the (complete) gamma function.

f the fit is correct, the output should be uniformly distrib-
ted between zero and one. In fact, we found a very good
greement between the histograms of 39,690 uniformly
istributed random numbers generated with MATLAB
nd the histograms of the empirical marginal distribu-
ions after squashing with the fitted cumulative distribu-
ion functions. An appropriate way to quantify the good-
ess of fit in this context is to compare the plug-in entropy
stimates for both histograms. Since the uniform distri-
ution has maximum entropy for all distributions with
ounded support, any misfit would lead to a smaller en-
ropy. In addition, it holds that the entropy of the
quashed distribution equals the negative KL divergence
f the true distribution ��y� from the model distribution
hose cumulative distribution function equals the chosen

quashing function34:

z = F̂�y� Þ h�Z� = − DKL���y� � F̂��y��. �16�

his method has the advantage that it can easily deal
ith the problem of estimating densities with unbounded

upport, such as the exponential power family. This is dif-
cult otherwise for large �yk�, where the density converges
o zero. For this reason, expression (16) may also provide
n attractive alternative for fitting the parameter � of the
xponential power family: The OPT estimator determines
he optimal �, for which the entropy of the squashed dis-
ribution takes a maximum. After that, again, Eqs. (11)
nd (12) are used to compute the entropy.
The definition of the OPT estimator still requires one to

pecify how to estimate the empirical distribution of Zk,
=1, . . . ,N. To get a robust nonparametric density esti-
ate, it is desirable to make the outcome equally sensi-

ive to all data points. This can be achieved with the fol-
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owing consistent estimate of the empirical distribution
unction, which is based on the order statistics. That is,
e assume in the following that the samples z1	z2	 ¯

zN are sorted in ascending order. Similar to the sample
edian, we define


j =
zjm + zjm+1

2
�17�

s the “inner” �N /m−1� binning borders (assuming here
or simplicity that N /m is an integer). Furthermore, the
upport of the distribution is confined to the output range
f the squashing function, given by the interval (0, 1).
herefore we can take 
0=0 and 
N/m=1 as the left and
ight “outer” binning borders. In this way, we have the
ame number of m data points within each bin, and hence
he density estimate within each bin reads as

�̂�z� =
m

N

1


j − 
j−1
for 
j−1 	 z 	 
j. �18�

he plug-in entropy estimate follows immediately:

ĥ�Z� = log2

N

m
+

m

N �
j=1

N/m

log2�
j − 
j−1� bits. �19�

n the data analysis presented below, we set m=210, so
hat the corresponding histogram with variable bin width
as N /m=39,690/210=189 bins. Taken together, the OPT
stimator uses the MAL estimate as initial guess and
hen minimizes Eq. (19) via optimization of � using a
tandard line search algorithm.

The nonparametric entropy estimator just described for
he estimation of Zk, k=1, . . . , N, can also be applied di-
ectly to the coefficients Yk, k=1, . . . , N. This nonpara-
etric plug-in estimator is called the NPL estimator.
Finally, we apply the nonparametric m-spacing estima-

or, which was introduced by Vasicek.35 The VAS estima-
or does not require estimating the density first, but it re-
uces the asymptotic variance of the estimator, loosely
peaking, by averaging over �m−1� shifted versions of the
-spacing estimator presented above. More specifically,
e use the bias-corrected version

ĥ�Y� =
1

N log�2��i=1
N − m log�N

m
�y�i+m� − y�i��� − ��m�

+ log�m� bits,

here �=−�x log„��x�… denotes the digamma function.
his estimator is part of the MATLAB toolbox of the ICA
lgorithm RADICAL presented in Ref. 36, and the estimator
s explained in the review in Ref. 37 as well.

. Comparison of the Four Estimators
o get an idea of how well these different estimators per-
orm, we compare all of them on artificially generated
ata. Using the MATLAB random number generator
or the uniform distribution, we generated 104 trials
f 39,690 samples from a Laplacian distribution of vari-
nce 2 [for t=1:10000, x=log„rand�39690,1�… . *sign
„randn�39690,1�… , . . ., end]. We chose the Laplacian dis-

ribution because the empirical distributions look very
imilar (some of them are slightly sparser, and some oth-
rs are also a bit less kurtotic). Since the true entropy of a
aplacian distribution is determined by its variance to be

1+log�2 Var�sk�� / log�2� bits, we can estimate not only
he variance but also the bias of the different entropy es-
imators used. The results of this test are summarized in
able 1. It turns out that the OPT estimator performs
est while the VAS estimator is the least favorable.

. RESULTS
ow that we have explained the details of the individual

ransforms and the different ways of estimating the
ulti-information, we are ready to compare them. Specifi-

ally, we consider PCA, zero-phase whitening, triangular
hitening, ICA, the Haar wavelet, and a random decorre-

ation filter. The nonlinearity that we used in the contrast
unction of FastICA was g�u�=1−exp�−u2�, and the opti-
ization was done by using the symmetric approach. All

asis functions of the different transforms are shown in
igs. 1 and 2.
The results of the OPT estimator (the one that per-

ormed best on artificial data) are summarized in Fig.
(a). Each curve shows I�Y�−I�YRND� as a function of
atch size, and the different curves correspond to the dif-
erent transforms that generated Y. From this figure, one
an directly read out the absolute differences in the multi-
nformation reduction between the different transforms.
s expected, the random decorrelation filter achieves the

east reduction in the multi-information, and ICA
chieves the maximal reduction. The slightly worse per-
ormance of symmetric decorrelation relative to the ran-
om decorrelation basis for patch sizes smaller than or
qual to 4�4 can be seen as an artifact due to the sepa-
ation of the DC component. While this preprocessing
elps to make the results more stable against the particu-

ar choice of the data set, it affects the shape of the basis
unctions, especially for small patch sizes. Finally, it is in-
eresting to note that the nonadaptive Haar wavelet deco-
relation basis performs only slightly weaker than ICA
espite the blockiness of the basis functions.
Apart from the fact that the absolute differences be-

ween the different transforms are small, it is interesting
hat these differences between all transforms stay con-
tant over different patch sizes except for those with PCA.
pparently, PCA is a good choice for small image patches,
ut it is likely to perform worse than triangular whiten-
ng and zero-phase whitening for large image patches. A
euristic explanation for this finding is the lack of local-

zation of the PCA basis in the spatial domain. The per-
ormance gap between zero-phase whitening and triangu-

Table 1. Bias and Variance of the Four Different
Entropy Estimators in the Case of a Laplacian

Random Variable

Parameter
(bits)

Estimator

MAL OPT NPL VAS

ias 0.0026 0 0.0023 −0.0371
Variance 0.0072 0.0073 0.0073 0.0072

Total squared error 0.0077 0.0073 0.0077 0.0378
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ar whitening might be due to the fact that the receptive
elds of triangular whitening are more anisotropic (see
ig. 2). Referring to the predictive coding interpretation
he reason for this anisotropy is the asymmetric sequen-
ial raster scheme with which triangular whitening pre-
icts each pixel from the previous ones.
For control, the results of the three other estimators as

ell are shown in Figs. 6(b)–6(d). Additionally, the good-
ess of fit of the OPT estimator is shown in Fig. 7 by using
he KL divergence between the optimized fit with the ex-
onential power family and the nonparametric distribu-
ion estimate. Finally, we also inspected the fits by eye.
ll three control methods indicate that the presented es-

imates are highly reliable.
To appreciate how small the relative differences in
ulti-information reduction are between the different

ransforms, it is necessary to determine the total depen-
ency reduction I�Y�−I�X� relative to the pixel represen-
ation X including the DC component. The inclusion of the
C component was not necessary in the previous com-
arison, where we considered only differences between
he outputs of the different transforms, because by con-

ig. 6. (a) Multi-information estimates obtained from the OPT
nformation relative to random whitening for random whitening
CA (squares), Haar wavelet (dashed curve with diamond), and
truction, the difference has to vanish for random whitening. (b)
imator, (c) NPL estimator, (d) VAS estimator. For all estimators
estimator. The six curves represent the absolute difference in multi-
(stars), symmetric whitening (circles), triangular whitening (triangles),

ICA (diamonds) respectively, as a function of patch size. Due to con-
–(d) Same as (a) but for results from different estimators: (b) MAL es-
, the maximum difference is smaller than 0.1 bits/pixel.
ig. 7. Maximum empirical KL divergence over all dimensions
fter optimization (i.e., worst case). The theoretical optimum is
ndicated by the dotted–dashed line, which gives the empirical
L divergence for an artificially generated sample from a Laplac-

an distribution of the same size �N=39,690�.
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truction all transforms separate the same DC component
ith the same marginal entropy. To determine I�Y�−I�X�

or all transforms, we used the NPL estimator to evaluate
he sum of the marginal entropies of the pixel represen-
ation because those cannot be fitted so well with the ex-
onential power family. It is clear that this estimate can-
ot be of the same precision as that of the estimates for
he output entropies, and it will also be more dependent
n the particular data set used. Nevertheless, we may as-
ume the precision to be of the order of 0.1 bits/pixel,
hich is sufficient to give a good ballpark figure. The total
ain in the case of PCA, which includes the decorrelation
f the DC component, is shown in Fig. 8. The shaded re-
ion indicates the tight range within which �I varies for
he entire spectrum of decorrelation transforms, where
he upper bound coincides with the curve of random deco-
relation and the lower bound with that of ICA. As one
an appreciate by eye from this graph, the relative differ-

ig. 8. Multi-information reduction on the �m�m�-dimensional
pace including the DC component. The black line corresponds to
he NPL estimator of the actual multi-information gain �I given
y Eq. (19) in the case of PCA. The gray region around the solid
urve indicates the range within which the multi-information
ain varies for the different decorrelation methods. The upper
ound of the gray region is given by random whitening, while the
ower bound is given by ICA.

ig. 9. Comparison of the excess kurtosis spectra for all meth-
ds in the case of 16�16 patches.
nces in performance are very small, in fact, always
maller than 5%. Triangular whitening, in particular,
chieves 98% of the multi-information reduction achieved
ith FastICA for all patch sizes.
Finally, to see how differently the individual compo-

ents contribute to the multi-information gain, we show
n Fig. 9 the excess kurtosis spectra for all transforms in
he case of 16�16 patches. The bases of random whiten-
ng, zero phase, and triangular whitening exhibit very flat
pectra, indicating that all components are equally
parse. Intuitively, this is to be expected, since all the
omponents look pretty much the same apart from the lo-
ation of their center peaks. In contrast, the sorted kurto-
is spectra of the anisotropic bases of PCA, ICA, and the
aar wavelet are steadily decaying. For PCA, the low

patial frequencies exhibit the highest kurtosis. In the
ase of ICA, the most elongated edge filters are the most
urtotic. For the Haar wavelet, the kurtosis is roughly
orrelated with the scale of the basis functions such that
he components at the smallest scale have the least kur-
osis. In addition, the coefficients of the diagonal elements
f the Haar basis exhibit less kurtosis than the vertical
nd horizontal components.

. DISCUSSION
his study provides the first quantitative analysis of the
ulti-information reduction achieved with different lin-

ar filtering models of natural image statistics. Special
are has been taken to make the required estimates as re-
iable as possible. The main result is that after second-
rder decorrelation, higher-order decorrelation with lin-
ar transforms amounts to a surprisingly small extra gain
n terms of multi-information for natural images. As a
onsequence, this finding challenges the functional inter-
retation of V1 simple cell receptive fields as linear
igher-order decorrelation filters.
We should be careful about the interpretation of this re-

ult. Foremost, this study seeks to be more precise about
hat we can conclude from the similarities between V1

imple cell receptive fields and the shape of linear ICA fil-
ers. The lack of a distinct advantage for the ICA edge fil-
ers in terms of statistical independence should not be
aken as evidence against the approach of using the sta-
istics of natural images to find better image representa-
ions. It rather demonstrates that the basic model of V1
imple cells as linear Gabor-like filters is not very effec-
ive as a means of factorial coding for natural images.

In general, the restriction to linear processing heavily
onstrains the range of possible computations. Given that
he linear independent components still exhibit higher-
rder correlations, it is likely that more flexible, nonlinear
appings may achieve a much larger gain in the multi-

nformation reduction. In terms of image analysis, the
omputational limitations of linear signal processing also
ive reason to be skeptical about the common view of V1
unction. Oftentimes, the investigation of V1 simple cells
uilds on the notion that filtering with Gabor-like recep-
ive fields effectively encodes for the presence of edges.



T
t
p
a
p
c
t
e
r
c

a
t
s
o
i
n
t
r
c
c
r
e
s
i
i

v
p
t
w
s
n
a
t

A
E
I
p
t
(
t
o
h
d
s

v
t
w
c
o
t
i
a
n
f
n
m
o
o

T
n
o
n
m
a
e
o

m
t
i
t
v
r
fi
m
t
s
c
r
t
H
h
g

s
t
a
a
o
e
b
e
c
P
b
t
w
t
b
r

n
t
r
t
t
T
n
h
t
g
d
t
w
b
t

n
t
q

1262 J. Opt. Soc. Am. A/Vol. 23, No. 6 /June 2006 Matthias Bethge
his idea, however, ignores the fact that the detection of
he outline of an object in natural images is an unsolved
roblem in computer vision, which crucially relies on the
ppropriate choice of nonlinearities. Moreover, the com-
utational limitations of linear image analysis are
omplemented by the physiological fact that a large frac-
ion of the variance in V1 simple cell responses cannot be
xplained with the classical linear response model (for a
ecent critique of the standard model of early visual pro-
essing, see Ref. 38).

In addition to the need for more flexible nonlinear im-
ge models, it is also necessary to reexamine the assump-
ions underlying factorial coding. In particular, the pre-
ented quantitative evaluation of image models in terms
f statistical independence should not leave us with the
mpression that factorial coding is the only thing that we
eed to consider in order to build better image models or
o come up with better hypotheses about neural image
epresentations. Traditionally, ideas about coding effi-
iency borrowed from information theory played a strong
omponent in the motivation of factorial coding in neu-
onal representations.13,39–41 It is important to note, how-
ver, that maximal statistical independence is not neces-
arily optimal for coding efficiency,42 and coding efficiency
s not sufficient as an ultimate design principle for useful
mage representations.

In the following, we will first discuss the principal ca-
eats of factorial coding in terms of coding efficiency. In
articular, we will discuss ICA from the rate-distortion
heoretical perspective of transform coding.42,43 Next, we
ill explain the conceptual limitations of blind source

eparation (BSS) in the context of natural images. Fi-
ally, we will explore how unsupervised learning provides
viable approach to the problem of optimal representa-

ion learning.

. Factorial Coding Is Not Sufficient for Coding
fficiency
CA is equivalent with the task of finding a lossless map-
ing of a given multivariate random variable such that
he new output random variable is uniformly distributed
see Appendix D). This task coincides with the problem
hat one has to solve in redundancy reduction in the case
f discrete sources. In the case of continuous sources,
owever, the reduction of statistical dependencies per se
oes not imply any compression, because the lossless de-
cription length of real numbers is always divergent.44

Clearly, it is easy to construct a discrete code from ICA
ia quantization of the output coefficients. It is also easy
o construct a discrete-valued maximum entropy code
ith uniform distribution if the density over the

ontinuous-valued ICA coefficients is uniform. Similarly,
ne may include output noise instead of quantization to
urn the ICA transform into a channel with finite capac-
ty. As has been pointed out in Refs. 19 and 45, the goal of

uniform output distribution in the presence of additive
oise is equivalent with a maximization of the mutual in-
ormation between input and output. In fact, if the neural
oise model does not depend on the filter matrix W, then
aximizing the mutual information between input and

utput is equivalent with maximizing the entropy of the
utput of the channel, as is done in Bell–Sejnowski ICA.
hings become more involved, of course, if the channel
oise cannot be assumed to be W-independent. In the case
f independent Poisson noise, for instance, the optimal
eural activation functions with respect to information
aximization are staircase functions46 (also cf. Refs. 47

nd 48). The optimization for W-dependent noise, how-
ver, may be regarded as a subsequent step in the context
f information maximization.

As long as one is concerned only about error-free trans-
ission of a discrete signal (i.e., channel coding), informa-

ion maximization is a valid design principle. However,
nformation maximization per se is meaningless if the
ask is to find an efficient description of continuous-
alued data (i.e., source coding). Intuitively speaking, the
epresentation of a continuous source via a channel with
nite capacity always requires one to discard infinitely
any bits because only a finite number of bits can be

ransmitted. Therefore the most important question in
ource coding is how to decide which bits or, more pre-
isely, which changes of the signal are most worthy to be
epresented. This bit-selection problem can be decided on
he basis of perceptual relevance or task relevance only.
ence, to judge a coding scheme, one always has to verify
ow good the perceptual or performance quality is for a
iven information rate.

In the context of ICA, this problem can be demon-
trated if we actually compare the perceptual distortion of
he different linear transforms in the presence of noise or
fter quantization of the output. As an illustrative ex-
mple, we show the Lena image for the pixel basis, the
rthogonal PCA basis (that is, s=UPCAx), the PCA whit-
ning basis (that is, s=D1UPCAx), and the ICA whitening
asis (that is, s=VICAD1UPCAx) after independent and
quidistant quantization of the output coefficients. As one
an see in Fig. 10, the perceptual quality of orthogonal
CA is by far the best although its information rate has
een chosen to be the smallest. The comparison of or-
hogonal PCA and PCA whitening bases shows that the
hitening step has a large drawback in terms of percep-

ual quality. So orthogonal PCA can be interpreted as the
etter compromise between the advantageous pixel met-
ic and statistical independence.49

The obvious alternative to PCA would be to try orthogo-
al ICA, where the multi-information is minimized under
he same constraint that W is orthogonal. However, the
ate-distortion gain will be very small, since the restric-
ion that W be orthogonal implies that PCA is the only
ransform for which all second-order correlations vanish.
he power spectrum obtained from the pixel intensities of
atural images is not flat.50 In addition, the present study
as demonstrated that the difference in negentropy be-
ween ICA and PCA is small. Taking these two facts to-
ether, it is likely that the optimal transform in the rate-
istortion sense is much closer to the PCA filters than to
he ICA filters: If the input signal of orthogonal ICA is not
hite to begin with, then any rotation away from the PCA
asis in order to increase the total negentropy comes at
he cost of an increase in the Gaussian entropy bound.

The fact that maximal statistical independence is not
ecessarily optimal for coding efficiency is well-known in
ransform coding research.42 For independent coefficient
uantization, there is no competitor to discrete cosine
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ransform coding and most people today are still using
he old JPEG still image compression standard. The
light advantage of wavelet coding used in the more re-
ent JPEG 2000 standard51 can be achieved only as em-
edded zero-tree wavelet coding,52 which gives up the in-
ependence assumption of the transform coefficients. In
onclusion, the results of transform coding suggest that
lain ICA is rather less efficient than PCA in terms of cod-
ng efficiency. This underlines the basic fact of rate-
istortion theory that factorial coding and information
aximization are not sufficient for efficient coding.

. Blind Source Separation Is Not Sufficient for Optimal
epresentation Learning
lthough coding efficiency is frequently used to motivate

actorial coding and unsupervised learning, we agree with
he view in Refs. 53 and 54 that compressive coding is not
ctually the ultimate goal of early vision. While neuronal
epresentations of sensory inputs in the brain are re-
uired to avoid a waste of the physiological resources, it
ould be very limiting if one sought to understand neural

epresentations from this constraint only. Foremost, we
eed to answer the following question: How does neural
rocessing transform the retinal image into useful repre-

ig. 10. Comparison of perceptual distortion between different
uantization in the original pixel basis with maximum rate �0.23
ate �0.13 bits/pixel�, (c) quantization in the PCA whitening basi
hitening basis with second smallest rate �0.17 bits/pixel�.
entations that make explicit the behaviorally relevant
tructure and geometry of the environment?

An important motive underlying the use of ICA-like al-
orithms in image coding is the goal of extracting mean-
ngful parameters by means of statistical learning. Origi-
ally, ICA had been developed in the context of BSS.3 The
ttribute “blind” stands for the fact that within the class
f linear models no further assumptions are required to
dentify non-Gaussian source signals up to scaling factors
rom the statistics. For the purpose of image representa-
ion learning, however, the concept of BSS needs to be
odified: Strictly speaking, BSS makes statements only

bout the case when the generative model used is correct.
he optimization in BSS is used only to find a unique an-
wer. The theory of BSS does not really care about
radual improvements in the objective function, because
t does not require that the objective function express a
esirable feature. It is just an arbitrary contrast function.
In the case of ICA, this means that the multi-

nformation does not necessarily express the most desir-
ble objective and that other criteria might be used
quivalently. A way to illustrate this fact is to consider
ata generated by the following linear time-invariant
enerative model:

forms using uniform quantization of the output coefficients: (a)
xel�, (b) quantization in the orthogonal PCA basis with minimum
second largest rate �0.20 bits/pixel�, (d) quantization in the ICA
trans
bits/pi
s with
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xt = Ast. �20�

ith the assumption that all source signals are mutually
ndependent, one can recover the matrix A of basis func-
ions either with FastICA or with Molgedey and Schuster
CA,55 which use different objective functions. More spe-
ifically, Molgedey and Schuster ICA does not use higher-
rder correlations but decorrelates the time-delayed cross
ovariance in order to find a unique answer. If both meth-
ds are applied to wildlife movies, one still finds the edge
lters with FastICA while the basis functions determined
ith Molgedey and Schuster ICA look very different from

hose (see Fig. 11). From the BSS point of view, the dis-
repancy in the answer between the two methods simply
eans that the linear time-invariant model (20) is wrong

or time-varying natural images. BSS does not tell us why
e may prefer the answer given by FastICA over the an-

wer given by Molgedey and Schuster ICA or vice versa.
In image representation learning, it is not assumed

hat the generative models are actually correct. There-
ore, the solutions cannot be interpreted in terms of BSS.
he only way to assess a given answer meaningfully in
his case is how well it performs as measured by the
tated objective function.

. Optimal Representation Learning: Unsupervised
earning Meets Efficient Coding
n this final part of the discussion, we name some ex-
mples of unsupervised learning models that are more
losely related to the goal of efficient coding than plain
CA is. An important extension of ICA is independent fac-
or analysis7,12,56,57 “(IFA)” (originally called sparse cod-
ng, sometimes also called noisy ICA). Like ICA, it uses a
enerative model that assumes non-Gaussian sources. In
ontrast to ICA, however, IFA allows one to describe the
nput as a superposition of an arbitrary number of
ources plus noise. The use of the noise model is not lim-

ig. 11. Basis functions for 16�16 image patches learned with
olgedey and Schuster ICA from a wildlife movie.
ted to the case where noise is actually present in the
ata. Intuitively speaking, a noise model can also be used
s a means to specify the importance of different bits. In
act, the frequently chosen isotropic Gaussian noise model
orresponds to the assumption of the Euclidean metric as
istortion measure. Consequently, the choice of the vari-
nce corresponds to a parameter related to the rate-
istortion trade-off.
A quantitative analysis of coding efficiency has been

arried out by Lewicki and Olshausen in Ref. 12. They
ompared the discrete coefficient histogram entropy of the
mage basis learned with IFA with that of other image
ases for a given mean square reconstruction error, which
ttested its good performance. However, the learning as
ell as the performance evaluation was carried out with

espect to the Euclidean metric in the whitened space. It
ould be very interesting to know the results of applying

FA to images in the pixel metric.
Another possible extension is to combine ICA with a
ultiscale representation such as the Laplacian

yramid.58 Intuitively speaking, we may think of prewhit-
ned ICA as the optimal transform with respect to the Eu-
lidean metric in the whitened space. It might well be
ossible that plain ICA can successfully be used to encode
he individual levels of the Laplacian pyramid because
ithin each level the covariance matrix of the image
atches has a rather flat spectrum to begin with. There is
ome recent work along these lines, where people started
o optimize wavelets with respect to the statistics of the
ignal to be represented.59,60

As a final example, the issue of efficient coding in neu-
al representations can be addressed most explicitly by
tilizing a joint-source channel coding approach. In addi-
ion to a distortion measure, it also assumes a specific
eural noise model and a certain type of decoder. In a
inimalist model, for instance, we may assume that each
1 simple cell belongs to a group of neurons whose coding
bjective is to minimize the mean square error recon-
truction of a certain image patch in pixel space. This
odel can be seen as a combination of current neural im-

ge coding models with current models of optimal neural
opulation codes: Neural image coding models put strong
mphasis on the input statistics to inform the model but
arely address the effect of neural noise on the optimal
ode. Instead, most models of optimal neural population
oding have been used mainly to investigate the effect of
ifferent neural noise models, while the input signal is
imply assumed to be a random variable with a conve-
ient distribution without any further specifications.
All aspects of efficient coding, stimulus statistics, neu-

al noise, and perceptual distortion can be combined in
uch an optimal joint-source channel coding approach.61

s an interesting example, one may study the minimum
ean square error reconstruction for Gaussian noise

chieved with a linear readout mechanism,62 which can
ignificantly change the shape of optimal image represen-
ations. This setting is very close to the standard trans-
orm coding setting,42 as it essentially replaces the quan-
ization by Gaussian noise. From previous work on
ptimal population coding, we can expect even larger
hanges in the shape of optimal neural image representa-
ions by choosing a Poisson noise model and a nonlinear
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inimum mean square estimator for the
econstruction.47,48,63

In the above list of examples, we have focused on the
spect of coding efficiency, but other objectives besides
oding efficiency can be optimized as well. The crucial
oint in optimal representation learning is that the objec-
ive function really define the criterion according to which
ne would like to judge the performance of the represen-
ation. Quantitative comparisons such as the one pre-
ented in this paper can then be used to clarify how sen-
itive the representation is to the goal defined by the
bjective function.

PPENDIX A: TRIANGULAR
ECORRELATION
e included triangular decorrelation in our comparison

ecause it can be seen as the transform coding version of
inear predictive coding. A convenient way to determine a
riangular decorrelation transform is to apply the
holesky decomposition to the covariance matrix, CX
LLT, where L is lower triangular. Since the Cholesky de-
omposition is unique, it recovers the true mixing matrix
=L whenever the assumption of a triangular mixing
atrix is correct. Furthermore, the inverse matrix of a

riangular matrix is again triangular. Thus WTRI=A−1

L−1 defines the filter matrix of the triangular whitening
ransform. In the next section we provide a motivation
howing that triangular decorrelation can be seen as the
ransform coding version of predictive coding.

Triangular decorrelation and predictive coding. To
ake the interpretation of triangular decorrelation trans-

orms in terms of predictive coding most straightforward,
e now require all entries on the main diagonal of the tri-
ngular decorrelation matrix W to be equal to minus one.
his choice is possible because, after whitening, an arbi-
rary diagonal transform D2 can be applied that does not
hange the off-diagonal elements of the covariance ma-
rix. Then each output coefficient is given by

�A1�

ecause of the triangular structure, one can minimize the
omponent variances in a greedy fashion without loss of
ptimality. The minimization of each individual Var�yk�
orresponds to the problem of optimal linear prediction of
k from the previous k−1 components �x1 , . . . ,xk−1�:

x̂k = �
j	k

Wkjxj. �A2�

herefore the triangular decorrelation matrix can also be
etermined by using the linear minimum mean square es-
imator. If x is a random variable in Rn with E�x�=0, then
he linear minimum mean square estimator of the kth
omponent as a function of the previous k−1 components
s given by64

�A3�
here Cm denotes the covariance matrix of the first m
omponents:

Cm = E��x1, . . . ,xm�T�x1, . . . ,xm��. �A4�

onsequently, triangular decorrelation can be expected to
ork well whenever predictive coding is expected to work
ell. That is, triangular decorrelation will lead to good re-

ults in the case of autoregressive processes. Note that in
he case of spatially predictive coding, as used for still im-
ge coding, it is not obvious what the optimal ordering of
he pixels is. More generally, the performance of triangu-
ar whitening depends on the particular basis of the input
pace. In the case when the input space is given by the
ixel basis, one has the freedom only to choose a permu-
ation of the ordering of the dimensions. In this paper, we
se a simple rowwise raster scan through the patch to
pecify the ordering of the dimensions.

PPENDIX B: LOG INTENSITIES VERSUS
INEAR INTENSITIES
he multi-information is not invariant under nonlinear

ransforms of the pixel intensities. A principled approach
o finding the “right” pixel intensity representation is to
odel the data as a postnonlinear (PNL) mixture.65 A fit

f the PNL model, however, is beyond the scope of this pa-
er. We decided to use log intensities mainly because it is
common way to model the dynamic range adaptation of

hotoreceptors in the retina. In comparison with the oc-
asionally used linear intensities, the choice of log inten-
ities leads to less kurtotic pixel intensity distributions.
mall kurtosis is not only more plausible in terms of a
ostnonlinear mixture model66 but it also enhances the
eliability of the marginal entropy estimates: After “DC0
ltering” (that is, removing the DC component), we find
hat the shape of all marginal distributions becomes very
lose to that of a double-sided exponential (or Laplacian)
istribution and the fit with the exponential power family
which contains the Laplacian distribution as a special
ase) is excellent when using the log-intensity scale. This
nding is typical for images whose content is dominated
y greens and woods (see also Fig. 1(c) in Ref. 24). Images
ith a different content typically lead to marginal distri-
utions with higher kurtosis.

PPENDIX C: SAMPLING SCHEME
or the sake of maximal reproducibility, we decided to use
deterministic sampling scheme, but the results do not

ely on this choice. To generate the training set, we first
ampled, from each of the ten images, 632 patches of the
aximal size �16�16 pixels�. These patches were

ampled without overlap, such that tiling them together
n the correct order would recover the entire given image
part from the lowest 16 rows and the rightmost 16 col-
mns (see Fig. 12). In this way, we obtained 10�632

39,690 samples. For the test set, we got the same num-
er of samples from the same ten images by choosing
hose 632 patches that tile the center part of each image
nstead of the upper left. That is, a margin of 8 pixel
idth is left out at all four edges of the given image in this

ase. The training and test sets for smaller image patches
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re obtained from these, simply by taking only a certain
raction of each 16�16 patch (we always took the upper
eft part).

The basis functions are learned by using only the data
rom the training set. The multi-information gain is
valuated not only for the training set but also for the test
et. A large difference between both measurements would
ndicate overfitting. In all measurements carried out in
his study, the difference between both measurements is
egligible.

PPENDIX D: GAUGING THE
ULTI-INFORMATION GAIN

. Bell–Sejnowski Gauge
n the Bell–Sejnowski gauge, a pointwise nonlinear map-
ing (a “squashing function”) is applied to each individual
utput channel such that fk�x�=gk�sk�, where

yk ª gk�sk� =�
−�

sk

p�s̃k�ds̃k �D1�

s set to be the cumulative distribution function of each
ndividual component Sk. In general, pointwise nonlinear

appings of the source variables Sk do not affect the
ulti-information. Since the squashing functions are here

hosen to be the distribution functions of the Sk, it follows
hat the individual output components Yk are uniformly
istributed in the unit interval (0,1), so that their differ-
ntial entropies vanish. In this case, we have

Imulti
BS �Y� = − h�Y� = − E�log�det�W�� + �

k=1

d

log� �gk

�sk
�


− h�X�, �D2�

hich formally translates the minimization of multi-
nformation into a maximum entropy problem. Since the
niform distribution is the maximum entropy distribu-
ion on the unit interval, it is also possible to estimate the
istribution functions simultaneously by maximizing the
ntropy.

. Volume-Conserving Gauge
or the purpose of precise estimation of the achieved sta-
istical dependency reduction, the choice of volume-
onserving ICA has some advantages. In linear volume-
onserving ICA, we do not have the pointwise
onlinearities; rather, the entire mapping f is linear:

ig. 12. Graphic demonstrating the scheme used to sample the
mage patches from the van Hateren images: training set (left),
est set (right).
y = Wx. �D3�

he constraint of volume conservation implies that
det�W��=1, so that the log determinant is always zero.
onsequently, the joint output entropy equals the joint in-
ut entropy, and thus the multi-information between the
utput components is

�D4�

his means that differences in the efficiency between dif-
erent codes require only the evaluation of differences in
�Y1 , . . . ,Yn�, the sum of marginal entropies.

The restriction to volume-conserving transforms does
ot affect the ICA solution up to a global rescaling factor,
ecause the multi-information function is invariant with
espect to a global rescaling of the filter matrix. In other
ords, for any given filter matrix W, the rescaled matrix
/�det�W�d, where d denotes the dimensionality of X

nd Y, is equivalently optimal with respect to the output
ulti-information. Conversely, Eq. (D2) can also be inter-

reted as the (marginally stable) Lagrangian way to solve
he problem of minimizing c�Y1 , . . . , Yn� under the side
onstraint det�W�=constant.
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