
A Neural Model of High-Acuity Vision in the
Presence of Fixational Eye Movements

Alexander G. Anderson1

and Bruno A. Olshausen2
1Physics Department, 2School of Optometry,

& 2Helen Wills Neuroscience Institute
University of California, Berkeley

Email: {aga, baolshausen}@berkeley.edu

Kavitha Ratnam
and Austin Roorda

Vision Science Program, School of Optometry
University of California, Berkeley

Email: {kavitha, aroorda}@berkeley.edu

Abstract—Experiments by Ratnam et al.[1] demonstrate the
benefit of drift eye movements for the discrimination of a
diffraction-limited tumbling E sized near the sampling limit of
the cone photoreceptor array. Subjects perform better at discrim-
inating the orientation of the E when its projection moves on the
retina with the same motion statistics as drift eye movements,
but not necessarily correlated to the true eye motion. In order
to better understand the neural circuitry that underlies these
psychophysical results, we propose a computational model based
on a Bayesian ideal observer that attempts to estimate the spatial
pattern on the retina given simulated RGC spikes. Our Bayesian
model both corroborates the psychophysical measurements and
suggests a neural mechanism. We extend previous work by
Burak et al.[2] by creating a novel, online approximation to
the expectation-maximization algorithm that generalizes to the
case of continuous eye movements and sparse pattern priors.
From this emerges a neural model containing two populations of
cells which we hypothesize to exist in primary visual cortex: one
that encodes the spatial pattern using a sparse code and another
that tracks the eye position and is used to dynamically route
information coming from LGN afferents feeding into the pattern
cells.

I. INTRODUCTION

Our brains take in sensory data and infer perceptually
relevant features of the world. In contrast to our perception, the
raw sensory data we receive is typically incomplete, unstable,
and noisy. In the case of high acuity vision in humans, there
are two important sources of noise and instability: limited
channel capacity of responses of retinal ganglion cells and
drift eye movements that cause the retinal projection of an
object in the world to jitter. Humans with normal 20-20 vision
are able to resolve visual features that differ by just a few
photoreceptors (e.g., an E versus a F). While we perform this
discrimination, the letters drift across the retina over distances
much larger than their own sizes. While the brain can, in
principle, estimate motion using proprioceptive or efference
copy signals, a number of lines of evidence suggest that this
is not the case [3] [4] [5]. Thus, in order to properly integrate
incoming spikes from the retina, the cortex must estimate the
eye’s trajectory during drift using the incoming spikes.

Burak et al.[2] proposed a model that took an important first
step in attempting to solve this problem from a first-principles
approach. They defined a probabilistic model and then used a

form of approximate Bayesian inference to factorize form and
motion from the incoming retinal spike train. Here we relax
a number of their assumptions: 1) We allow for continuous
eye movements; 2) We reconstruct continuous gray-valued
patterns instead of binary patterns; and 3) We infer a sparse
representation of the pattern rather than pixels. We created a
novel, online approximation to the EM algorithm in order to
handle this more general situation. For comparison, previous
papers used a variational mean-field approach [2][6].

Our main hypothesis is that there exists a population of
neurons in the primary visual cortex whose retinal receptive
fields are dynamically shifted so as to remain fixed in object-
centered coordinates. While this question has been investigated
previously[7], the results are inconclusive due to conflicting
results from different labs [8]. An extension of a recent
experiment by McFarland et al.[9] provides a means to test
this hypothesis in a new way. In particular, they use V1
recordings (with a known stimulus) to fit a spiking neuron
model to predict the location of the eye during drift. Their
model assumes that the V1 neurons corresponding to the fovea
are fixed in retinotopic coordinates. A comparison of the actual
eye motion and the inferred eye motion can reveal the extent
to which the representation of the pattern in V1 is stabilized
in object-centered coordinates. Relatedly, we also predict that
there is a collection of neurons that track the eye position
since the most recent microsaccade. Snodderly et al.[10] find
that some V1 cells have varying activation in response to
drift and microsaccades (eg. tuned to one or the other, or a
combination). The investigation of such cells merits further
attention.

While our work shares a superficial resemblance to Rucci
et al.[11], we use high-contrast stimuli with frequency content
above the Nyquist sampling frequency of the retinal cone
lattice (50 cycles/deg), whereas Rucci et al.[11] use low
contrast Gabors at 11 cycles/deg. Furthermore, our model
demonstrates a mechanism by which pattern information that
has been transformed from the spatial domain to the time
domain, via fixational eye movements, may be decoded in
cortex.

The rest of this paper is organized as follows. First, we
discuss our mathematical formulation of the problem as ap-
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Fig. 1. Top: An upright E projected onto a simulated cone sampling lattice.
The width of the E is 0.8 arcmin. The cones are placed in a hexagonal lattice
with spacing 1.09 arcmin. The lattice is randomly translated and rotated, and
each cone is jittered slightly about its position. The green curve shows 500 ms
of a sample eye trajectory collected in association with [1]. Bottom: Spike
Generation Model: We start with an object in the world. Next, we project
that object onto a photoreceptor array that moves according to fixational
eye movements. The dot product between the retinal projection and the cone
receptive field gives a number that is passed through a non-linearity to get a
firing rate. Finally, that firing rate is converted to spikes using a Poisson spike
generator.

proximating a Bayesian ideal observer that seeks to infer a
sparse code of the image of an object in the world given RGC
spikes. Second, we demonstrate that a sparse pattern prior
improves inference. Third, we demonstrate in simulation that
an aliased and diffraction-limited E (as in[1]) that is moving
produces a richer, decodable signal as compared to a stationary
pattern landing on the retina.

II. MATHEMATICAL METHODS

A. Model Notation

For the rest of the paper, we will use the following subscripts
consistently: t: time step , b: batch index, i: pixel index, j:
RGC index, k: sparse component index.

1) S is the spatial pattern to be inferred, in a pixel rep-
resentation. Si denotes a particular pixel of the pattern.
We constrain Si to be between 0 and 1. XS

i denotes
the center of pixel i. The pixels are placed in a grid
with spacing ds. The simulated projected image of the

pattern I(x) is smoothed using Gaussian interpolation,
with σS = 0.5 ∗ ds. Then I(x) =

∑
i SiN(x;µ =

XS
i , σ = σS) where N denotes a Gaussian.

2) A is the vector of sparse coefficients that generate S
through a sparse coding dictionary, D. Ak denotes the
kth sparse coefficient.

3) D is a sparse coding dictionary where Dk is the kth
dictionary element.

4) XR
t (sometimes abbreviated as Xt) denotes the amount

that the retina has moved since the start of the simula-
tion.

5) DC is the diffusion coefficient of the eye movements,
λ0 = 10 Hz, λ1 = 100 Hz are the baseline and
maximum firing rates of the neurons.

6) Rt,j denotes number of spikes of RGC j in the time
window [t, t+ ∆t]. ∆t is the timestep (usually taken to
be 1 ms). We use R as an abbreviation for Rt,j for all
t and j.

7) The jth RGC has a gaussian receptive field N(x;µ =
XE
j , σ = σEj ). Each RGC can either be an ON cell or

OFF cell. We construct a jittered, hexagonal cone lattice
with spacing de. Each cone is connected to one ON RGC
and one OFF RGC as is the case in the human fovea.
σE = 0.203 · de following [12].

These quantities are related through the probabilistic graphical
model shown in Figure 2. In order to specify a graphical
model, we need to specify the probability of each node given
the parents of that node. We systematically describe them
below:

B. Generation Model

1) Spiking Model: We model the spiking of the neurons
using a generalized linear model (GLM).

log p(Rt,j |S,Xt) = Rtj log[λj(S,Xt)dt]− λj(S,Xt)dt (1)

λj(S,Xt) = exp
(
log λ0 + log(λ1/λ0) · c′j,t

)
(2)

c′j,t = cj,t if j ∈ ON or 1− cj,t if j ∈ OFF (3)

cj,t = g ∗
∑
i

SiT (xRt )i,j (4)

T (xR)i,j =
1

2πσ2
exp

[
−
||xSi − xEj − xR||2

2σ2

]
(5)

σ2 = (σS)2 + (σE)2 (6)

g is a gain factor that sets the maximum size of cj,t to be 1.
In practice, λ1∆t is much less than 1. The equation for T (x)
results from taking the dot product of the Gaussian interpolated
image and the Gaussian Receptive field of each cone.

2) Spike Train Generation Process: In order to generate
a spike train for our decoder, we feed a spatial pattern
and an eye motion path into our spiking model above. For
the eye path, we either generate a diffusive random walk
with a diffusion constant Dgen

C or we use actual eye motion
trajectories collected from an AOSLO [13]. For the objects in
the world, we use an E or an MNIST digit (future work will
consider natural scenes as well).
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C. Priors for the Decoding Algorithm

There are many possible pairs of eye motion paths and
spatial patterns that are consistent with the incoming retinal
spikes. In order to deal with this ambiguity, we impose priors
on the eye trajectory and the pattern, as shown in Figure
2. If N are all the nodes of the graphical model, then
p(N) =

∏
i p(Ni|Nπ(i)) where π(i) denote the parents of

node i. Then all other quantities that we are interested in
are computed by marginalizing the resulting distribution. Our
algorithm is based on using the EM algorithm to approximate
argmaxAp(A|R) and then expanding the resulting equations
using a Gaussian approximation to the data terms.

1) Motion Prior: We model the fixational eye movements
as a simple diffusion process with a diffusion constant DC ≡
Dinfer
C :

p(X0) = δ(X0) (7)

− log p(Xt|Xt−1) =
1

2(DC/2)∆t
(Xt −Xt−1)2 + C (8)

Note that Xt is a two dimensional vector, so for the overall
vector to have a diffusion constant of DC∆t, then each
individual component has a diffusion constant of DC/2∆t.

2) Pattern Prior: Finally, we must specify a prior on the
spatial pattern to be inferred. For this we utilize a sparse
coding prior:

− log p(S|A) = δ(S −DA) (9)

− log p(A) = β
∑
k

|Ak| (10)

where δ(x) is a delta function. As a result of this prior,
we estimate a sparse code of the pattern instead of directly
estimating pixels. We also add a term in the cost function
to force the pixels to be in the range [0, 1]: − log p(Si) =
γ ∗ (Θ(Si− 1) + Θ(−Si)) where Θ(x) is 1 if x > 0 and zero
otherwise and γ is a parameter. It should also be noted that
an independent pixel prior as in Burak et al.[2] may be seen
as a special case of this system when β = 0 and D is equal
to the identity matrix.

D. Algorithm for Inferring Pattern and Motion from Spikes

In extending previous models of vision in the presence of
fixational eye movements, there are a number of key themes
driving this work. First, we want the algorithm to be causal
(eg. you cannot use information from the future to infer
your current state). Second, we want the algorithm to be
an online algorithm. That is to say that the algorithm has
a finite memory buffer that it updates using observations. A
Kalman filter is a good example of an algorithm of satisfying
these two requirements. Third, we want the algorithm to work
with an pattern representation that does not necessarily consist
of pixels, but where each neuron could have a structured
(e.g., oriented) receptive field as in V1. Fourth, we want the
algorithm to be implementable in a neural circuit.

Here, we describe an algorithm with such properties. For
emphasis, we note that the approach in [2] does not generalize

to this situation and we developed a novel approach to handle
this more general setting. The algorithm requires storing three
variables in memory:

1) qt(Xt) is the algorithm’s current estimate of the position
of the eye at time t. Concretely, we write qt(Xt) =∑
bWt,b · δ(Xt, Xt,b) where Xt,b is a collection of

positions, and Wt,b are the corresponding weights.
2) Ât, is a vector of size Nsp (the number of sparse

coefficients) that represents the algorithm’s estimate of
the underlying spatial pattern, represented as a sparse
code, after looking at spikes in the time interval [0, t].

3) Ĥt is a matrix of size Nsp by Nsp that represents the
inverse of the covariance associated with our estimate
of At after looking at spikes in the time interval [0, t].

The algorithm consists of the following steps:
1. Initialization: set Â0 = 0 and H0 = 0.
2. Update q:

qt+1(Xt+1) ∼ p(Rt+1|Xt+1, S = DÂt)
∑
Xt

p(Xt+1|Xt)qt(Xt)

(11)
We use sequential importance sampling with resampling in
order to evaluate this equation as in [14].

3. Update the estimate of the sparse coefficients:

Ât+1 = argminA
[
Eg(A) + Et+1

r (A) + Ep(A)
]

(12)

Eg(A) =
1

2
(A− Ât)THt(A− Ât) (13)

−Et+1
r (A) = 〈log p(Rt+1|Xt+1, S = DA)〉qt+1(Xt+1) (14)

−Ep(A) = [log p(A)]− (A− Ât)∂ log p(A)

∂A
|A=Ât (15)

+γ ∗
∑
i

Θ(Si − 1) + Θ(−Si) (16)

where Θ(x) = x for x ≥ 0, and zero otherwise. The
minimization is executed using the FISTA algorithm [15].
A neural interpretation emerges when writing out the FISTA
equations for this minimization (similar to the locally compet-
itive algorithm of Rozell et al.[16]).

4. Update the value for the Hessian:

Ĥt+1 = exp

(
−∆t

τ

)
Ĥt +

∂2

∂A2
Et+1
r (A)|A=Ât+1 (17)

where τ is a time constant for forgetting the Hessian.
It can clearly be seen that this gives us an online algorithm

as we take the previous state, (q, Â, Ĥ)t, combine it with new
data Rt+1, and calculate the new state (q, Â, Ĥ)t+1.

III. COMPARISON OF DIFFERENT PATTERN PRIORS

One key assumption of previous work [2] is that the decod-
ing model uses an independent pixel prior in the decoding of
the spatial pattern. This results in pattern cells that essentially
have single pixel receptive fields. Here we demonstrate that not
only are we able to infer the pattern in a sparse coding basis,
but using the sparse prior improves inference (Fig. 3). We train
a positive-only sparse code with 81 dictionary elements on the
MNIST dataset downsampled by a factor of two (which has
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Fig. 2. Top: Graphical model underlying our model. The spikes (R) are
observed and the sparse coefficients (A) and eye position (X) must be
simultaneously inferred. Our solution alternates between two steps. Middle:
In the first step, we fix the estimate of the pattern and update the estimate of
eye position (shown as a probability cloud). When we predict the position
at the next point in time, the uncertainty of the position estimate grows
(P (Xt+1|R0:t)). By comparing the current estimate of the pattern with the
incoming spikes and probabilistically combining that information with the
prediction, we get an updated position estimate, P (Xt+1|R0:t+1). Bottom:
In the second step, we use the internal position estimate to dynamically route
incoming spikes to the correct part of the internal form (pattern) estimate.

dimension 142 = 196). As another baseline, we do the same
training with the sparsity penalty equal to zero (non-sparse
prior). Finally, we compare this to an independent pixel prior.
We see that performance is the best when we infer the pattern
using a sparse prior.

IV. MOTION BENEFIT FOR HIGH ACUITY VISION

Ratnam et al.[1] show that fixational drift eye movements
are beneficial for the perception of high acuity targets. One
hypothesis to explain these results is that a moving stimulus
generates a more informative retinal signal than a stationary
stimulus, due to gaps and inhomogeneities in the cone sam-
pling lattice. We support this hypothesis with our model (see
Fig. 4). Summary of results:

1) A diffraction-limited tumbling letter E defined by line
stroke widths of 0.8 arcmin projected on a cone lattice
with 1.09 arcmin spacing is better recovered by our
algorithm when the object is moving.

Fig. 3. Top: Results of the decoding process. The top left shows the object
projected onto a cone mosaic. The top right shows an exponential moving
average of the spikes of the ON and OFF cells. The bottom left shows
the inferred pattern after 200 ms of spikes. The bottom right shows the
true eye path (green) and the estimated eye path (blue) plus or minus one
standard deviation. The path was generated with a diffusion constant of 100
arcmin2/sec. Cone spacing is 1 arcmin. The pattern is defined on a 14× 14
array with each pixel spaced apart by 0.7 arcmin. The pattern is inferred
using a sparse coding basis trained on MNIST. Bottom: As a function of
time, decoding with a sparse coding prior works better than the independent
pixel prior and the non-sparse prior (p = 0.005). The shaded region reflects
plus or minus half a standard deviation over different trials.

2) A simple pattern prior using a dictionary consisting of
2x2 pixel blocks is sufficient for generating a recogniz-
able E.

3) At this size, the decoder frequently makes errors in
absolute position of the stimulus but preserves relative
spatial relationships within the pattern.

V. CONCLUSION

This work uses mathematical modeling and psychophysical
experiments based on diffraction-limited stimuli to investigate
the neural circuitry underlying human high-acuity vision. In
addition to suggesting a neural mechanism for our ability to
have 20-20 vision in the presence of eye movements, our
model reproduces psychophysical measurements.

It should be noted that while the model recovers an explicit
stabilized representation of the object, it is also possible
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Fig. 4. Top: SNR of the reconstruction of the E as a function of time,
averaged over 40 trials (width is plus-minus half a standard deviation). Red
shows the case of a moving retina using actual eye movements[1] Blue shows
the case of no motion. (The difference at 700 ms has p = 0.00002 using the
Kolmorgorov-Smirnof 2 sided statistic on 2 samples). A simple pattern prior
is used to reconstruct the E (as opposed to a prior that forces the inferred
pattern to be one of the four orientations of the E) in which the dictionary
consists of blocks of 2x2 pixels, with no sparsity imposed. The entire pattern
is defined on a 20× 20 array. The size of the E and the lattice are the same
as in Fig. 1. Bottom: Typical results of the these simulations (the organization
of the figure is the same as Fig. 3).

that these computations could be done in a non-stabilized
representation that still integrates information optimally. In
particular, we could have a population of cells, Āt, that
represent a sparse code of the pattern translated by the current
eye position. While this would simplify part of the the model,
we would need to update Āt+1 from Āt and Xt+1 − Xt.
This would require the circuit to know how to compute a
translation in an arbitrary direction in the current encoding of
the pattern (e.g. if TX is the translation operator in pixel space,
then the circuit would need to implement T ′X ≈ D−1TXD
which is a translation operator in the sparse code space). In
our preliminary experiments with such model, we found it
difficult to model the translation operator. More theoretical
work on a translation operator that acts on a sparse code of
an pattern could enable such a model.
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