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Purpose: Several studies have shown that the power spectrum of x-ray breast images is well de-

scribed by a power-law at lower frequencies where anatomical variability dominates. However, an

image generated from a Gaussian process with this spectrum is easily distinguished from an image

of actual breast tissue by eye. This demonstrates that higher order non-Gaussian statistical proper-

ties of mammograms are readily accessible to the visual system. The authors’ purpose is to quantify

and characterize non-Gaussian statistical properties of breast images as influenced by processing of a

digital mammogram, different imaging modalities, and breast density.

Methods: To quantify non-Gaussian statistical properties, the authors consider histograms of filter

responses from the interior of a breast image that have similar properties to receptive fields in the

early visual system. They quantify departure from a Gaussian distribution by the relative entropy of

the histogram compared to a best-fit Gaussian distribution. This entropy is normalized by the relative

entropy of a best-fit Laplacian distribution into a measure they refer to as Laplacian fractional entropy

(LFE). They test the LFE on a set of 26 patients recalled at screening for which they have available

full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast

CT (bCT) images as well as breast density scores and biopsy results.

Results: A study of LFE in FFDM comparing the raw “for-processing” transmission data from the

device to log-converted density estimates and the processed “for-display” data shows that processing

mammographic image data enhances the non-Gaussian content of the image. A check of the method-

ology using a Gaussian process with a power-law power spectrum shows relatively little bias from

the finite extent of the region of interests used. A second study comparing LFE across FFDM, DBT,

and bCT modalities shows that each maximized the non-Gaussian content of the image for differ-

ent ranges of spatial frequency. FFDM is optimal at high spatial frequencies (>0.7 mm−1), DBT

is optimal at mid-range frequencies (0.3–0.7 mm−1), and bCT is optimal at low spatial frequency

(<0.3 mm−1). A third study of breast density in FFDM and bCT shows that LFE generally rises

slightly going from the low-to moderate density, and then falls considerably at higher densities.

Conclusions: Non-Gaussian statistical structure in breast images that is manifest in the responses of

Gabor filters similar to receptive fields of the early visual system is dependent on how the image data

are processed, the modality used to acquire the image, and the density of the breast tissue being im-

aged. Higher LFE corresponds with expected improvements from image processing and 3D imaging.

© 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4761869]
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I. INTRODUCTION

The x-ray projection mammogram has been the clinical stan-

dard used to screen asymptomatic women for early signs

of breast cancer. The technique is generally regarded as ef-

fective, although less than optimal performance has led to

continued efforts to improve diagnostic accuracy through new

technology or other means. One of the principle limitations of

mammography is the masking of disease by normal anatomy.

This general phenomenon has been recognized in medical

imaging for many years,1–5 and is often referred to as “object

variability,” “patient structured noise,” or “anatomical noise.”
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More specific to mammography, research over the last ten

years has shown masking by normal anatomy to be the lim-

iting factor for detecting masses,6–8 particularly for women

with mammographically dense breasts.9, 10

The important role of normal breast tissue in limiting

the detection of cancer has led to efforts to characterize

the statistical properties of anatomy in x-ray mammograms.

These have typically been in the form of a power spectrum,

in which the anatomical component assumes a power-law

form6–8 with an exponent near −2.8 and with considerable

variability across women. Images of the breast depart from

this model at higher frequencies where the anatomical power

continues to drop and rising acquisition noise power begins

to contribute substantially to the total power in each fre-

quency. Subsequently, it has been shown that the exponent

of the anatomical spectrum is dependent on the nature of the

image acquired. Metheany et al.11 have shown that the ex-

ponent of the anatomical spectrum is increased by one (i.e.,

to approximately −1.8) in 3D images of the breast acquired

with a dedicated high resolution breast CT scanner. Engstrom

et al.12 found that in tomosynthesis reconstructions, the ex-

ponent increased by approximately 0.2 across women. Chen

et al.13 have shown how the effective depth of a pixel in-

fluences the power-law exponent in a way that is consistent

with the findings for radiographic projection, tomosynthesis,

and tomographic images of the breast. Power-law power spec-

tra (or closely related amplitude spectra) have been used fre-

quently in the literature on the statistical properties of natural

scenes.14–16

However, power-spectra alone do not fully characterize

anatomical variability in breast images, as demonstrated in

Fig. 1. Here, a region of interest (ROI) from a digital mam-

mogram is displayed beside a synthesized Gaussian texture

generated from a power-law process matched to the expo-

nents of mammograms. It is very easy to distinguish a ROI

from a mammogram such as this from a randomly generated

Gaussian texture. And thus there must be significant higher

order statistical structure in the images that is not captured by

the Gaussian process. This has been demonstrated in mam-

FIG. 1. Example of mammogram and Gaussian texture patches. A 3.6 cm

ROI from a mammogram is shown next to a Gaussian texture generated us-

ing a power-law power spectrum that is matched to the average spectrum of

mammograms (exponent = 2.8). While the images have similar mean inten-

sity and power spectra, they clearly differ in terms of their texture, suggesting

that higher order statistics must differ between the two.

mograms through investigations of multiresolution wavelet

expansions17 and phase randomization.2 Differences between

mammograms and Gaussian processes have also been shown

in observer performance studies. Bochud et al.6 have shown

that mammograms do not behave as a “pure noise,” meaning

that the mammographic background masks masslike targets

less than its power spectrum would suggest. Burgess et al.7

find that a simulated “nodule” is better discriminated against

mammographic backgrounds than against a Gaussian process

statistically matched to the mammograms, and that the dif-

ference gets larger as the target size increases. These stud-

ies suggest that there are higher order non-Gaussian statis-

tics in mammogram images, and that human observers exploit

these somehow to improve detection performance, which in

turn motivates this effort to quantify and characterize non-

Gaussian statistics in breast images. Our broader hope is that

characterizing non-Gaussian statistical properties of breast

images will allow us to better understand how they influence

diagnostic accuracy.

The approach we take is based on research in natural

scene statistics, where investigators in the fields of visual

neuroscience and computer vision model visual receptive

fields as filters,18–20 and use statistics derived from histograms

of filter responses to motivate models of the human visual

system.21–25 We use the information theoretic concept of rel-

ative entropy, or Kullback–Leibler divergence, between a re-

sponse histogram from a Gabor filter function and a best-fit

Gaussian as a measure of the non-Gaussian component of the

distribution. To give the relative entropy a more meaningful

interpretation, we normalize it by the relative entropy arising

from a Laplacian distribution, to make a measure we refer to

as the Laplacian fractional entropy (LFE).

We evaluated the LFE measure on patient data from 26

women. Each woman included in the set had bilateral scans

with clinical mammography and tomosynthesis devices, as

well as a dedicated breast CT scanner under development at

UC Davis. The mammography images consist of both the raw

“for processing” data as well as the final “for presentation”

images generated by the image display software distributed

with the device. We use the LFE measure to evaluate the effect

of processing the mammography data. Under the hypothesis

that non-Gaussian structure represents the anatomy, we would

expect the LFE measure to increase with image processing.

We also use LFE to make comparisons across imaging modal-

ity for mammography, tomosynthesis, and bCT. This allows

us to investigate how the different imaging technologies im-

pact the non-Gaussian structure of the resulting images. Fi-

nally, we investigate the effect of breast density, defined by the

BIRADS density score from the FFDM images. This shows

how the LFE measure varies with the most commonly used

descriptor of breast texture.

II. THEORY

Statistical properties of images are essentially descriptive

statistics that attempt to characterize the observed variability

and spatial dependencies of image pixels. The approach we

will use relies heavily on the assumption of ergodicity, which
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means we can derive statistical properties by averaging over

different locations within one image rather than independent

realizations.26 The ergodicity assumption allows us to inter-

pret the results of a single breast image as an estimate of its

statistical properties without having to specify a population of

women or an ensemble of views.

II.A. Gabor filter responses

The quantity of interest in our approach is the response of

a Gabor filter at locations in the breast interior. This func-

tional form is chosen in this setting to represent receptive

fields in the primary visual cortex, and hence characterizes

components of statistical variability in the early stages of vi-

sual processing. The kernel of the filter is a sinusoidal plane

wave attenuated by a 2D Gaussian envelope, which we will

parameterize by it bandwidth in octaves, B, and center fre-

quency in cycles/mm, fc. Let σ Gab be the standard deviation

of the Gaussian envelope, which is related to the bandwidth

and frequency parameters by

σGab =
√

2ln (2)

2πfc

2B + 1

2B − 1
. (1)

Note that this definition considers the passband of the filter

to be the FWHM of the amplitude spectrum with the ratio

of highest to lowest frequencies in the band to be 2B. The

resulting expression for a Gabor function that reflects these

constraints is

g (x, y) = e
− x2+y2

2σ2
Gab sin (2πfcx) , (2)

with σ Gab defined in Eq. (1). Some examples of Gabor fil-

ter kernels are seen in Fig. 2. Throughout this study, we

use a fixed bandwidth of 1.4 octaves, which is representative

of average bandwidths reported in studies of primate visual

cortex.18, 20

For generating filter responses, the Gabor function is sam-

pled on a lattice matching the pixel size of the image. This

FIG. 2. Gabor functions. Each 2 cm patch shows the profile of a vertically

oriented sine-phase Gabor function with 1.4-octave bandwidth.

step allows for the possibility of rotating the orientation of

the Gabor function. For an Nx by Ny pixel image, let �x and

�y be the horizontal and vertical pixels sizes, respectively.

The filter kernel, for a given center frequency and orientation,

is given by

k [n,m] = g(n�x cos (θ ) + m�y sin (θ ) , n�x cos (θ )

+m�y sin(θ )), (3)

where −Nx/2 ≤ n ≤ Nx/2 − 1 and −Ny/2 ≤ m ≤ Ny/2 − 1. For

an image, I [n,m], a convolution operation is used to generate

responses at every possible pixel location

r [n,m] = k∗∗I [n,m] , (4)

although only responses in a defined ROI corresponding to

the breast interior (described below) are analyzed.

II.B. Modeling response histograms

The general approach to creating a response histogram

is shown graphically in Fig. 3. An initial ROI, shown in

Fig. 3(a), is used to identify interior regions of the breast. A

secondary ROI, the white region shown in Fig. 3(b), indicates

the region from which filter responses come entirely from

the breast interior. A more detailed description of how these

ROIs are defined for different imaging modalities is given in

Sec. III.C below. Responses to an example filter are shown in

Fig. 3(c), with the histogram shown in Fig. 3(d). We find that

histograms of responses in many cases have long tails of ex-

treme responses that extend out with very low frequency of

occurrence. The far reaches of these tails are somewhat prob-

lematic since they become noisy, and we also find that they

are often driven by calcifications in the image (note arrows in

Fig. 3). Since we are more interested in the variability arising

from soft-tissue contrast, we will constrain our analysis to the

central 99% of the histogram where responses from soft tissue

will dominate other processes such as calcifications.

The histogram is generated by sorting all filter responses

from the ROI, a total of NR responses, which we will denote

ri, i = 1, . . . , NR. To find the boundary of the central 99%

of the histogram, we set the limits of the histogram to be the

response values that define the central 99% of the sorted list.

To determine rlo, we find the index 0. 5% × NR rounded to

the nearest integer and use the response value associated with

this index. A similar approach is used to find rhi, except that

the index is 99.5% × NR rounded to the nearest integer. For

NBin histogram bins between rlo and rhi, we set the bin size to

be

�h =
rhi − rlo

NBin

. (5)

The histogram counts in the nth bin, hn (n = 1, . . . , NBin), are

the number of filter responses between rlo + (n − 1)�h and

rlo + n�h. We include one extra bin that contains all counts

outside the range rlo–rhi, for a total of NBin + 1 bins in each

histogram.
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FIG. 3. Analysis of mammograms. An example mammogram is shown with manually drawn border (a), and three large calcifications (arrows). Sampling

regions (b) show the ROI for the interior (gray) and the ROI for centers of the Gabor profiles (white). Filter responses from convolution (c) with the Gabor

profile show extreme responses near the three calcifications (arrows). The resulting histogram is plotted (d) with the central 99% or responses between the

vertical lines.

The histogram counts are converted to a probability esti-

mate by dividing each one by the total number of responses

pn =
hn

NR

. (6)

It is these probability distributions that are evaluated for their

non-Gaussian character. If the counts in a response histogram

actually came from a Gaussian distribution, with mean value

of μ and a standard deviation σ , then we would expect them

to assume the form

pGauss,n (μ, σ ) = �

(

hlo + n�h − μ

σ

)

−�

(

hlo + (n − 1) �h − μ

σ

)

, (7a)

for n = 1 to NBin, and

pGauss,NBin
+ 1(μ, σ )

= 1−
(

�

(

hlo + Nbin�h − μ

σ

)

− �

(

hlo − μ

σ

))

, (7b)

up to sampling error.

The entropy relative to the best-fit Gaussian (or Kulback–

Leibler divergence between them), defined as

ERel = Min
μ,σ

(

NBin+1
∑

n=1

pn log2

(

pn

pGauss,n (μ, σ )

)

)

. (8)

Note that if the pn are actually derived from a Gaussian dis-

tribution, then the ratio inside the log can be made 1 for some

choice of μ and σ , thereby achieving a relative entropy value

of 0.

The relative entropy can be interpreted as the excess bits

needed to code the pn distribution using pGauss,n instead of

the true distribution.27 However, it is not clear how “non-

Gaussian” one bit of excess coding is. So we have adopted

a different approach to normalizing ERel based on comparison

to a Laplacian distribution. The two-sided Laplacian distribu-

tion is a common model of non-Gaussian scene statistics.28, 29

Its cumulative distribution function, parameterized by loca-

tion and spread parameters, a and b respectively, is given by

PLap(x) =

⎧

⎪

⎨

⎪

⎩

1

2
e(x−a)/b x ≤ a

1 −
1

2
e−(x−a)/b x ≥ a

. (9)

The binned probability distribution based on a Laplacian is

given by

pLap,n(a, b) = PLap

(

hlo + n�h − a

b

)

−PLap

(

hlo + (n − 1)�h − a

b

)

(10a)

for n = 1 to NBin, and for events outside the binned range

pLap,NBin+1 (a, b)

= 1 −
(

PLap

(

hlo + Nbin�h − a

b

)

− PLap

(

hlo − a

b

))

.

(10b)

We can determine the relative entropy of the Laplacian with

respect to the Gaussian by solving

ELap =Min
a,b

(

NBin+1
∑

n=1

pLap,n (a, b) log2

(

pLap,n (a, b)

pGauss,n (μmin, σmin)

)

)

,

(11)

where μmin and σ min are the values minimizing Eq. (8).

We use the relative entropy of a best-fit Gaussian relative to

the Laplacian as a measure of how non-Gaussian the observed

histogram is

LFE =
ERel

ELap

× 100%, (12)

which we refer to as the LFE to reflect the role of the Lapla-

cian in normalizing the relative entropy of the observed dis-

tribution of responses.
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FIG. 4. Components of the Laplacian fractional entropy measure. Data from

an example histogram is shown along with fitted models based on Gaussian

and Laplacian density functions. The relative entropy of the histogram to the

Gaussian is scaled by the relative entropy of the Laplacian to the Gaussian to

form the LFE measure of departure from a Gaussian model.

The magnitude of the LFE measure is readily interpreted:

LFE = 100% means that the distribution exhibits as much

non-Gaussian behavior (i.e., Kullback–Leibler divergence) as

a Laplacian distribution. Figure 4 shows a plot of an observed

histogram, along with the fitted Gaussian and Laplacian dis-

tributions after binning. In this case, the observed distribution

function clearly diverges from the Gaussian, with a sharper

peak near zero and more slowly decaying tails. The tails are

well matched by the Laplacian distribution, which is even

more strongly peaked with a cusp near zero. The resulting

LFE value of 74.7% reflects this intermediate level of diver-

gence between the Gaussian and Laplacian.

III. MATERIALS AND METHODS

III.A. Patient images

We have applied the Laplacian fractional entropy analysis

derived in Eq. (11) to three areas in breast imaging: (1) pro-

cessing of digital mammograms, (2) comparisons of breast

imaging technologies, and (3) evaluating the effect of breast

density. All of these studies utilized a dataset of images from

26 women with positive mammographic findings (BIRADS

4 and 5), and biopsy verification of disease status (benign

or malignant) subsequent to the imaging exams as part of an

ongoing clinical trial. Mammographic findings included both

masses (in 17 cases) and calcifications (in 10 cases), with only

2 lesions noted as palpable. There were no cases of bilateral

disease. Pathology findings showed that the cases were evenly

split between malignant and benign findings (13 each).

Additional data were available for each woman, including

the radiologists’ BIRADS breast density scores. All data were

acquired with consent under a IRB approved protocol in the

Department of Radiology at the UC Davis Medical Center in

Sacramento. Each woman had full-field digital mammogra-

phy (FFDM) images, digital breast tomosynthesis (DBT) im-

ages, and dedicated breast CT (bCT) images of both breasts

available for this investigation. We note that the 26 cases used

for this study came from a larger set of 30 patients, but 4 of

these were excluded because of incomplete data.

III.B. Characteristics of scans

Mammograms and DBT scans were acquired on a Hologic

Dimensions system (Hologic Inc.), the bCT images were ac-

quired on a system developed at UCDMC.30–33 The FFDM

data included both the raw “for processing” data as well

as the final “for display” images produced after processing

with the display software distributed by the manufacturer. To-

mosynthesis images were reconstructed over a 15◦ angular

range using filtered backprojection software developed by the

manufacturer. Each woman had images of both breasts, and

each breast had craniocaudal (CC) and mediolateral oblique

(MLO) views. The mammograms had 0.07 mm pixel dimen-

sions. The DBT images averaged 0.12 mm pixel dimensions

in the reconstructed planes (range: 0.09–0.23 mm) with a dis-

tance of 1 mm between tomographic planes. The bCT im-

ages were acquired at 80 kV at a dose equivalent to two-

view mammography.31–34 The 3D images were reconstructed

by filtered backprojection with a Shepp-Logan filter.35, 36 The

resulting CT images consisted of 512 × 512 pixels in the

coronal plane, with a variable number of coronal sections that

depended on the size of the breast. Within each coronal plane,

the pixel size averaged 0.36 mm (range: 0.29–0.38 mm), with

a section thickness of 0.19 mm (range: 0.16–0.19 mm). The

distance between coronal sections averaged 0.23 mm (range:

0.18–0.28 mm).

III.C. Image processing

Each of the FFDM, DBT, and bCT image modalities

required some preparation of the image data for analysis.

Modality specific details are given below. In all modalities,

a ROI was selected from which we would accept filter re-

sponses. The purpose of this was to confine analysis to the in-

terior of the breast, away from chest wall, muscle, nipple, and

skin line where filter responses would not represent parenchy-

mal texture. In the case of FFDM, we also created additional

images to better understand the process and check the effects

of a finite-sized ROI on the LFE measure.

III.C.1. Preparation of FFDM images

The acquired mammograms had both “for processing” and

“for display” images saved in DICOM formats. The for pro-

cessing images consisted of the raw detector outputs at 14-bit

depth corrected for detector inhomogeneities, and can, there-

fore, be thought of as a measure of the counts transmitted to

the detector at each detector element location. The for dis-

play image was generated from the “for processing” image at

12-bit depth by Hologic’s proprietary display processing al-

gorithm, which is based on unsharp masking.37
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We generated two other images for comparison. The

first was an approximate density image generated by log-

converting the “for processing” transmission image (neglect-

ing effects of scattered radiation). In principle, log-conversion

makes the superposition of tissues in a mammogram approx-

imately linear. The central limit theorem would then sug-

gest that to the degree that tissue at different depths in the

x-ray path is independent; the resulting observations should

be closer to a Gaussian distribution.

As a check of our methodology, we also generated a ran-

dom Gaussian texture on the same dimensions as each mam-

mogram. The Gaussian process that created these images had

a power-law power spectrum except at the DC component,

which was arbitrarily set to the value at the first harmonic.

The exponent of the power-law was set to −2.8, the estimated

value for mammograms.7 Since this process rigorously con-

forms to the default assumptions of a stationary Gaussian pro-

cess, nonzero LFE values highlight any bias that comes from

the limited spatial extent of averaging.

The four images we have for each scan (for processing,

for display, log-converted, and Gaussian texture) all have the

same spatial layout, and hence the same ROI is used for all

four in a given scan. These ROIs were created in a two-step

process. An initial ROI was created inside of a set of man-

ually selected connected points that were inside of the chest

wall, approximately 1 cm from the skin line, and inside of

the nipple. An example of this region can be seen in the out-

line of Fig. 3(a). Image values within this region are consid-

ered acceptable for contributing to filter responses. In order

to ensure that the Gabor filters do not extend outside the ROI,

responses are only taken from the final ROI an additional 1

cm inside this initial ROI. Initial and final ROIs can be seen

in Fig. 3(b). ROIs were generated for all images (right, left,

MLO, and CC views). Gabor responses are generated for each

image by convolving a Gabor filter with the image, and then

using responses inside the final ROI to build a histogram for

LFE analysis. FFDM histograms consisted of 2.1 × 106 re-

sponses on average (range: 2.5 × 105–5.6 × 106).

III.C.2. Preparation of DBT images

For the DBT images, ROIs were constructed similar to

those in FFDM, with a manually selected region designed

to avoid chest wall, nipple and skin lines, and an additional

1 cm interior to avoid contamination of filter responses from

points outside this area. The DBT images consisted of mul-

tiple planar images through the breast volume, with 66 such

images on average (range = 34–99). We manually selected an

interior range of planar images so that planes from the skin

were not considered. The same spatial boundary was used on

this range of interior images. For each Gabor filter function,

responses were generated by convolving each interior image

with the Gabor kernel and then assembling responses from all

interior images into a single histogram. Response histograms

for DBT images consisted of 1.8 × 107 filter responses on

average (range: 8.7 × 105–1.2 × 108).

III.C.3. Preparation of dedicated bCT images

The bCT images were analyzed as coronal sections as this

has been radiologists’ preferred orientation for viewing them.

In addition to the images themselves, where voxels in the im-

age represented the density of the tissue in Hounsfield units,

we also had segmented images categorized into air, skin, adi-

pose, and glandular tissue regions. A manual procedure was

used to select sections between the chest wall and nipple, and

with the initial ROI defined using the voxels labeled as adi-

pose or glandular tissue. The final ROI was defined as all

voxels in this slice range that were 1 cm in distance to the

edge of the initial ROI. Response histograms for bCT images

consisted of 1.5 × 107 filter responses on average (range: 2.3

× 106–3.0 × 107).

IV. RESULTS AND DISCUSSION

The LFE was calculated at each of the 26 patients in each

modality, view, filter center frequency, and orientation. For

the FFDM images, which had four modalities (“for process-

ing,” log-converted, “for display,” and Gaussian texture), 4

views (LCC, LMLO, RCC, and RMLO), 11 spatial frequen-

cies (from 0.125–4.0 cyc/mm), and 6 orientations, a total of

27 456 histograms were generated and then fit. A total of 4992

histograms were fit for the DBT modality since they had only

one modality (the DBT reconstruction) and only 8 spatial fre-

quencies were used (ranging from 0.125–1.4 cyc/mm) due to

the larger pixel sizes of the images. A total of 1872 histograms

were fit for the bCT modality, since only 2 images were avail-

able for each patient (right and left), and only 6 spatial fre-

quencies were used (ranging from 0.125–0.707 cyc/mm).

We discuss each of the three studies below in terms of their

consistency with the idea that LFE is capturing the structural

content of the data for a given spatial frequency. This suggests

that images with greater LFE are generally better diagnostic

images. However, it is clear to us that LFE is not a general

surrogate for image quality, and we discuss the limitations of

the measure below in Sec. IV.D.

IV.A. Processing of mammograms

The main results of the FFDM study are shown in Fig. 5.

Examples of an image patch for each condition are shown in

the panel. Note that the “for processing” (i.e., transmission)

image is inverted relative to the log-converted and “for dis-

play” images. The inversion itself should not affect LFE, since

it is unchanged if the x axis of the histogram is reversed. An

example of the Gaussian texture used to check the methodol-

ogy is also shown in this panel [Fig. 5(a) bottom right].

For each patient, we average LFE across views and ori-

entation, and these are then averaged across patients to make

plots with standard errors as a function of spatial frequency.

Two-way ANOVA with spatial frequency and image process-

ing stage as factors finds a significant effect of the image

processing (p < 0.0001). All of the mammographic images

have their highest values of LFE (70%–90%) at the low-

est frequency evaluated (0.125 cyc/mm), and then decay as
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FIG. 5. Effect of processing in mammograms. The image panel (a) shows three different levels of data processing in the generation of a “for display” mammo-

gram as well as a power-law Gaussian texture included as a check. The plots (b) show the Laplacian fractional entropy averaged over all views of both breasts,

and over the six different orientations evaluated. Error bars represent one standard error across the 26 patient datasets used in the study.

frequency increases. Log-conversion of the “for processing”

image reduces LFE across the spectrum before both decay

nearly to 0 by 4.0 cyc/mm. This is consistent with the idea that

log-conversion makes the tissue superposition approximately

additive, and by the central limit theorem results in response

distributions that are closer to a Gaussian. By contrast, the dis-

play processing software distributed with the device increases

LFE across the range of spatial frequencies. The images gen-

erated from a Gaussian process give LFE values near 0, except

at the lowest frequencies where they remain below 10%. This

suggests that the limited size of the ROIs are not causing a

substantial bias in LFE.

The FFDM data we show are consistent with the idea that

the goal of mammographic image processing is to enhance

the structural content of the images. Log-conversion, while

implementing the necessary inversion of intensity, results in

an approximately linear superposition of tissues, and thereby

reduces the non-Gaussian structure of the data because of the

central limit theorem. By contrast, a more involved display

algorithm that selectively and adaptively modulates spatial

frequencies results in an image with a higher non-Gaussian

structural content.

IV.B. Breast imaging technologies

Results of LFE across different breast imaging modalities

are shown in Fig. 6. The panel of images shows example

patches from the same region of the breast for FFDM and

DBT, and approximately the same region for bCT. The plots

show the FFDM “for-display” results described above along

with LFE assessed in the DBT and bCT images from the same

set of patients. The different modalities are plotted out to dif-

ferent frequencies reflecting the larger pixel sizes in the DBT

and bCT.

Two-way ANOVA with spatial frequency (over the com-

mon range of frequencies from 0.13 to 0.71 cyc/mm) and

imaging modality as factors finds a significant interaction be-

tween the two (p < 0.0001), suggesting that the three imaging

modalities have significantly different frequency profiles. Av-

erage LFE in the DBT images peaks slightly above the FFDM

images in midrange frequencies from 0.25–0.5 cyc/mm, but

decays more rapidly to 0 above 0.7 cyc/mm. Average LFE in

the bCT images is about a factor of 2 larger than either FFDM

or BCT at the lowest spatial frequencies (<0.2 cyc/mm), and

it also decays rapidly to 0 as frequencies increase.

These data suggest that the different breast imaging tech-

nologies emphasize structure at different spatial-frequency

ranges. FFDM images, which have the highest resolution,

maximize LFE at the highest spatial frequencies. At lower

spatial frequencies, super-position of tissues may be the dom-

inant effect, in which case techniques to reduce or remove

superposition should improve the representation of structure.

Thus the limited-angle tomography employed in DBT is able

to make a limited increase in LFE at midrange spatial frequen-

cies, and the full-range tomography employed in bCT makes

a substantial increase in LFE at low frequencies.

IV.C. Effect of breast density

Figure 7 shows the effects of breast density on FFDM and

bCT images. We use the radiologist’s visual assessment of

breast density as recorded in their BIRADS density scores

from the FFDM images to define the breast density on a

patient-by-patient basis. The four-point scale ranges from

lowest to highest density. Of the 26 patients with complete

data, 5 had a density score of 1 (adipose), 4 had a density

score of 2 (scattered density), 11 had a score of 3 (heteroge-

neous density), and 7 had a score of 4 (dense).
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FIG. 6. Effect of different imaging modalities. The image panel (a) shows 5 cm example regions from a (“for display”) mammogram, tomosynthesis image,

and coronal breast CT section. The images are all from the same patient in roughly the same area of the breast. Laplacian fractional entropy (b), averaged over

different views and the six filter orientations, is plotted as a function of spatial frequency for each modality. Error bars represent one standard error across the

26 patient datasets used in the study.

Breast density affects LFE in all three imaging modalities,

as seen in Fig. 7. Two-way ANOVA with spatial frequency

(over the entire range for each modality) and breast density

as factors finds a significant main effect of density (FFDM:

p < 0.001, DBT: p < 0.0001, bCT: p < 0.03). The spatial

frequency profiles are relatively similar across breast density

within each modality, but the magnitude changes with the

density. LFE increases in FFDM and bCT images going from

BIRADS density scores of 1–2. DBT images have approxi-

mately equal LFE between the two. LFE generally decreases

as density scores increase above 2, with the exception of high

spatial frequencies (>1 cyc/mm) in the FFDM images where

the order is reversed.

The general finding of decreased LFE with increased den-

sity (above a BIRADS density score of 2) is still consistent

with the idea of LFE as a measure of structural content, even

though our intuition might suggest that greater density implies

more structure in the breast. In images with scattered den-

sity, the filter responses lead to more pronounced tails, which

heighten the departure from normality.

IV.D. Limitations of the LFE measure

We have defined the LFE measure as a way to quantify

non-Gaussian statistical properties of images. Because the

measure operates on Gabor filter outputs which are similar

to receptive fields in the early visual cortex, we believe that

the measure may be particularly relevant to visually perceived

structure in images. However, the approach makes a number

of assumptions that need to be considered when interpret-

ing the measure, and particularly when interpreting it as a

FIG. 7. Effects of breast density. LFE averaged across BIRADS density categories for FFDM images (a) is plotted as a function of spatial frequency. Note that

LFE increases going from adipose to scattered density, the two lowest categories, and then decreases as density increases (legend applies to all three plots). Plots

for DBT (b) and BCT (c) show similar effects.
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measure of structural content of an image. We will review

these briefly before concluding.

At the most fundamental level, we are assuming that the

appearance of the image in the interior regions of the breast

is a realization of an ergodic stationary process, which allows

us to approximate the response probability distribution from

a histogram. A nonstationary process can give rise to highly

non-Gaussian response histograms, even if the underlying im-

age were Gaussian. For example, an image with the left side

being Gaussian white noise with a standard deviation of 1 and

the right side being Gaussian white noise with a standard de-

viation of 100 will produce LFE values that are nonzero even

though the underlying image is Gaussian. Similar effects can

be induced by adaptive processing of an image. This may ex-

plain some of the higher LFE values seen in the for-display

FFDM images at high spatial frequencies in Fig. 5(b).

In the results above, we find that higher LFE corresponds

remarkably well with a more interpretable image diagnostic

image. However, the results from the very lowest density im-

ages serve as a caution against making too much of these

findings as well. It is easy to imagine dual energy or other

subtraction techniques that remove only the masking struc-

tural component of the image, thereby increasing diagnostic

performance in many applications, but likely reducing LFE

because the structural background has been subtracted. These

issues suggest caution in interpreting LFE as a surrogate for

diagnostic performance.

V. CONCLUSIONS

The study described here demonstrates and characterizes

the statistical properties of breast images that go beyond what

can be modeled by a multivariate Gaussian distribution pa-

rameterized by a mean and covariance matrix. Of the unlim-

ited number of possible statistics to consider in this regard,

we have chosen to analyze responses to Gabor filter functions

because of their relation to receptive fields in the early visual

system. The structure of parenchymal breast tissue results in

approximately Laplacian tails on the response histograms out

to extreme values influenced by calcifications. After exclud-

ing extreme points, we use the entropy relative to a Gaussian

as a general measure of non-Gaussian statistical properties. In

order to give the measure a meaningful scale, we make it rel-

ative to the magnitude of a fitted Laplacian distribution. Thus,

a value of 100% means the histogram has the same entropy

relative to a Gaussian as the histogram arising from a fitted

Laplacian, and hence we refer to this quantity as the Laplacian

fractional entropy. The LFE can be thought of as representing

the non-Gaussian structural content of an image (or ROI) at

the frequency, bandwidth, and orientation of the Gabor filter,

using the Laplacian distribution as a yardstick.

We have used LFE to investigate x-ray images of the breast

using a set of images from 26 patients. In all cases, the LFE

of breast images decays at higher spatial frequencies as the

effects of resolution and noise limit the structural content of

the images. We find that processing of raw projection mam-

mography data to a final “for-presentation” image increases

LFE across the tested range of spatial frequencies, and this

cannot be simply attributed to a nonlinear conversion to in-

tegrated density. Different modalities for breast imaging em-

phasize LFE at different spatial frequencies. Coronal breast

CT slices have the highest LFE at spatial frequencies be-

low 0.3 cyc/mm. Tomosynthesis images achieve the highest

LFE in a middle range for spatial frequencies from 0.3 to 0.6

cyc/mm. Processed projection mammograms have the high-

est LFE above 0.6 cyc/mm. When breast density is consid-

ered, we find that higher density—assessed either by BIRADS

density scores from the mammograms or by segmented vol-

umes in breast CT—reduce LFE. While this may seem coun-

terintuitive given that we think of a dense breast as having

more glandular structure, it is consistent with our argument

that dense breasts lack sparsity of structure making them more

difficult to diagnose accurately.

This last point warrants some caution in interpretation. The

measure does not make any distinction between normal and

abnormal structures, and it can potentially be misled by adap-

tive processing and other procedures with complex statistical

properties. Nonetheless, we believe that further investigation

into the structure of breast images may overcome these limi-

tations, and characterizing the structural content of breast im-

ages may provide insights into more effective breast imaging

technologies.
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