The laminar organization of V1 neural activity in response to dynamic natural
scenes

by
Amir Khosrowshahi

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Vision Science
and the Designated Emphasis
in
Computational Science and Engineering
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Bruno A. Olshausen, Chair
Professor Yang Dan
Professor Michael R. DeWeese
Professor Charles M. Gray

Fall 2011



The laminar organization of V1 neural activity in response to dynamic natural scenes

Copyright (©) 2011

by

Amir Khosrowshahi



Abstract

The laminar organization of V1 neural activity in response to dynamic natural scenes
by
Amir Khosrowshahi
Doctor of Philosophy in Vision Science
and the Designated Emphasis in
Computational Science and Engineering
University of California, Berkeley

Professor Bruno A. Olshausen, Chair

Despite remarkable progress in understanding the neurophysiology of cortex, fundamental
questions regarding its function remain unanswered. The present study explores how a local
population of neurons along a cortical column in visual cortex responds to dynamic natural
stimuli. I show how a novel application of sparse coding to neural recordings obtained
with high-density laminar probes can separate the complex statistical structure of this data
into biophysically interpretable, underlying causes. The resulting data representation is
instrumental in characterizing both spiking and local field potential activity across lamina
in response to natural movies. Finally, I present a framework for understanding laminar
population activity in terms of a statistical model that accounts for network interactions as

well as the driving influence of the stimulus.
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Chapter 1

Introduction

The goal of this work is to characterize how a local population of neurons along the length
of a laminar probe in primary visual cortex responds to full-field, dynamic natural movies.
Though local cortical physiology has been intensively studied through a variety of means,
little work has been done to characterize it in this setting. As a result, this work will
necessarily be exploratory in nature. However, it builds upon results along several lines of
research which are highlighted in this section.

1.1 Historical background

A great deal of our current knowledge of cortical processing has been accumulated over
decades of single-unit recordings using controlled test stimuli. These stimuli typically have
a low dimensional parametrization that can be spanned during the short duration available
in a recording session. They are designed to have desirable statistical properties to simplify
off-line analysis and reduce bias in parameter estimation. But the cortex is a highly intercon-
nected, nonlinear dynamical system and it is not clear how far this knowledge generalizes to
populations of neurons acting in concert to complex, ecologically relevant stimuli. Despite re-
markable recent advances in experimental methods 2153765 allowing us to record from larger
populations of neurons and to manipulate them chemically and optically in intricate ways,
our understanding of the early visual system and how it processes input is still largely based
on knowledge gained from early experiments®®°®. The predominant experimental paradigm
remains to drive cortex with simple stimuli eliciting responses that are easily interpretable
in terms of an established and highly oversimplified prescription for the role of early visual
processing. This entrenched view has had wide-spread influence, permeating into other fields
such as computer vision and psychology, where it is rarely questioned.

Many lines of evidence from a variety of recent studies of the early visual system reveal a
messy picture full of incompatible and inconsistent results that suggest our whole framework
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for understanding early vision and primary visual cortex in particular requires a complete
revision®. The current models of response properties of individual neurons, despite their
theoretical elegance and simplicity, have poor predictive power particularly when applied
to natural stimuli???7®°. Despite impressive recent advances, computer vision and robotic
systems exploiting our knowledge of the biology of visual processing still fail to perform basic
tasks such as inferring the presence of surfaces, occlusion, and clutter in a scene, grasping
and manipulating simple objects, and navigating a landscape while avoiding obstacles. This
thesis focuses on a primary concern of Olshausen and Field®, that the dominant paradigm
of characterizing cortical processing a single neuron at a time with simple, controlled stimuli
is flawed. Here, this concern is addressed directly by simultaneously recording from a large
population of neurons with stimuli that include long duration, full-field natural movies.
Despite encouraging success in this promising, largely unexplored direction, it is important
to remain mindful of shortcomings that will need to be addressed in future studies, such as
the use of anesthesia, sampling biases, and using impoverished models of the stimulus to
characterize neural responses.

1.2 Natural scene statistics and cortical responses

A key component in the evolution and development of sensory systems is their need to
adapt to the statistics of the environment, suggesting that one goal of such a system could
be to produce an efficient internal representation of sensory statistics in the responses of
populations of early sensory neurons®?3%1%  To explore this efficient coding hypothesis, re-
searchers have characterized the probability distributions of natural image patches!!:5482:83
natural movies?’, as well as auditory stimuli®®'%2, in terms of optimality principles such as
sparseness of representation® and coding robustness?’ that would be ecologically advanta-
geous. Despite capturing only a fraction of the complexity of the distributions, these simple
functional models have nonetheless shown considerable explanatory power in their corre-
spondence with physiology®%2192 Recently, researchers have increasingly used naturalistic
stimuli in probing the early visual system and have found differences that do not fit into the
tidy picture built upon results using artificial stimuli®*, such as sparser response 19197 and
greater sensitivity to spectral phase structure than to power® in V1. These results were
derived primarily from experiments where only a single neuron was recorded at a time.
More recently, Yen et al.''' used silicon tetrode probes to simultaneously record from
several nearby neurons in visual cortex in response to natural movies. In agreement with
previous findings with natural stimuli, neurons had sparse and transient responses that were
precise in time and repeatable from trial-to-trial (Fig. 1.1). More significantly, they showed
that the response of nearby neurons exhibited an unexpected degree of heterogeneity. Fig. 1.2
depicts the response of several simultaneously recorded neurons located in close proximity
from a single tetrode of a muli-site silicon probe for three separate short natural movie
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Figure 1.1: Sample neural response to repeated natural movie. (a) Silicon tetrode probe
with 4 sites on two separate shanks. The tetrode arrangement improves single unit isolation
and facilitates recording from several neurons simultaneously at each site. (b) Spike rasters of a
single neuron in response to 100 repeats of a 30 second natural movie taken from a nature show
documentary !, The raster displays temporal sparsity, selective and punctate response to certain
features in the stimulus, as well as a high degree of trial-to-trial precision, properties shared by
many such neurons. The standard functional model for response of these neurons is a set of
linear receptive filters with outputs nonlinearly combined to estimate a firing rate®®. However,
these models fail to capture many of the response properties shown in this example8>8°.

repeats. Despite these neurons having similar classical properties such as orientation tuning
to gratings and receptive fields as derived from binary noise stimuli*!!, their responses show
a remarkable degree of difference to natural movies. This result is in sharp contrast to a
commonly accepted principle of cortical organization, that neural populations in a single
column of cortex provide a redundant representation of local stimulus features®’, and that
neuronal response variability could be reduced by pooling responses over nearby neurons with
similar feature selectivity 4. It suggests, rather, that a diverse degree of selectivity exists to
stimulus features in a single cortical column, and that neurons in a columnar microcircuit
can play distinct roles in the computations necessary in processing and representing the
complex statistics of dynamic natural stimuli.

1.3 Large-scale neural recordings using silicon polytrodes

Technological advances have driven much of the progress in experimental neuroscience in
recent years. One advance relevant to this work is the development of high-density laminar
probes built out of a silicon substrate!*. These polytrodes come in various recording site
configurations, geometries, and number of shanks and can now be commercially purchased.
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Figure 1.2: Heterogenous response of nearby neurons to natural stimuli. Spike rasters
of a collection of neurons recorded on a single tetrode from a four tetrode probe (Fig. 1.1a)
in response to 30 second repeats of three different natural movies!'. Each neuron is depicted
in a different color. The three columns correspond each to a different natural movie. Missing
rasters indicate that the neuron was either lost during the recording or that it was not sufficiently
isolated for spike sorting. The rasters display a remarkable diversity of response patterns, differing
in overall firing rate, specificity in response, sensitivity to particular frames in each movie, and
the nature of trial-by-trial variability, all despite the neurons being in close physical proximity.
Chap. 4 presents a statistical model to try to account for this variability.
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Several polytrode configurations including the one used for recordings in this thesis are
displayed in Fig. 1.3. The primary advantage of polytrodes over methods such as 2-photon
Ca?" imaging is the ability to record from a full cortical column at high temporal resolution.
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Figure 1.3: Silicon polytrodes. Silicon polytrodes'# are a recent development in experimental
neuroscience. lridium recording sites of different sizes are patterned with varying density on a
silicon substrate. These devices allow recording from tens of neurons simultaneously. The top
of each probe is bonded to a head-stage interface board that carries the signal to an acquisition
system. (@) The probe configuration used in most of the recordings in this work. (b) A closeup
of (a) with channels arranged in a 1.55 mm linear array, sufficient in length to span a full cortical
column. (c) Site geometry and spacings for the 32-channel probe. Site sizes can have a significant
effect on the nature of the recording, such as the level of noise and how single unit waveforms are
distributed on neighboring channels. (d) Various commercially available probe configurations’
offer a large degree of flexibility in targeting different brain areas in a wide range of organisms.

Polytrodes with high electrode density capture the extracellular waveforms of single neu-
rons on multiple channels, facilitating spike sorting. Sample spike traces of a recording from
cat visual cortex using a 32-channel laminar probe are shown at different temporal scales in
Figs. 1.4-1.6. The recordings show the statistically rich patterns of population firing across
all lamina of a cortical column. Bursts of responses from groups of cells interrupt periods of
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little to no activity. Extracellular waveforms of individual neurons are clearly visible when
isolated but are more difficult to disambiguate when other neurons in close proximity or on
the same channel are also firing. Waveforms often span several channels, though they can
also be local to a single channel.
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Figure 1.4: Sample high-pass filtered polytrode traces at several time scales. Recordings
from cat visual cortex high-pass filtered between 0.5-10 kHz. After a burst of activity across
channels due to the onset of a natural movie stimulus, activity becomes sparse, interrupted
occasionally with short bursts of firing of groups of cells distributed across channels.

Fig. 1.7 shows a sample trace of the local field potential (LFP), the low-frequency portion
of the recorded polytrode signal. This activity is thought to consist mainly of dendritic
processing of synaptic inputs of populations of neurons?’ but remains poorly understood.
Polytrode LFP signals are typically coherent over a large number of channels, but relative
phases contain a rich structure. Oscillations in the LFP have faced several decades of intense
scrutiny and theories abound for their role in cortical function, including a mechanism for
coordinating between spatially separated regions of cortex**45:45:46:101 = Confirming the role
of these oscillations has remained elusive. Large-scale recordings along a cortical column can
help shed light on the biophysical mechanisms which generate the LFP3%% as well as the

oscillations at characteristic frequencies™.
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Figure 1.5: Sample high-pass filtered polytrode traces at several time scales. The greyed
portion of Fig. 1.4 is shown at a finer temporal scale. Individual cells are visible, with waveforms
distributed across several channels. Many of the cells fire in bursts of several action potentials.
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Figure 1.6: Sample high-pass filtered polytrode traces at several time scales. The greyed
portion of Fig. 1.5 is shown at a finer temporal scale. Individual spike waveforms of different
magnitudes and shapes are clearly visible.
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Figure 1.7: Sample low-pass filtered polytrode trace. Polytrode recordings from cat visual
cortex filtered between 1-150 Hz. Some common features of laminar LFP data are oscillations at
characteristic frequencies and complex patterns of phase relationships between channels.
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1.4 Cortical microcircuits and models of population re-
sponse

The layered structure of neocortex and the consistent pattern of synaptic connections be-
tween cell types both within and between different lamina suggest that this structure is
to a large degree canonical and is replicated across cortex®'. Though theories have been
proposed about its computational role3!*? insufficient data has been available to test their
validity and significance. Recently, a class of parametric models, termed Generalized Linear
Models (GLM’s), have been introduced that attempt to capture the statistics of the spik-
ing responses of populations of individual neurons in terms of self-inhibition, inter-neuronal
coupling, the stimulus, and other factors such as the LFP®1%  These GLM’s have been
applied successfully to account for population responses obtained from large-scale, simulta-
neous recordings from the retina®. They are able to capture a significant portion of the joint
statistical structure of the firing of a population of ganglion cells. However, few studies have
attempted a similar approach to cortical neurons. Such models would provide a principled
way to describe the statistics of cortical electrophysiology data and would provide a means
of testing the mechanistic components of the canonical microcircuit hypothesis. Chap 4
presents an application of this approach to polytrode recordings.

1.5 Convex optimization and parallel computation

The computational methods underlying many machine learning algorithms and fitting of
parametric statistical models are often convex optimizations'”. Many of these methods are
well established, sometimes over a century old. Despite this fact, the field of convex opti-
mization has experienced explosive growth in the last two decades, driven by new theoretical
results in several directions aided to a large extent by the dramatic increase in available
computational power. One key success, for example, is the development of interior-point al-
gorithms %" which have made solving linear programs of 1 million or more variables routine
on a typical workstation. This is an astonishing accomplishment given the usually exponen-
tial worst-case complexity of any strategy for picking an optimal vertex of a high-dimensional
convex polytope. A number of new results have demonstrated that several classes of combi-
natorially intractable problems can be approximately and quickly solved when reformulated
as relaxations of convex optimizations. Examples are the max-cut algorithm*?, kissing num-
bers for sphere packings®, and lower bounds for chromatic numbers of finite graphs®. The
methods developed in this thesis are formulated as high-dimensional convex optimizations
as well as convex relaxations of combinatorially intractable problems. Their practical im-
plementation relies heavily on recent developments in these fields and will be discussed in
detail in Chap. 2 and 4.

Another recent development is the wide-spread availability of parallel computing architec-
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tures, such as multicore processors, large clusters, and a new class of graphics cards (GPU’s)
that have been designed to perform a wide class of computations. The size and complexity
of the data analyzed in this thesis required all key algorithms to be implemented in parallel.
Furthermore, even routine tasks such as filtering of data and processing of stimuli could
be done far more quickly exploiting the GPU’s inherent parallelism in performing fourier
transforms orders of magnitude more quickly than on a conventional multicore processor.

1.6 Sparse latent variable models

Latent variable statistical models are widely used in machine learning applications!®1%%

including in several areas of biology, such as genomics. However, they have not found as
much use in the description of electrophysiology data. The standard framework of studying
recorded data is by linear filtering and modeling the magnitude of the output. Most fourier-
based methods fall into this category. Latent variable models have a much greater degree of
explanatory power as they are able to ‘explain away’ '3 to some extent to infer true underlying
causes of data. This inference is usually highly non-linear in contrast to traditional filtering
methods, which only amount to projecting onto a carefully picked basis that may or may
not be suitable for data with poorly understood structure.

A class of latent variable models that are central to this work are sparse coding mod-
els??%2 in which variables that characterize the underlying causal structure of the data
in some natural representation are sparsely active. The sparse representation and latent
parameters for these models can be estimated in a variational framework through convex
optimization. The sparse coding non-linearity has been shown to be a convex relaxation of
a combinatorially hard problem!%* and has been studied in thousands of recent papers in
several contexts, including compressed sensing?!. Sparse coding models were used initially to
describe the statistics of natural images®?® and auditory stimuli®®!'2. Increasing evidence
from recordings of populations of neurons in different modalities and organisms suggests that
sparse coding is a fundamental neurological principle, conferring advantages such as energy
efficiency, increased storage capacity, and ease of read-out®?.

Chap. 2 applies sparse coding to polytrode data at two time scale regimes where neural
activity is assumed to be sparse both in time as well as in space along the length of a
polytrode. The crux of this thesis is that even the simplest sparse linear generative model
of polytrode data as used here succeeds at characterizing the statistics of a rich, high-

dimensional, poorly understood dataset in ways that traditional analysis methods would
fail.

10
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1.7 Outline of thesis

This thesis is organized into three parts. Chap. 2 develops a novel application of sparse
coding that is applied in turn to high-pass and low-pass filtered polytrode data recorded from
anesthetized cat visual cortex. This unsupervised algorithm is able to learn the statistically
recurring components of spike and LFP datasets. Having transformed the data into this
new representation, Chap. 3 characterizes the statistics of the components across lamina for
different stimulus classes. Lastly, Chap. 4 combines the components into a GLM model for
describing the joint statistics of the spiking and LFP to characterize the full statistics of the
data in a unified manner. Chap. 5 concludes with a summary of results from this analysis
and suggestions for future work.

11



Chapter 2

The statistical structure of laminar
recordings

2.1 Introduction

Silicon polytrodes have become increasingly commonplace in recordings from a variety of
brain areas. Built out of a silicon substrate with a high-density of recording sites, they
are available in a variety of site arrangements and physical configurations (Fig. 1.3). They
enable recording the extracellular waveforms of populations of neurons at a high spatial and
temporal resolution. However, they share many of the challenges of other large-scale record-
ing methods. Traditional spike sorting algorithms, designed for single electrodes or tetrodes,
are in general not scalable to the increased number of channels and often cannot incorporate
and exploit knowledge of the physical geometry of the probe. Polytrodes may have poorer
single unit isolation than single electrodes as their position cannot be finely adjusted to move
sites near cell bodies. Super-imposed spike waveforms on multiple channels cannot be han-
dled by conventional thresholding and clustering spike sorting methods. Traditional signal
processing algorithms such as spectral density estimation and linear filtering methods treat
channels independently. It is not clear how to incorporate the complex phase relationships
between polytrode channels in fourier-based analysis methods such as spike-field coherence .
These methods make implicit assumptions about the nature of recordings that may not hold,
such as ascribing special significance to activity in narrow frequency bands. The statistics
of the recorded data may be non-stationary, inconsistent across repeated experiments and
containing experimental artifacts that are difficult to account for and remove.

In this Chapter, I present a novel application of sparse coding® (Sec. 1.6) to polytrode
recordings from visual cortex. In this case, the underlying data is modeled as an approx-
imately linear superposition of electric potentials from nearby biophysical events. Sparse
coding assumes these events occur sparsely in time and in space along the polytrode. It
is able to learn a natural representation for these events such the causal structure of the

12
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data is explicit. The polytrode devices in this case are single shaft probes with 32 or 54
channels that span the extent of a cortical column. The goal is to record from a population
of 30-40 neurons across all cortical lamina to study the spiking and LFP response properties
of the population in response to dynamic, natural stimuli. Sparse coding models were first
applied to natural image and audio statistics®%2192 and have recently been used in a wider
range of applications. The simplest version of a sparse coding model, which is used here, is
a linear generative model with a sparse prior on the latent variables. The basis functions
learned provide a decomposition of the signal into dominant statistically recurring compo-
nents. Their characteristics are revealing and interpretable and have the potential to shed
light on structure that would be difficult to discern through other methods such as principal
components analysis (PCA). An application is demonstrated in Chap. 3. Additionally, the
inferred latent variables can be used as regressors in subsequent analyses in the place of the
original data (Chap. 4).

The data was divide into high and low frequency, or ‘spike’ and ‘LFP’ datasets, respec-
tively, and a sparse coding basis was learned per recording penetration. The learned spike
bases represent components of extracellular potentials of individual neurons along the length
of polytrode. Their relationship to spike sorted data using more conventional methods is
demonstrated and a number of applications are presented. The learned LFP components
reveal a rich laminar structure that is separated into distinct frequency bands. This novel
representation of the LFP provides a promising new approach to understanding the biophys-
ical cause and significance of these signals.

2.2 Methods

2.2.1 Surgery and preparation

Acute experiments were performed on three female (2.8-3.5 kg) and one male (3.5 kg) anes-
thetized and paralyzed cats. Prior to surgery, the animals were anesthetized with an in-
tramuscular injection of ketamine (12 mg/kg) and acepromazine (0.3 mg/kg) and given
atropine (0.025 mg/kg) subcutaneously to reduce salivation. Anesthesia was maintained
using halothane (0.6-2%) in a mixture of nitrous oxide and oxygen (2:1) using a Surgivet
Model 100 halothane vaporizer while the animals were actively ventilated using a Harvard
Apparatus respirator pump. The cephalic vein was cannulated and a continuous infusion
of Ringer’s solution containing 2.5% dextrose was given throughout the experiment at a
rate of 4 ml/kg/h. The antibiotic Cephazolin was administered intramuscularly (30 mg/kg)
every eight hours to reduce the risk of infections. Vital signs including electrocardiogram,
heart rate (140-180 bps), rectal body temperature (37 — 39° C), end-tidal COy (3.5-4.5%),
and SpOs (99-100%), were continuously monitored and maintained within the normal range
using a Cardell 9500 HD veterinary life signs monitor and a Gaymar TP650 thermal water

13
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blanket.

The animals were mounted in a stereotaxic frame and a stainless steel head post was
affixed anterior to the craniotomy location using 6-8 stainless steel screws and covered with
dental acrylic. This allowed us to retract the ear and eye bars to remove potentially painful
pressure points and also served to electrically isolate the animal from the stereotaxic table.
The stereotaxic frame was used to locate the primary visual cortex at coordinates 67 mm
dorsally and +£3 mm laterally relative to AP0O. After removal of the eye and ear bars, the
head remained suspended from the head post for the remainder of the experiment.

An approximately 7 mm X 7 mm craniotomy was made in one hemisphere over area
17. After recording from several penetrations in this hemisphere, a second craniotomy was
made in the opposite hemisphere for further penetrations. Paralysis was then induced with
vercuronium at 1 mg/kg and maintained at 1 mg/kg/h intravenously.

A local application of Neosynephrine was made to retract nictitating membranes as well
as an application of atropine to dilate the pupils. The eyes were focused on a computer
monitor screen at a distance of 57 cm using a pair of gas permeable contact lenses chosen
using the tapetal reflection technique®, where an opthalmoscope light introduced into the
eye produced an in-focus, reflected fundus image on a white screen facing the animal. At
this distance, 1° of visual angle corresponds to 1 ¢cm on the computer monitor.

To reduce pulsations from heartbeat and relieve intracranial pressure during the exper-
iment, a catheter was inserted into the cisterna magna to allow for the partial drainage of
cerebrospinal fluid. A small portion of the dura mater and, as necessary, the arachnoid layer,
were then reflected using a dural knife custom made from a surgical needle. The head stage
holding a silicon polytrode was carefully positioned just above the cortical surface using Kopf
Instruments micromanipulators. A 4% mixture of agar in artificial cerebrospinal fluid (aCSF)
was applied to protect the cortical surface and reduce pulsations. The polytrode was slowly
lowered perpendicularly into cortex using a hydraulic microdrive Narishige Model MHO 110.
The craniotomy and a portion of the polytrode assembly where then covered with a layer of
bone wax to prevent the agar from drying out.

The protocol used in these experiments was approved by the Institutional Animal Care
and Use Committee at Montana State University.

2.2.2 Recording procedure

All recordings were performed using single shank, planar silicon polytrodes purchased from
NeuroNexus Technologies. In the first experiment, a 54-channel probe was used with contacts
staggered in two columns, spaced 65 um vertically, 56 pm horizontally, with an overall shaft
width of 206 pum (54umap2b in Blanche et al.'*). In the remaining three experiments, 32-
channel probes were used with sites arranged in a single column with contact diameters of
15 pm, 23 pm, and 30 pm arrayed over a length of 1.55 mm with full-shaft lengths of 6 mm
or 10 mm and width tapering from 250 pum to a point over the active length of the probe
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(Fig. 1.3a).

The polytrode was mounted onto a Multichannel Systems ADPT-NN-32 Probe adapter,
which was connected to the hydraulic drive by a custom adapter. Signals were buffered with
a head-stage amplifier with gain of 10 in the first three experiments, modified to a gain of 5
in the last, using Multichannel Systems model MPA32I. The signals were further amplified
with a Multichannel Systems model FA641 amplifier with a gain of 500 and cutoffs at 1 Hz
and 10 kHz. This signal was digitized with 14-bit precision and 30 kHz sampling rate with
a PC-based data acquisition system containing a United Electronic Industries PowerDAQ
PD2-MF-64-2M-14H. The broadband signals for all channels were recorded to hard disk for
offline processing. For the last experiment, electrolytic lesions were made at the end of each
recording session by injecting 2 pA of current for a duration of 12 s into the top and bottom
recording sites according to the probe manufacturer’s specification. However, lesions were
not visible in the histology and did not aid in recovering polytrode position.

The raw data was divided into low-pass and high-pass datasets. For the high-pass dataset,
a 4-th order Butterworth filter with passband between 0.5 kHz and 10 kHz was applied
forward then backward on the full raw dataset for a net zero-phase filtering and the filtered
data saved to disk without resampling at 30 kHz. For the low-pass dataset, the data was
down-sampled from 30 kHz to 1 kHz by a succession of filtering and sub-sampling steps of
5, 3, and 2 times, with FIR filters designed using the window method and filter lengths of
256, 128, and 128, respectively. This data was then filtered with a zero-phase Butterworth
filter with passbands of 1 to 150 Hz and saved to disk at 1 kHz sample rate. These two
datasets are referred to as the spike and local field potential (LFP) datasets. All analysis
software was custom written using a collection of open-source python tools, including numpy,
scipy®!, ipython®’ h5py?4, and matplotlib’®.

2.2.3 Histological procedures

At the end of each experiment, the animal was euthanized with an intravenous injection of
pentobarbital and perfused with a 4% formaldehyde solution in phosphate buffered saline.
The brain was then removed and brain regions containing the recording locations were
blocked and fixed in sucrose solution. Histological Nissl-stained slices of 60 um thickness
were made (FD Neurotechnologies) in a coronal direction at 120 pm intervals. For all but
one penetration, the polytrode track was clearly visible in the slices. An example is shown in
Fig. 2.1. The tracks were used to confirm recording depth, angle of penetration, and whether
the recording spanned an entire single or multiple cortical columns.
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32-channel
probe

Penetration
location

Imm

Figure 2.1: Histological recording signature. (a) Full brain from one experiment showing
recording site and location of visual areas 17 and 18 as well as a coronal block in preparation for
histology. (b) Reconstruction of one penetration from four superimposed Nissl-stained slices. In
each of the four slices, some tissue damage due to the electrode passage is visible. The penetration
spans all cortical layers and is aligned parallel to the striations of cortical mini-columns. Due to
tissue shrinkage from the perfusion and fixation process, as well as the penetration spanning
multiple slices, the scale bar does not exactly correspond to the span of recording locations of
the polytrode.
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2.2.4 Stimuli

A variety of visual stimuli were used in each experiment, including long and repeated short
natural movies, ‘Hilbert’ movies, drifting gratings, binary white noise, and full-field black
and white stimuli. The combined duration of all movies played for each penetration was
approximately four hours. The stimuli and presentation protocol are presented in detail in
Sec. 3.2.2.

2.2.5 Sparse coding model

Sparse coding®?87192 is a latent variable model that attempts to describe data in terms of a

small number of additive components, or basis functions, selected out of a large dictionary.
Let y;(t), the data on channel 7 at time ¢, be written as a temporal convolution of a set of
basis functions ¢;;(t), with ¢ and j denoting channel and basis function, respectively,

yit) = Z Pij(t) * 2;() + ei(?) (2.1)

with €;(t) ~ N(0, 0,,) small, uncorrelated gaussian noise on each channel. This model is illus-
trated in Fig. 2.2. To estimate model parameters, the data is assumed to be an identically dis-
tributed, independent ensemble of length 7" time samples with C' channels Y = {y(i)}izlm D
with y® € RE*T. The log-likelihood of the model is,

L(®,0,)=logp(Y|®, 0, \)

D
= logp(y™|®,0u, )

=1
D

= Zlog/dxp(y(”lx,Qan)p(XIA)
i=1

where,

T
1 2
plylx, ®,0,) o exp (—ﬁ Sy = > @x| )

n =1 T

with ®, € ROV x_ € RY with N the number of basis functions. The sparse prior on the
coefficients x is parametrized with A\. The goal of learning is to maximize the likelihood
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L(®,0,). The derivative of L(®,0,,) is taken with respect to the model parameter @,

oL D d
— (@)

0%, o ;:1 /dxp(x|y P, o, ) E (

t=1

y: — Z (I)TXFT) XtT—a

A number of ways exist to estimate the intractable integral in this expression, including a
Laplace approximation® and Hamiltonian Monte Carlo sampling?. The simplest approach,
taken here, is to assume the posterior distribution p(x|y®, ®,0,,)) is sufficiently peaked
and to take one sample at its mode®?, that is,

x() = arg maXp(X|y(i)> ®,0,, )

= argmaxlog p(y"”, x|®, ., \)

T
: 1 2
= arg min (ﬁ E lye — g ®,x; . ||° — logp(xl)\)> (2.2)

not=1 T

Model likelihood was maximized using an alternating scheme where x® were inferred and
then used to update L(®,0,)%. An additional simplifying assumption was made to take
the parameter of the gaussian noise o,, as given, though a prior could be imposed on it and
estimated along with ®. In practice, an appropriate o, is approximated from descriptive
statistics of the data. As the data is practically infinite, only a small sample of y® was
chosen in each step. Additionally, the model has a degeneracy due to the sparse prior p(x|\)
shrinking coefficients to zero, causing the norm of ® to grow without bound. Therefore a
convex constraint was imposed such that,

ZZQ%TS 1

=1 7=1

where P are the number of time taps in the basis functions. The constraint makes the
learning update of ® a quadratically constrained quadratic program (QCQP)'". In practice,
however, this problem was solved by making a small stochastic gradient learning step and
renormalizing the basis functions on each iteration. A full QCQP solver was implemented
using a convolutional adaptation of the method proposed in Mairal et al. ™, but found that
for neural datasets, the algorithm was prone to get stuck in local minima. During learning,
the basis functions were recentered gradually over many iterations. This reflected an implicit
prior that the basis functions should be temporally localized.
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Figure 2.2: Convolutional sparse coding. A convolutional sparse coding model is a linear
generative model where data is represented as a sum of a convolution of a set of bases with
coefficients which are expected to be sparse and independent in both time and channel. This
schematic shows how to reconstruct a portion of one channel of data at bottom using two basis
elements at left convolved with corresponding sparse coefficients at right and summed. Estimation
of basis functions ¢;; and coefficients x; (Eq. 2.1) are called ‘learning’ and ‘inference’, respectively.
Bases ¢;; are learned for spiking and LFP datasets separately for each recording penetration and
coefficients are inferred for the entire recordings. This new representation has many desirable
properties.

2.2.5.1 Matching pursuit inference

The nature of the spiking and LFP datasets required the inference problem 2.2 to be solved
the using a different strategy for each case. For the spike dataset, which is made up primarily
of highly sparse spike activity separated in time as well as in space among the channels and
mixed with approximately gaussian noise, a greedy algorithm, matching pursuit >#"1%2 was
chosen. This algorithm is efficient for a high degree of assumed sparsity when the basis
functions can be assumed to be relatively incoherent. Its goal is to represent the data with
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at most k£ basis functions,

T
x* = argmin — ZHYt — Z &.x;, .|

Ixlg<k 207 “= -
where ||x||, denotes the number of non-zero elements of x. For arbitrary ®, this problem is
NP-hard?®. Matching pursuit is a greedy strategy that finds an approximate solution and
overcomes this combinatorial complexity. Additionally, to make the learned basis functions
and coefficients more physiologically interpretable, the coefficients were forced to be non-
negative.

2.2.5.2 L,-regularized quasi-Newton inference

For the LFP dataset, an Li-regularized method was used to induce sparsity on the coeffi-
cients. The LFP dataset is sampled at a lower rate and is hence considerably smaller than
the spike dataset, reducing requirements for computational efficiency by a large factor. An
L; method performed better at learning in a less sparse regime where basis functions were
more coherent and ‘explaining away’ was more critical. Briefly, the prior on coefficients was
assumed to be exponentially distributed,

p(x|\) oc e Al

giving the following convex minimization problem for inference,

T
. 1 2
x' = argmin g 3 llye — 3 ®oxie|f 4 Al

no¢=1 T

This objective is closely related to the Lasso, which has been intensively studied?*'% and
for which an abundance of methods exist. Despite its widespread use as a feature selection
method, it is important to note that an L; regularizer has a deficiency. If the data is
indeed generated by a Laplacian distribution, its order statistics are not sufficiently sparse
to guarantee recovery®. Additionally, both inference methods used are not causal, and
coefficients inferred for a given time can be affected by data in the future. In contrast, state-
space models such as Kalman filters and hidden Markov models are causal by design, though
operations such as smoothing are inherently acausal. Creating a causal inference algorithm
in this setting is an open problem that is the subject of future work.
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2.2.6 Implementation

For convolutional matching pursuit, the algorithm was implemented in python using the
numpy®! library. For L;-regularized inference, a method® based on the widely used -BFGS
quasi-Newton algorithm ™ was chosen, which uses a particular choice of sub-gradient when-
ever the optimization attempts to cross from one octant to another. The advantages of this
algorithm over the many others is that it does not require computing the Gram matrix, only
requires an objective and gradient to be defined, is numerically stable for large numbers
of parameters, converges quickly to an approximate solution, and can be efficiently run in
parallel on multiple cores of a processor as it uses only BLAS level 1 operations.

Three versions of this algorithm were implemented. The first was a cython!%% wrapper
of the C++ library 1iblbfgs®’, which explicitly implements all linear algebra with SSE2
instructions. Next, a version in cython was implemented that could handle a vector of 1,
regularization parameters A, a non-negative constraint on the coefficients, and would run
more efficiently on multicore architectures through its use of vendor linear algebra libraries.
Lastly, a version in cython and pycuda® was implemented to run fully on the NVIDA GPU
avoiding all host to GPU transfers during the optimization. In this implementation, the
convolutions in the objective were implemented both as a bank of 2-D FFTs as well as a
single 3-D FFT. The 3-D FFT method, despite its theoretical inefficiency in this case, gave
an approximately 30x speed-up versus computing the convolutions in the time domain on
the CPU. The 2-D FFT bank gave only a 6x speed-up, most likely due to the GPU being
constrained to computing one 2-D FFT at a time. Array slicing was implemented with
1-D texture maps and all norms, projections, and reductions were custom written to take
advantage of the parallelism in the GPU.

The full learning algorithm was parallelized using the Message Passing Interface (MPI)
in python using mpidpy?. On each learning iteration, the root node sampled the data
from disk and distributed this data amongst the nodes using an MPI Scatter. All nodes
then performed inference using one of the algorithms described above and the results were
reduced on the root node with an MPI Gather. A learning step was taken and the basis was
then MPI Broadcast to all nodes. This framework allowed the learning algorithm to exploit
parallelism on a single multicore CPU with or without a GPU, a cluster of multicore CPU’s,
as well as a hybrid cluster of CPU’s and GPU’s.

2.2.6.1 Parallel inference of coefficients for a full dataset

After a basis was learned for a spike or LEP dataset, coefficients were inferred for the whole
dataset in a chunk-wise parallel fashion (Fig. 2.3). Given N parallel computational nodes,
the data was divided into NV large chunks. Within each chunk, inference was performed in
sequence on blocks of time length T with T" >> P, where P is the number of time taps
in the learned basis ®. Blocking was used at it is computationally impractical to perform
inference on arbitrarily large time segments. A block of length T yielded coefficients x of
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time length 7"+ P — 1. After one block was completed, all except a P — 1 length of its tail
was written to disk. The 2P — 2 tail portion of this block was used for initializing the next
block. For the new block, the first P — 1 coefficients were held fixed whereas the next P — 1
coefficients were used to warm start the inference in the case of L; or were set to zero for
matching pursuit.

a, Serial block | Channels
Time
Serial block 2
t=0
Serial block 3
[] saved
[7] Warm started and saved
[7] Fixed, then discarded
D Discarded
b Parallel block | Parallel block 2
Stitching of blocks

Figure 2.3: Inferring coefficients over a full dataset. (a) Each parallel chunk of data is
blocked into tractable portions and processed serially by using tail portions of previous blocks to
warm-start the following block. (b) When each parallel chunk is completed, the regions between
chunks are processed to stitch chunks into one long set of coefficients. The stitched portion is
warm-started from it's adjoining blocks.

The non-linear nature of inference raised the possibility that the implementation would
have blocking artifacts. However, inference was tested by blocking over a several block region
as well as inferring coefficients on the whole region with results in good agreement. This is
due to the high degree of sparsity used as well as a side-effect of the convolutional formulation
of the objective, that coefficients on the P — 1 borders received less derivative information
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and were more likely to remain at zero.

Parallel blocks were stitched by performing inference on adjoining regions of length 3P—2,
with only the inner P — 2 portion being free to be modified by the optimization. The
parallel blocking allowed the inference to scale almost linearly and to compute coefficients
for a recording session with approximately the same order of time as the experiment itself.
The datasets with metadata were written to disk using a generic gzip level 4 compressed
HDF5 format which afforded a 20-100 fold compression over the original dataset, depending
primarily on the level of coefficient sparsity.

2.2.7 Conventional spike sorting

The dataset from one penetration was spike sorted using conventional methods for evaluation
of the spike coefficients inferred using sparse coding. The high-pass dataset was divided into
8 groups of 4 non-overlapping channels, serving as virtual tetrodes. Putative spike waveforms
were extracted using a threshold crossing criterion of 5 standard deviations after removing
data outliers. A custom set of 11 features were computed for each extracted spike. The
features were input into KlustaKwik*®, which uses a modified mixture-of-gaussians clustering
algorithm, and the result was loaded into MClust®”. Clusters were cleaned up by manually
deleting and merging waveforms as necessary and saved as single units. Special care was
given to identifying bursting cells, which have waveforms that change in amplitude and shape
with each subsequent firing. After sorting for all virtual tetrodes were completed, cells with
waveforms in adjacent tetrodes were identified and merged into single cells.

2.2.8 Model data

To create realistic model spike data®® for testing the learning of spike waveforms and com-
paring model spike times with inferred sparse coefficients, the modeling software LFPy% was
used. LFPy allows the specification of compartmental models of a population of neurons
with given morphology, simulates them using Neuron®?, and records the extracellular poten-
tial at a set of electrodes using a line-source approximation®. To generate data, an example
morphology provided by LEPy of a layer 5 pyramidal neuron” was used, with three sets of
active conductances®. A set of 20 neurons were placed randomly with uniform probability
along the length of a 32-channel model polytrode with distance from the probe distributed
according to a gaussian distribution with a standard deviation of 30 pm. All neurons were
oriented identically, roughly parallel to the polytrode. The model was run for 10 seconds
at 31.25 kHz with each neuron’s ion channels driven by constant magnitude synaptic in-
puts with gamma distribution arrival times. This data was then high-pass filtered between
0.5-10 kHz and a spike basis was learned. Sparse coefficients were inferred to compare with
model spike times. To make learning and inference more challenging, varying degrees of
noise was added to each channel of the filtered model data. This framework will be used
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in future work to study the extracellular waveforms of different types of model neurons, to
be able to assign cell types to recorded waveforms, to understand and identify other phe-
nomenon such as back-propagating action potentials, to better understand the properties of
the recording device itself, and to study the aggregate activity of a population of neurons in
a model cortical column. Soma traces, synaptic currents, and recorded extracellular activity
for one neuron are shown in Fig. 2.4.
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Figure 2.4: Generating model spike data. An LFPy% model layer 5 pyramidal cell with AMPA
(red), NMDA (magenta), GABA, (blue) active channels distributed along the its dentritic arbors.
(a) Soma trace with three action potentials. (b) Synaptic current traces in all channels. Input
arrival times are gamma distributed. (c) Recorded extracellular activity at the 32-channel contact
positions with time. (d) Two views of the geometry of the neuron, distribution of channels, and
probe contacts (green).

To create model data for testing the learning of LFP basis functions, a set of spatiotempo-
ral Gabor functions were distributed across channels, with coefficients sampled from Bernoulli
or Laplace distributions, and reconstructed raw data from them. Varying degrees of noise
were added including gaussian noise, sinusoidal line noise, and sinusoidal line noise mapped
through a nonlinearity. The resulting model data shared many of the properties of the real
LFP, including activity across lamina with both coherent and non-trivial phase relationships.
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2.3 Results

2.3.1 Learned bases
2.3.1.1 Spike basis functions

The linear generative convolutional sparse coding model (2.2.5) was applied to a spike dataset
consisting of high-pass filtered data from a single, 4 hour penetration. A linear generative
model is particularly well-suited to this problem as the biophysical system in which the
polytrode is embedded can be approximated as an isotropic, resistive medium satisfying
the quasi-static approximation of Maxwell’s equations. The signal recorded at the electrode
contacts can be interpreted as linearly added potentials of extracellular activity surrounding
the contacts®.

The learned basis, sorted by lamina, is shown in Fig. 2.5. The basis elements divide into
a number of distinct classes. Many basis elements are localized in time and channels, with
shapes resembling spike waveforms. The relationship of these elements to spiking of individ-
ual neurons is discussed in 2.3.2.1. A number of basis functions with coherent activity across
channels are harmonics of 60 Hz line noise bleeding into the high-pass filtered signal. Other
basis functions represent unresolved multi-unit activity as well as activity entrained in noise.
These latter basis functions appear at much lower voltage amplitudes in the data than the
spiking activity. The basis was learned from sample patches of data from the entire recording
penetration. A criterion that at least one channel exceed a standard deviation threshold was
used to discard patches with no spiking activity to keep the model from trying to explain
the structure in the noise. However, since one goal of this approach was to learn all the
interesting structure in the data beyond well understood features such as spiking activity,
the sparsity enforced was lower, reconstruction error smaller, and over-completeness of basis
larger than one would use if the goal was only to only learn spike waveforms of the best iso-
lated neurons. This approach introduces some confounds in interpreting coefficients as spike
times and is addressed using model data in Sec. 2.3.3. Coupled with biophysically realistic
modeling studies, this approach will allow identification of other interesting phenomena in
this frequency domain such as back-propagating action potentials!?, action potentials along
LGN axonal afferents, as well as allow assigning of putative cell types to different classes of
waveforms.

Inference was performed with matching pursuit on blocks of data that were 4 times longer
than the number of time taps in the kernels and at most 0.5% of coefficients were active for
a given block. The number of basis functions was chosen to be at least twice the number of
estimated single units present from visual inspection of the data so that the model would have
enough representational power to capture low-amplitude and low-frequency spike waveforms.
As a result, some basis functions did not learn any structure and were not activated in
inference. A number of checks were performed to ensure the basis actually represented real
structure in the data. This included re-running learning with different initial conditions,
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on subsets of the recording, as well as randomly perturbing the basis during learning, in
each case checking to see to what degree the bases changed. In general, the spike-like basis
functions were highly consistent in each case with small variations in the shapes of the
waveforms. There was a greater degree of variability in the remaining basis functions, but,
overall, the qualitative differences were small. These variations are potentially useful for
detecting non-stationarity in the data, such as would be caused, for example, by movement
of the electrode.

The learned basis was then used to infer coefficients for the entire recording session. A
example of inference is shown in Fig. 2.6. Many neurons, particularly in the superficial
layers, fired in bursts, with waveforms that changed with each subsequent action potential.
This is captured in the sparse coefficients as a series of activations of a single basis function
in quick succession with some change in the coefficient amplitude. Often, many nearby
neurons were active at the same time, with waveforms overlapping across channels and time.
The inferred coefficients are able to explain away this confound to represent the data as
a sum of activations of several basis functions with overlapping waveforms. Traditional
cluster-based spike sorting methods®” lack this flexibility and consequently have difficulty
separating such coincident activity. Though much of the structure of the data is preserved
in the reconstruction (Fig 2.6b), the sparsity of the representation helped in removing some
of the background noise. It is important to remember that in contrast to traditional spike
sorting algorithms, the sparse coding model attempts to represent all of the data and not
just of waveforms extracted according to threshold criteria.

2.3.1.2 LFP basis functions

The sparse coding model was also applied to the LFP. An example of a learned basis for
the same penetration as described in Sec. 2.3.1.1 is shown in Fig. 2.7. The basis functions,
spanning 128 ms, separate into distinct classes. Many of the basis functions are localized in
time with spatial structure that separates across lamina. Others are localized in time but
are largely coherent in space and account for relatively more of the variance of the data than
the other classes. The remaining basis functions have low-frequency temporal structure that
is partly entrained in 60 Hz line noise. The overall sparsity of the representation was an
order of magnitude less than with the spike bases, with approximately 10% of the coefficients
active at any time.

To learn this basis, samples were selected at random from a full recording penetration.
The sparsity penalty was initially set to a low value to let all basis elements, which were
initialized randomly, to learn structure. The sparsity was then gradually increased from
this level during learning until the inferred coefficients had punctate activations in time. If
sparsity was too low, the basis functions, particularly the lower frequency ones, were smeared
in time making the structure in the basis functions difficult to interpret. The 60 Hz line noise
was particularly troublesome and did not separate clearly from low-frequency structure.
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Figure 2.5: Learned spike basis. (a) A convolutional sparse coding basis learned from high-pass
filtered data from one recording penetration. Each subplot consists of a single basis function with
polytrode channels on the vertical axis oriented with superficial layers at top and 2 ms of time on
the horizontal axis. The basis functions are plotted as correlation kernels. Plots are in normalized
units, with reds indicating positive voltages and blues negative voltages. Several classes of basis
functions are readily discernible, including spike-like waveforms, noise basis functions correlated
across channels, as well as unresolved multi-unit activity. (b) A subset of basis functions in (a)
that are localized in time and across channels redrawn as line plots for visualization, ordered from
superficial to deep. These basis elements correlated well with spike events in the raw data.
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Figure 2.6: Spike data and reconstruction. (a) Sample high-pass filtered data, (b) recon-
struction with basis shown in Fig. 2.5, and () sparse coefficients with log-magnitudes represented
by size of ellipsoid. As the basis functions are sorted by lamina, the position of the coefficient
activations correspond well to the spatial arrangement of structure in the real data. Bursting
neurons are visible as a quick series of activations of the same coefficient. Neurons in close
proximity tend to fire together, generating overlapping waveforms. The sparse coefficients are
able to separate out these causes. Despite only .5% of the coefficients being active in this case,

much of the structure of the data is represented.
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This confound was addressed with modeled LFP data with a high degree of periodic noise
in Sec. 2.16. To ensure the learned LFP basis captured true structure in the data, bases
were learned from different portions of the data, initialized at random in different ways, and
perturbed during the optimization to demonstrate that the learned structure was consistent
in all cases.

After learning an LFP basis, inference was performed on the entire dataset. A sample
of LFP data and its reconstruction with the learned basis is shown in Fig. 2.8. The LFP
is relatively more poorly understood than spiking activity. Consequently, it is difficult to
interpret the structure in the basis functions and coefficients based on known physiology. This
will be discussed in detail in Chap. 4 where the distribution of spike and LFP coefficients
are characterized together in a joint statistical model.

29



Chapter 2. The statistical structure of laminar recordings

channels
superficial

deep

time

té

Figure 2.7: Learned LFP basis. (a) A convolutional sparse coding basis learned from low-pass
filtered data from one recording penetration. Basis functions are displayed as in Fig. 2.5 with
128 ms on the time axis. Basis functions fall into a few general classes, including components that
are localized in time with features divided across lamina, localized in time but correlated across
lamina, with extend low frequency structure in time, as well as basis functions corresponding to
60 Hz line noise. (b) The same basis replotted as a line plot for visualization purposes.
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Figure 2.8: LFP data and reconstruction. (a) Sample low-pass filtered data, (b) reconstruc-
tion with basis shown in Fig. 2.7, and (c) sparse coefficients with magnitude represented by size
of ellipsoid. Only 8% of the coefficients were active in this case.
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2.3.2 Applications
2.3.2.1 Spike sorting

To understand the relationship between spike bases learned through sparse coding with
actual spiking activity in the recordings, one penetration was spike sorted using a widely used
cluster-based algorithm®, which is referred to henceforth as ‘manual’ spike sorting. Spike
events were detected by checking if any channel in a segment of data had passed a threshold
criterion. The waveforms were extracted and a set of low-dimensional features were computed
from them. These features included the first few PCA components of all waveforms, the peak-
to-peak amplitude and duration of the waveforms as well as other characteristics that reflect
the priors an experimentalist would use to categorize waveforms by visual inspection. The
features were then clustered using a gaussian mixture model'®, where individual clusters
correspond loosely to individual neurons with means and covariances representing the shape
and variability of their waveforms in the low-dimensional feature space. As the mixture
model performs poorly with increased dimensionality, it was necessary to block the channels
on the polytrode into a set of 8 virtual, non-overlapping tetrodes which were sorted separately
and merged in the end. The clusters were loaded into a graphical interface and manually
modified, including merging clusters that appeared to be the same neuron based on criteria
such as auto- and cross-correlograms and inter-spike interval histograms. Some waveforms
were assigned to multi-units and others were discarded. The process took several weeks
of work with several iterations of refinement and careful inspection by a team of people,
including an expert electrophysiologist. Overlapping waveforms and bursting were particular
troublesome and took a great deal of manual modification to account for shortcomings of
the mixture model. In contrast, learning a spike basis and inferring coefficients for a full
recording dataset took on the order of hours when using a moderately sized parallel cluster.
Mean waveforms for the manually sorted waveforms from a 20 minute segment of recorded
data are shown in Fig. 2.9 alongside a sparse coding basis learned from the corresponding
full recording session. The mean waveforms and basis elements have similar temporal and
spatial extents with a characteristic tri-phasic structure. They are distributed across the
electrode in a similar manner with a higher density of waveforms in the superficial layers
and more localized waveforms in the deep layers. To assess the meaning of the sparse coding
coefficients in a similar framework to manual sorting, coefficients for the spike-like bases
elements were thresholded at 50% of their peak value and waveforms were extracted from
the raw data. Sample waveforms for a subset of the basis functions are shown in Fig. 2.10,
demonstrating that this simple strategy could be used as an effective pre-processing step for
manual spike sorting. An example is shown in Fig. 2.11, where waveforms were extracted
based on thresholded sparse coefficients and loaded into a freely available tool for processing
electrophysiology data*’, where standard methods for post-processing can be employed.
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Figure 2.9: Mean waveforms. (a) Mean spike waveforms from 20 minutes of collected data
using spike times from manually sorted data. (b) Spike basis functions learned from the same
recording penetration for comparison. Waveforms are distributed across lamina, have similar
temporal extent and structure. The spike basis functions include several waveform shapes not
found in the manually clustered cells. Additionally, some waveforms in one set do not have a
corresponding waveform in the other set.
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Figure 2.10: Waveforms extracted using thresholded spike coefficients. Spike coefficients
from 30 s of data was thresholded at 50% of maximum for each coefficient. The waveform
for each spike coefficient time was extracted from the raw data and the contribution from all
other basis functions was subtracted. A representative sample of several sets of waveforms, each
corresponding to a basis function, is plotted. Maximum number of waveforms shown per plot is
200, with some basis functions having fewer than that appearing lighter in color.
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Figure 2.11: Sparse coding as a preprocessing step for manual clustering. Klusters* is part
of a suite of free tools for processing neurophysiological data. Here, extracted waveforms identified
from spike coefficients were loaded into Klusters for manual modification such as merging of
clusters and removing multi-unit clusters. Displayed are 100 waveforms in columns for 31 spike
basis functions.

35



Chapter 2. The statistical structure of laminar recordings

To assess the correspondence between manually sorted spike times with sparse coeffi-
cients, cross-correlograms were computed for all pairs of waveforms and basis functions.
Spike and coefficient times were pre-binned to the frame rate as this is the unit of time used
in much of the analysis in Chap. 3 and 4. Pairs with normalized cross-correlogram peaks
above a threshold with overlapping waveforms were identified. Four such pairs are shown in
Fig. 2.12. Waveforms are similar in each example case with spike times and coefficient times
agreeing to a high degree. However, many pairs do not show such a close correspondence
with the most common confound being that several basis function coefficients were used to
give the spike times of one manually sorted neuron. As the ground truth is not know in this
case, it is difficult to ascertain which method is better, and this direction will not be pur-
sued further. Instead a framework is developed for generating biophysically plausible model
spike data where any methodology can be properly evaluated with known ground truth??
(Sec. 2.3.3).

2.3.2.2 Applications using subsets of bases

Having learned a sparse coding basis and coefficients for an entire recording dataset, one
useful application afforded by this new representation is to remove components of the data
that represent noise artifacts or uninteresting structure. Fig. 2.13 shows a reconstruction
of high-pass data where only the spike-like basis functions are retained and the remaining
basis functions are discarded. The effect is to reduce the noise level in each channel. This
illustrates one reason it is highly desirable to learn as much of the structure of data as
possible, including noise artifacts, as it is then possible to remove them from the signal.
The computational complexity of the reconstruction is trivial and does not require further
optimizations. Another example of using a subset of components is given for the LFP in
Fig. 2.14. One possible approach to understanding the structure of the LFP is to consider
reconstructions with only certain classes of basis functions. In this example, only the basis
functions localized in time and having fine structure separated by lamina were used. Subse-
quent analysis can then be applied to this reconstructed data which has drastically reduced
complexity.

2.3.3 Sparse coding on model spike and LFP data

Polytrode data is statistically rich and convolutional sparse coding is an effective means
for decomposing its complex structure into a more tractable representation. In order to
evaluate sparse coding, particularly in an applied setting such as spike sorting, it is instructive
to work with a biophysically faithful model where the mechanism for generating the data
is completely known. Presented here is model spike data generated from compartmental
models of neurons with know morphology using the LFPy framework®. Given a physical
description of a recording device and electric currents in all compartments of the model
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Figure 2.12: Comparison of spike times and sparse coefficients. To assess the correspon-
dence between manual spike sorting and sparse coefficients, cross-correlograms were computed
between spike times and coefficients between all pairs of manually sorted cells and sparse basis
functions. The analysis was done at a temporal resolution of the frame rate of the stimuli (150 Hz)
as this binning is used for all analysis in Chap. 3 and 4. (a-d) Shown are four sample candidates
where normalized cross-correlations were above a heuristic threshold. Shown in each plot, start-
ing clockwise at left, are average waveforms, basis functions, normalized cross-correlograms, and
plot of binned spike times in blue and binned coefficient values in red (2nd y-axis). Time units
are in the frame rate (6.7 ms). Though the correspondence is good for many pairs, a number of
confounds exist that need to be addressed.
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Figure 2.13: Denoising spike data. (a,b) Data in Fig. 2.6 reconstructed using a subset of
basis functions (Fig. 2.9b) resembling spike waveforms. Such denoising is trivial to implement
as it does not require an additional optimization. (c) Sparse coefficients for the subset of basis
functions.
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Figure 2.14: Reduced representation of LFP data. (a,b) Data in Fig. 2.8 reconstructed
using a subset of basis functions with localized kernels and fine laminar structure (Fig. 2.7). Such
a reduced representation of complex data can be used for further analyses or applications such as
event detection. In this example, a large event in the superficial lamina with a specific structure
is readily apparent in the reduced representation but is lost in the complexity of the original data.
(c) Sparse coefficients for the reduced representation.
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neurons, one can calculate the potential at a given time at each recording site using a line
source approximation®. Twenty neurons were distributed randomly about a model 32-
channel polytrode. Currents were injected with random arrival times into a set of 3 channels
distributed along the dendritic trees. In this illustrative example, only a single neuron
model was used and no noise was added. Results are displayed in Fig. 2.15. Spike waveforms
were spatially localized to a greater degree than in real data, which made learning more
difficult as knowledge of the geometry of the channels could not be exploited. The model
data is useful for characterizing and accounting for several confounds in the representation
if the intended application is spike sorting. These include waveforms being represented by
more than one basis function (Fig. 2.15a-b) and waveforms with similar shapes but different
amplitudes being represented with the same set of basis functions (Fig. 2.15¢). Sparse coding
parameters in this example could be tuned to eliminate these confounds, but with real data,
such tuning can be difficult to perform in a systematic way. One strategy is to formulate
more sophisticated sparse coding models to specifically address these shortcomings. Another
approach is to account for confounds in processing the coefficients themselves. Model data
provides a framework for evaluating both strategies.

Generating biophysically faithful model LFP data is considerably more difficult as the
LFP represents the coordinated activity of a large population of neurons. Here, a simplistic
model was used to examine the effects of line noise on the learning of LFP bases. The statis-
tics of line noise is quite different from physiological data and is not well represented by the
sparse coding model used here. To better understand how a high level of line noise impacts
learning, model data was generated using a ground-truth basis of a set of spatio-temporal
gabor functions with coefficients sampled from a Bernoulli distribution. Fig. 2.16a shows
the ground truth basis. To this generated signal, increasing levels of a rectified sinusoidal
line noise was added. Fig. 2.16b shows the results of learning a basis where the line noise is
similar in relative magnitude to the line noise in real polytrode data. The basis functions are
faithfully recovered. However, if the noise is increased to a degree where it dominates the
signal, as with Fig. 2.16¢, the basis functions begin to entrain some of the structure of the
noise. However, they are still able to faithfully recover to a remarkable degree the structure
of the ground truth basis.
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Figure 2.15: Biophysically faithful model spike data. To demonstrate several confounds to
interpreting spike sparse coefficients as spike times when waveforms are localized to one or a few
channels, model spike data was generated from 20 randomly placed pyramidal neurons, high-pass
filtered as is done with real data, and learned a 30 component basis. Model data, reconstruction,
learned basis, as well as coefficients with no threshold and coefficients thresholded at 50% of
their maxima are displayed. Though the learning is robust to added gaussian noise, no noise was
added in this example to aid visualization. The inset plots demonstrate 2 common confounds.
Colors in the learned basis correspond to coefficient ellipsoid colors. (a,b) Several basis functions
are learned and used to represent one spike waveform. Through a simple thresholding heuristic
this confound is removed for (a), but not for (b). (c) The same set of basis functions are used
to represent two spike waveforms of similar shape but differing amplitude. This can be addressed
in a tool such as Klusters*® (see Fig. 2.11).
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Figure 2.16: Model LFP data with line noise and recovering ground-truth basis.
A model basis consisting of a set of spatiotemporal gabors.
data generated from the ground truth basis with Bernoulli sampled coefficients.
(c) Four model data samples, reconstructions, and

sinusoid was added as model line noise.
inferred coefficients for test cases corresponding to the basis in (b). (d) A basis learned from
model data which is dominated by line noise as well as gaussian noise. Some basis elements are
distorted but faithfully recover much of the basic structure in the ground truth basis. (e) Model
samples, reconstructions, and coefficients for the case with high noise. Coefficients are plotted
as temperature maps with zero values in blue.
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2.4 Discussion

A novel application of a convolutional sparse coding algorithm to polytrode data recorded
from visual cortex of anesthetized cats was presented. When applied to high-pass filtered
polytrode data, the algorithm learns a set of spike waveform components along the length of
the polytrode. These components and coefficients have close correspondence to waveforms
and spike times extracted using a conventional spike sorting algorithm. When applied to
the LFP, the learned representation consists of basis elements that have structure separated
across lamina at different temporal scales. Together these methods provide a powerful set
of new tools for exploratory analysis of polytrode data. In Chap. 3, this method is applied
to all recorded data from several polytrode experiments and its utility is demonstrated in
characterizing the laminar distribution of responses to a wide range of stimuli.

Sparse coding as applied to polytrode data provides several immediate applications.
Given even the conservative settings of learning and inference of spike basis functions in
this chapter, a 100-fold compression can be achieved. Sparse coefficients can be stored with
basis functions as metadata in lieu of actual data, reducing hardware requirements and
bandwidth needed to transmit data. Compression will become increasingly necessary as the
number of polytrode recording contacts grow into the hundreds and thousands in the future.
It may even need to be built into the head-stage and acquisition system to be run online.
Sparse coding provides a fast way to denoise data for subsequent processing. Denoising
involves reconstructing data while omitting a subset of basis functions, which does not re-
quire optimizations. Learning basis functions on different portions of the data can be used
to identify non-stationarities, such as electrode drift, that can be addressed by performing
learning and inference adaptively over a dataset.

The most promising application of sparse coding is either as a pre-processing step for
manual spike sorting or as a stand-alone algorithm. Spike sorting is a highly underdeter-
mined, difficult computational problem while also being a necessary processing step for all
subsequent analysis of electrophysiology data. Existing methods, such as clustering algo-
rithms based on mixtures of gaussians, extract events from data using heuristic thresholds
and use feature spaces that are highly tailored and artificial. These methods have numerous
deficiencies such as not being able to model overlapping waveforms, not modeling all the
data but just extracted waveforms, and scaling poorly with increased dimensionality of the
signal, all areas where sparse coding excels. However, before the methods in this chapter can
be incorporated into a full spike sorter, it is essential to handle certain confounds discussed
in Sec. 2.3.3, such as single waveforms being represented by multiple basis functions and a
single basis function being used with different magnitudes to explain different waveforms of
different neurons. Sparse coefficients are analog whereas action potentials are all-or-none
events, posing a difficult issue of the interpretability of the magnitude of sparse coefficients,
requiring subsequent thresholding that may be difficult to perform in a principled manner.
The coefficients could be constrained to be binary, but such inference problems are typically
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intractable, though convex relaxations may exist. An additional difficulty in interpreting
coefficients is that sparse representations can be brittle. If data is perturbed in a trivial way,
coefficients may change substantially. Generating biophysically realistic model data incor-
porating as much of the complexity of the real data is a promising strategy for evaluating
spike sorting performance and will be the subject of future study.
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Population response across lamina

3.1 Introduction

In Chap. 2, an application of a sparse coding algorithm to polytrode recordings was used
to discover a representation for the data where the underlying causal structure was made
explicit. In the high frequency regime, the learned bases consisted of components that had
close correspondence with extracellular spike waveforms. In the low frequency regime, the
learned bases displayed structure both in time and across lamina. In the present chapter,
this new representation is used to characterize neural population responses across lamina in
anesthetized cat visual cortex to a variety of natural stimuli.

The primary motivation for the focus on natural movies is that they are much more
ecologically relevant than artificial stimuli such as gratings and noise movies that are typically
used in experiments (Sec. 1.2). Given the visual system’s high degree of adaptation to the
statistics of the environment, it seems implausible that it could be characterized adequately
by presenting stimuli that are so foreign to it. Another important factor is the strong non-
linearities in the system, which render a reductionist approach useless®. However, to take
advantage of the enormous body of existing electrophysiology done with single neurons using
artificial stimuli, a set of commonly used simple, controlled stimuli such as drifting gratings
were included in the stimulus paradigm to allow for a comparison.

A summary of all recorded data used in this study is displayed in Fig. 3.1 in terms of
mean spectral power of LEFP with time. Particularly striking is the degree of non-stationarity
in the time course of the spectra during a full recording session. Changes in the spectral
distribution, possibly signifying physiological state changes, occur with transitions between
stimuli as well as during a stimulus presentation. It is important to remain mindful of such
confounds during exploratory data analysis as they may affect interpretation of variability
in responses. Chap. 4 describes a statistical approach that can account for these changes of
state.
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Figure 3.1: LFP power across several recording sessions. Power spectra of mean LFP with
time across full recording sessions spanning all stimuli for 5 penetrations in 3 animals. Spectra
were computed in 1 s time bins and are displayed scaled by frequency to better visualize high
frequency features. The stimulus paradigm used consisted of a series of long natural movies,
repeated drifting gratings, repeated short natural movies, full-field on-off movies, and binary white
noise, played in succession. Some stimulus sessions were truncated for experimental reasons and
account for the differing time lengths of the recordings. Many gross features of the recordings
are readily visible including state changes between and within stimulus presentations as well as
know sources of experimental artifacts such as 60 Hz line noise and 30 Hz locking to frame rate
in the binary white noise recordings.
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Figure 3.2: Histology with polytrode track. Nissl-stained coronal sections of four penetrations
in three cats. In each case, several sections are overlaid to show the full extent of the electrode
penetration. Labels t6, b4, 04, 05 correspond to those in Fig. 3.1 and are used in all remaining
figures throughout this section. No histological track was visible for session b1l. In order to study
laminar dependence of neural response, it is critical to determine the position of the polytrode
with respect to the tissue. Histology was one of several methods used to determine position.

full-field natural movie drifting gratings

A\

binary white noise

Figure 3.3: Stimuli used in experiments. Sample frames from stimuli used in experiments,
including (@) long natural movies of ducks, (b) drifting sinusoidal gratings of different directions,
orientations, spatial, and temporal frequencies, and (c) binary white noise. All stimuli covered a
field of view of greater than 10 degrees.
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3.2 Methods

3.2.1 Experimental methods

Polytrode recordings were made from anesthetized cat visual cortex. Surgical methods,
recording procedure, and histological methods (Fig. 3.2) are detailed in Sec. 2.2.1.

3.2.2 Stimuli

For each recording session, a series of visual stimuli were played in succession. These in-
cluded 3 long duration full-field natural movies, 2 long duration movies generated from static
images scanned according to a fractal pattern, 10 repetitions of drifting sine wave gratings
at various directions, spatial and temporal frequencies, 60 repetitions of a short natural
movie, 90 repeats of a full-field on-off step stimulus, and a long duration binary white noise
movie (Fig. 3.3). Hereafter, the natural movies, Hilbert movies, and short natural movie
repeats will be grouped as ‘natural’ stimuli while the remaining stimuli will be described as
‘artificial’. The combined duration of all movies was approximately four hours.

3.2.2.1 Natural stimuli

Three movies of a controlled natural setting were filmed with a Casio EXILIM Pro EX-F1
digital camera, equipped with a 7.20 mm x 5.35 mm (1/1.8 inch) CMOS image sensor with
6.8 million pixels. The camera was set for 21 mm focal length (corresponding to 105 mm of
35 mm film equivalent focal length), for a field of view of approximately 15 by 20 degrees
and an aperture of f/3.4. The field of view was chosen to match the visual angle at which
the movies were later presented on the monitor.

Movies were recorded at 512 x 384 pixel resolution at 300 frames per second and encoded
using the H.264 codec at an 8.8mbps data rate. The camera was stationary with constant
focus and was not panned or zoomed for the duration of each movie. Because there were
no provisions to override automatic gain control on the camera, care was taken to keep the
illumination of the scene constant over the duration of movie recording so that no artifacts
would be introduced due to gain changes. Natural scenes were selected to contain full-field
motion. The high frame rate was chosen to prevent temporal aliasing for playback at various
non-standard frame rates such as 100Hz, 150Hz and 200Hz.

The three movies, hereafter referred to as Duck8, Duck30, and Cat20, were of lengths
8.9, 29.6, and 21.7 minutes in duration, respectively. Duck8 depicts an outdoor scene of
a collection of ducks eating hand-thrown pieces of bread, Duck30 depicts a scene of ducks
swimming in a pond, while Cat20 depicts an indoor scene of several cats feeding and playing.

Several reasons motivated the creation of a new natural movie dataset for this study. Most
importantly, recording movies at 300 fps allowed presentation at a frame rate of 150 Hz with
one refresh per frame, which is the practical limit on a conventional CRT screen. Even faster
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presentation would be possible using this dataset and specialized hardware. This ensures
that the movies captured as much of the temporal power spectrum of natural visual stimuli as
possible. While it may seem that the visual system should not respond to such high temporal
frequencies, it has been shown, for example, that neurons in LGN and striate cortex can
phase lock to the screen refresh at a rate of 60 Hz!%>'% an order of magnitude larger than
the classical preferred temporal frequencies of visual cortical neurons. Anecdotally, human
subjects are able to distinguish cinematic film at 24 fps from video at 60 fps, reporting a
different ‘feel’ for footage at different frame rates without being able to identify the frame
rate differences as the reason?. It was important to avoid these known effects of the frame
rate on the visual system by recording and presenting movies at as high a frame rate as was
feasible.

The natural movies used in this study had other advantages over conventional consumer
video, which have been used in numerous previous studies. No scene changes interrupt the
flow of the movie. These ‘cuts’ are characterized by a sudden change in luminance and other
low order movie statistics, which have a disruptive effect on the LFP, generating evoked
potentials and potentially interrupting ongoing oscillatory activity. The new movies contain
no camera motion such as panning, which introduces a dominant spatio-temporal frequency
in the movie. Due to the high depth of field of the camera used, there was no blur and
associated lack of high spatial frequencies. Finally, the high degree of self-motion in the
scenes chosen, to some degree, compensated for the lack of saccadic eye movements in the
anesthetized preparation and prevented a drop in neural response following adaptation to a
stationary stimulus.

For the presentation system consisting of a Nokia 21”7 CRT monitor running at a resolu-
tion of 640 x 480 and a refresh rate of 150Hz, the camera movies were processed as follows:
movies were temporally down-sampled from 300 to 150 Hz, converted to 8-bit gray-scale,
smoothed with a spatial gaussian filter to reduce blocking artifacts due to the high com-
pression ratio of the camera, and transcoded from the H.264 codec to DivX to be playable
without frame drops through Quicktime™-based presentation software. An additional filter-
ing step was used to reduce the accumulated quantization artifacts of the conversion process
and to smooth out high frequencies. All processing was done with a combination of the
open-source transcoders MEncoder ™, FFMpeg3®, and HandBrake?”.

3.2.2.2 Hilbert movies

Two separate Hilbert movies were generated, approximately 22 minutes in duration each,
by scanning over regions of a single natural image. Each movie was based on a 512 x 512
pixel gray-scale version of a single image. The images were the standard computer vision
test image Lena and a picture of a log against a background of rocks used in Olshausen and
Field®2. The movies were produced frame by frame by tracing, on each step, a 256 x 256
pixel aperture along a space-filling path known as a Hilbert curve® across the entire image
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(Fig. 3.4). This stimulus was inspired by efforts of Otto Creutzfeldt®® more than 30 years ago.
In a series of experiments, he investigated ‘transfer’ properties of cells by scanning a picture,
line by line, over the receptive field of recorded neurons. A single natural image contains a
wealth of high-order statistical features, including edges of different spatial frequency and
orientation, textures, and occlusive surfaces with complex figure and ground relationships.
Scanning over such an image is likely to span a far richer and more ecologically relevant
stimulus space than artificial stimuli such as a series of drifting gratings. In contrast to a
continuous natural movie, this stimulus allows for a succinct representation of a neuron’s
preferred stimulus. A neuron’s firing rate, for example, can be plotted along the coordinates
of the curve to show the relationship of its response with features in the image.
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Figure 3.4: Hilbert path movies. The Hilbert movies scanned a natural image along a space-
filling curve starting at the upper right of the image and ending at the bottom right after visiting
each pixel once. (@) The first 200 steps of the Hilbert curve with red dot denoting start of path at
the upper right of the movie and green denoting the current 200th point. (b) A gray scale image
of the path over the whole movie with a time ordering of dark to light. The red box corresponds
to the region covered in (a).

3.2.2.3 Gratings

Drifting gratings with a circular aperture and a size of 300 x 300 pixels (approximately
15 x 15 degrees) were generated in a pseudorandom order at 100% contrast for 2 seconds
each, with 16 orientations, 4 spatial (0.15, 0.3, 6, 1.2 cyc/deg), and 3 temporal (0.5, 1, 2 Hz)
frequencies, with a total of 192 gratings in all. This series was saved as an MPEG encoded
movie (XviD codec) and was played back 10 times during recording.
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3.2.2.4 Short natural movies

A 30 second subset of the Duck8 movie was selected for repeated presentation and saved as
a separate movie, with processing identical to the long natural movies.

3.2.2.5 Full-field on-off step movies

To identify laminar depth of the recordings from a current source density (CSD) analysis,

we showed 90 repetitions of a full-field stimulus switching between black and white at a rate
of 1 Hz.

3.2.2.6 Binary white noise

Finally, we included a receptive field mapping stimulus consisting of a 30 x 30 grid of black
and white pixels subtending 15 x 15 degrees of visual angle. The stimulus was refreshed at
30 Hz (5 refreshes per frame) with each pixel being individually chosen to be black or white
with a chance of 50%. The duration of this stimulus was 20 minutes.

3.2.3 Stimulus presentation

Stimuli were presented using the Psychophysics Toolbox!®(PTB) at a frame rate of 150 Hz
with one frame per refresh on a Nokia 445XiPlus CRT screen. The maximum brightness of
the screen was set to 100 cd/m?, and the response of the monitor was adjusted to deviate
less than 10% from a linear response over the dynamic range of the stimulus. Ambient light
in the room was kept below 1 cd/m? as measured on the screen. The distance from the
screen to the preparations was 57 cm, chosen such that 1 ¢m on the screen corresponded
to 1° of visual angle. Stimuli were verified to be frame accurate by acquiring vertical sync
signals using a photodiode as well as using the internal timing diagnostics offered by PTB.

3.2.4 Spatiotemporal whitening

Natural movies have characteristic power-law spectra®’3®. To compute sparse coefficient-

triggered averages for long natural movie sessions, it was necessary to compensate by flat-
tening the spectra such that the power-law statistics did not dominate the analysis. The
natural movies were first spatially gaussian filtered and down-sampled either 8 or 16 times.
They were then convolved with an acausal, broadband zero-phase whitening filter®®?, which
was constructed in several steps. An average spatio-temporal power spectrum was com-
puted from small blocks of the movie. The spectrum was then radially averaged in space,
inverted and multiplied by a fourier-domain lowpass filter to attenuate the highest spatial
and temporal frequencies. The filter was then applied to the whole natural movie using an
overlap-add method” in the fourier domain, implemented using the FFT libraries for the
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NVidia GPU for speed. As the filter was acausal, this introduced acausal artifacts into the
coefficient-triggered averages of time length of about 6 frames, corresponding to the support
of the temporal impulse response of the whitening filter.

3.2.5 Sparse coefficients

For each polytrode penetration, a single convolutional sparse coding basis (2.2.5) was learned
for each of the spike and LFP datasets using data from the entire penetration. These bases
were then used to infer coefficients on the full spike or LFP dataset using a parallelized block
algorithm (2.2.6.1) that scaled approximately linearly in the number of parallel nodes used.
Computation time in practice was on the same order as recording time when using a cluster
of 8-16 nodes. Polytrode recordings, as with all electrophysiology, are susceptible to non-
stationarity that is difficult to account for, such as electrode drift and changes in the health of
the tissue. The penetrations used in this study were relatively stable. However, if polytrode
drift was suspected, the basis and coefficients could be learned and inferred adaptively in
time with gradual changes in the kernels accounting for some of this non-stationarity.

3.2.6 Polytrode position

As it was critically important for characterizing responses in specific cortical layers, we
determined the position of the polytrode with respect to the lamina using a combination
of strategies. The polytrode channels span 1.55 mm, the approximate extent of a cortical
column in cat visual cortex. Despite best efforts to insert the polytrode perpendicularly to
the cortical surface, some variation was inevitable due to the curvature of cortex in area 17.
Penetrations were made gradually, during which short recording snapshots were made for
computing sparse convolutional spike bases. The learned bases helped to assess the position
of single units along the probe as well as trace their signal as the probe was moved downwards.
When stable units were observed along the length of the probe, the main recordings were
then begun. This ensured that the probe was deep enough but not yet in white matter. At
the end of recording, lesions were made in the top and bottom polytrode channels. However,
these lesions did not appear in the histology.

Polytrode tracks were visible in histological Nissl-stained sections made from the record-
ing area (Fig. 2.1). As the coronal blocks used for sectioning were not perfectly parallel to
the polytrode, tracks appeared on multiple sections requiring them to be overlaid to recon-
struct a full track. The histology confirmed if the polytrode was inserted perpendicularly,
and whether it spanned a single micro-column or crossed several columns. Due to shrinkage
of tissue in the histological preparation as well as the angle of the probe relative to the
sections, the precise location of the probe could not be determined. This was addressed by
using a repeated on-off full-field step stimulus to calculate current source density (CSD) 792,
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Furthermore, spiking response to this stimulus allowed precise determination of layer 4 and,
in some cases, layer 6.

3.3 Results

3.3.1 Responses to on-off step stimuli

To determine the precise location of layer 4 along the polytrode, we plotted rasters of the first
75 ms of spike coefficient response to changes in an on-off full-field step stimulus. Fig. 3.5
shows the onset of a spatially localized spiking response at approximately 30 ms in the
upper channels of the polytrode in layer 47. This is followed in some cases by second and
third peaks, occurring at different times for the two different step stimuli. More data would
be needed to establish if these interesting timing differences occur consistently and can be
accounted for by known differences between the ON and OFF pathways, for example. ON
bipolar cells in the retina use a second-messenger to invert polarity whereas OFF bipolar
cells use ionotropic receptors with faster kinetics. These different mechanisms result in a
response timing difference that is passed through to visual cortex®®. Fig. 3.6 shows spike
coefficient rasters for a different penetration in which the polytrode was inserted at a slight
angle. Again the response signature is localized to a narrow set of channels, presumably
layer 4. A small signature is also seen in the deep layers, which may correspond to layer
6, which is known to have Y- and X-type synaptic inputs from LGN™. Fig. 3.7 shows the
trial-averaged potentials as well as the CSD computed for both penetrations. The prominent
and spatially localized current sink in the first example corresponds to layer 4 and agrees
well with the spike coefficient rasters. The CSD tangential penetration is more difficult to
interpret, but the current sink agrees well with the position of the spiking response.
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Figure 3.5: Response to on-off step stimuli. Spike coefficient rasters for 90 repeats of a 1
second black-to-white, 1 second white-to-black full-field movie. The first 75 ms of each repeat is
shown here. The spike basis functions sorted across lamina corresponding to each set of rasters
is shown at left in green. Histology for this penetration is shown at top right with position of
probe indicated by a black bar to its immediate left. The onset time of response is approximately
30 ms, with the majority of the firing initiated in the middle layers, presumably layer 4. A number
of additional peaks are visible after the first response with different lag times for the two stimulus
cases.
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Figure 3.6: Response to on-off step stimuli. Spike coefficient rasters (see Fig. 3.5) for a slightly
tangential polytrode penetration. A burst of activity in the upper channels likely corresponds to
layer 4. Activity in the lowest laminar layers may correspond to layer 6 LGN afferents’®. Responses
to the two stimuli are qualitatively different, with the on-black stimuli showing a more punctate
first peak and a shorter lag for the small second peak in activity.
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Figure 3.7: Mean potential and CSD. Trial-averaged potentials and current source density
(CSD) for on-off step movies. On-white and on-black transitions were calculated separately.
CSDs were computed using the step iCSD method®?. Black vertical bars denote onset of response
and the full span in time in each plot is 75 ms. (a) Corresponds to Fig. 3.5 and (b) corresponds
to Fig. 3.6. CSD estimates are a good means to confirm position of the polytrode with the
prominent current sink agreeing with location of activity in the spike coefficient rasters.
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3.3.2 Responses to natural movie repeats

Results of Yen et al.''!' from multi-site tetrode probes in anesthetized cat visual cortex
showed an unexpected degree of heterogeneity in the response of nearby cells to repeated
natural movies. Fig. 1.2 shows spike rasters of a collection of neurons recorded from the same
tetrode to natural movie repeats. We wished to extend this result by studying responses
to repeated natural movies along an entire cortical column. Fig. 3.8 shows spike coefficient
rasters for a slightly tangential penetration. Responses were punctate and repeatable from
trial to trial, particularly in the granular and supra-granular layers, but highly heterogenous
across lamina. Many cells in the deeper layers showed graded or no responses to the nat-
ural movies. Fig. 3.9 shows detail of Fig. 3.8 for a subset of basis functions, highlighting
the differences in responses between nearby cells as well as the non-stationarity in trial-to-
trial statistics. In Chap. 4, we use a statistical framework to model and account for these
distinctive response features. Spike coefficient rasters are also shown in Fig. 3.10 for a ver-
tical penetration. In this case, the responses in the superficial layers are highly consistent,
punctate and reliable across trials. Deeper layers again show a more diffuse response.

The structure of LFP responses to repeated natural movies is poorly understood. Here,
we show that a subset of LFP basis functions have coefficients that show punctate tem-
poral structure and repeatability from trial-to-trial, but to a smaller degree than the spike
coefficients. For the tangential penetration example, basis functions with laminar structure
showed a degree of trial-to-trial repeatability whereas basis functions with coherent laminar
structure did not. A short segment of LFP rasters to repeated movies for this penetration
is shown in 3.11. LFP rasters for a perpendicular penetration is shown in 3.12, showing a
wide range of responses for basis functions with different spatial and temporal structure.
Fig. 3.13a shows temporal detail for this recording. LFP coefficients are in general more dif-
fuse than spike coefficients with consistent phase relationships between basis functions. This
structure will be explored further in Chap. 4. For comparison, Fig. 3.13b shows the mean
LFP across trials for the same recording. Although trial structure in the LFP is still visible,
it is more difficult to discern. A sparse decomposition affords a new approach to under-
standing the structure in the LFP by separating it into a more tractable set of independent
components, each with possible biophysical correlates that can be studied separately.

3.3.3 Responses to drifting gratings

Sinusoidal gratings are perhaps the most commonly used stimulus in physiological studies of
the visual system. These stimuli are simple to generate, have a low dimensional parametriza-
tion, and are highly effective at driving cortical activity. However, their ecological relevance
is highly questionable. To compare with the large body of work done with this stimuli
and to see how those results extend to a large number of neurons recorded simultaneously
across a cortical column, we presented repeats of a pseudorandom set of sinusoidal gratings
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Figure 3.8: Spike coefficient rasters to repeated natural movies. Spike coefficient rasters
for 60 repeats of a 30 s natural movie. Basis functions in green are ordered by lamina. Horizontal
blue lines demarcate division between basis functions. Rasters were thresholded to 50 uV /frame

refresh and down-sampled 5 times in time. Vertical blue lines were added to aid visualization.
This penetration corresponds to Fig. 3.6 and is slightly tangential.

58



Chapter 3. Population response across lamina

b4 repeated natural movie, spike coefficient rasters

superficial

spike basis functions

deep

time (S) th=50,d=1

Figure 3.9: Spike coefficient rasters to repeated natural movies. Spike coefficient rasters
for a subset of the basis functions in Fig. 3.8 for 5 s of the full 30 s repeats showing some of the
variety in raster patterns, such as trial-to-trial repeatability, sharp or graded responses to features
in the stimulus, and inter-trial non-stationarity.
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Figure 3.10: Spike coefficient rasters to repeated natural movies. Spike coefficient rasters
for 60 repeats of a 30 s natural movie (see Fig. 3.8). This penetration was close to perpendicular.
Activity in the superficial layers is highly synchronous and punctate whereas activity in the deep
layers is more graded, though still responsive to certain frames of the stimulus.
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Figure 3.11: LFP coefficient rasters to repeated natural movies. A representative subset
of sparse coefficient rasters for LFP basis functions. The first 5 s of 60 repeats of a 30 s natural
movie are shown here. The timing of the LFP coefficients corresponds the center time of the LFP
basis functions. Though the statistics of the coefficients are quite different from spike coefficients,
some repeatable structure exists with heterogeneity between basis functions.
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Figure 3.12: LFP coefficient rasters to repeated natural movies. LFP coefficient rasters
for a vertical penetration to 30 s repeated natural movies. A representative subset of basis
functions are shown here. Basis functions with laminar structure have clearly repeated responses
to different frames in the stimulus. Horizontal line artifacts near the end of some repeats are due
to an acquisition system error.
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Figure 3.13: LFP coefficient rasters compared to mean LFP. (a) First 5 s of LFP coefficient
rasters for data in Fig. 3.10 showing additional temporal detail of coefficient statistics. (b) First
5 s of mean LFP across all channels for all 60 repeats of the natural movie for comparison with
coefficients. Though temporal structure exists in the LFP, it is harder to discern. The sparse
coding representation provides a decomposition with clearer separation of causes that can be

studied separately, as is done in Chap. 4.
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of different orientation, direction, spatial, and temporal frequencies for 10 repeats each. Re-
sults for a vertical penetration are shown in Fig. 3.14. Spike basis function responses were
highly tuned to orientation for all repeats, particularly in the superficial layers, with a more
graded response in the deeper layers. The deepest layers showed suppressed responses to
the preferred orientation of the column. For a tangential penetration (Fig. 3.15), orientation
selectivity shifted along the column due to the polytrode crossing into neighboring columns.
This result is confirmed in the orientation of receptive fields computed from natural movies
(Sec. 3.3.4). LFP basis functions with components in the superficial layers also demonstrated
a strong orientation preference (Fig. 3.16).
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Figure 3.14: Spike coefficient rasters for drifting gratings. Spike coefficient rasters for 10
repeats of a sequence of 2 s drifting grating presentations. Each block within blue grid lines
consists of 10 repeats (vertical) of 16 orientations and directions (horizontal) consisting of 20 s
of data. The remainder of the plot is organized according to 3 large blocks of increasing temporal
frequencies. Within each block are 4 subdivisions of increasing spatial frequencies as indicated by
the arrows at the bottom of the plot. Activity in the superficial layers is highly tuned to specific
orientations with a more graded response in the middle layers. Several basis functions in the deep
layers show a suppressed response to the dominant orientation of the column.
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Figure 3.15: Spike coefficient rasters for drifting gratings. Spike coefficient rasters for
gratings as in Fig. 3.14. This penetration traversed several columns as seen by the shift in
orientation preference across lamina. This corresponds well with the change in orientation of
receptive fields computed from responses to natural movies.

3.3.4 Responses to long natural movies

One method for characterizing response of visual cortical neurons is to describe the dis-
tribution of the spatio-temporal stimulus sequences that precede each spike. The sample
mean of this ensemble, the spike-triggered average (STA), can be interpreted as the neu-
ron’s preferred stimulus, or receptive field, when the spike-triggered ensemble is peaked and
distributed symmetrically around the STA®. Here, STAs were computed, weighted by coef-
ficient value, for each basis function to a whitened long natural movie session and compared
with STAs computed from binary white noise movies. Fig. 3.17 shows STAs computed from
a whitened Duck30 movie played at 150 Hz frame rate for 29.6 minutes. A subset of the
basis functions, mostly those corresponding to neurons in the superficial layers, have clearly
defined STAs with oriented, bandpass, spatially localized structure. Several basis functions
with circular receptive fields with biphasic temporal profile likely correspond to LGN axon
terminals®’. Many basis functions, particular in the deep layers, do not show structure in
their kernels, likely due to lack of recorded spiking activity in these layers for this penetra-
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Figure 3.16: LFP coefficient rasters for drifting gratings. LFP coefficient rasters for the
same session of drifting gratings as in Fig. 3.14 also show orientation tuning. Basis functions
with laminar structure in the superficial layers are the most tuned to orientation.
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tion. For comparison, STAs were computed using a 20 minute binary white noise movie.
Shown in Fig. 3.18, they agree very well with natural movie STAs in detail such as orienta-
tion and approximate spatial frequency. Additionally, they reveal certain circular surround
receptive field in the deep layers not present in the natural movie case. The orientation
of receptive fields gradually change with lamina in agreement with the gratings results in
Fig. 3.15. Although a spike-triggered analysis is useful as results can be compared to a large
body of existing work, it is not clear to what degree the receptive fields characterize neural
responses®. Chap. 4 addresses this issue by formulating a predictive statistical model where
the degree to which the receptive field can explain the responses of neurons can be more
easily assessed.

3.3.5 Responses to Hilbert movies

Natural images have a rich statistical structure to which the visual system is highly adapted*%°.
In a series of electrophysiology experiments designed to explore this idea, Otto Creutzfeldt 2
recorded responses of neurons while scanning a set of images, including pictures of natural
scenes, line by line, over their receptive fields. He found that different neurons responded
to certain features of the stimulus, such as edges at particular orientations or regions with
changes of luminance or contrast. Inspired by this strategy, we recorded responses from two
natural images scanned according to a fractal path pattern. The intensity of spike coeffi-
cients for several representative basis functions for one penetration are shown in Fig. 3.19.
The responses across the population of basis functions is highly heterogenous. Some are
highly selective to features in the stimulus, particularly in the superficial layers, while others
respond to lower order statistics such as changes in contrast or luminance, and many basis
functions in the deep layers do not have an easily interpretable response. Fig. 3.20 shows
a similar analysis for representative LFP basis functions, which also demonstrate selectivity
to features of the stimulus.
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Figure 3.17: Long natural movie STAs. Spike coefficient-triggered averages (STAs) to a
spatiotemporally whitened Duck30 movie. The STA for each basis function appears to its right
and is plotted as a convolution kernel of movie frames. A subset of the basis functions in the
superficial layers show oriented, bandpass, localized structure. Each spatial frame of the kernels
represents the full 512 x 384 movie frame downsampled 8 times. Many basis functions, however,
do not show any structure. Structure in the averages appear before t=0 due to the acausal
natural of the whitening filter and temporal correlations in the movie. Each kernel is normalized.
Relative voltages between kernels is indicated by the small band at the right of each kernel, with
white indicating larger voltages.
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Figure 3.18: Binary white noise STAs. Spike coefficient-triggered averages for a binary white
noise movie for the same penetration in Fig. 3.17. Receptive fields are shown at the refresh rate
for easy comparison to natural movie STAs. Good correspondence exists for many cells between
the two stimuli. However, some of the structure visible in the noise is an artifact of averaging
over several frames; the frame rate of the white noise movie is 1/5 of the natural movies.
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Figure 3.19: Spike responses to Hilbert movies. Responses for three spike basis functions
are displayed. The columns are the basis function waveform, the original image (lena or log),
the original image with coefficient activities superimposed, and a heat map of the coefficients
alone. The coefficients are presented at a delay of 45 ms, which corresponds to the peak of the
response of a typical striate cell. The activities are blurred with a gaussian to make them easily
visible. (@) A superficial basis function with remarkable sparseness and selectivity to features of
both lena and the log at a certain orientation. (b) A likely LGN axon afferent responding to
areas with changes in local contrast. Blocking in the response plots is due to the path taken by
the Hilbert curve (see Fig. 3.4). (c) A deeper basis function with less selective response than in
(a). The Hilbert movies provide a succinct description of the response of cells in different lamina
by taking advantage of the statistical richness of natural images.
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Figure 3.20: LFP responses to Hilbert movies. Responses for three LFP basis functions to
two Hilbert movies with subplots organized as in Fig. 3.19. Basis functions clearly respond to
certain features in the stimulus, such as edges of a particular orientation as well as areas with
changes of luminance and contrast. The Hilbert movies provide a novel strategy for exploratory
analysis of the relationship of the LFP to visual stimuli, an area that is poorly understood.

71



Chapter 3. Population response across lamina

3.4 Discussion

We performed silicon polytrode recordings in anesthetized cat visual cortex of several hours
in duration while showing a range of stimuli including natural movies, gratings, and white
noise. Processing and understanding this data presents an enormous challenge. Here, we
applied a sparse coding unsupervised learning algorithm to transform the data into a new
representation. We showed the correspondence between activity of spiking and LFP sparse
coefficients with a wide range of stimuli. In Chap. 4, we make the step from descriptive
exploratory analysis to statistical models of response by using coefficients as regressors in
Generalized Linear Models (GLMs).

The importance of using a sparse decomposition of the data for analysis cannot be over-
emphasized. Consider the problem of manually or even semi-automatically spike sorting the
data from 32 channels. In most labs this could easily consume months of effort. By contrast,
the sparse basis function decomposition can be computed in a matter of hours. In fact, we
have even used it on the fly during the process of a recording session to determine how best to
position the polytrode. For the LFP, it enabled us to break up the complex spatio-temporal
waveforms recorded from the polytrode into a set of features that could be directly related
to events in the movie sequence. Determining what properties of the movie drive the LFP
will require further study.
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A statistical model of population
response

4.1 Introduction

In Chap. 3, a sparse coding representation was used to provide a descriptive analysis of
the spiking and LFP responses along a cortical column to a variety of visual stimuli. In
the present chapter, two statistical models are constructed, one to account for joint spike
activity as a function of the stimulus, network spiking interactions, and the LFP, and a
second to account for LFP activity as a function of spiking and stimulus. In each case, the
degree to which model components contribute to explaining structure are quantified. The
resulting models provide a causal description of the relationship between spiking, LFP, and
the stimulus in a columnar microcircuit.

The class of models considered in this section have been used recently to study a variety
of neural population data. These Generalized Linear Models (GLMs) %1% have been applied,
for example, to large-scale recordings of a population of retinal ganglion cells and are able to
account for a significant fraction of the variance of the population activity”. However, few
similar studies have been done with cortical populations®. Here, a GLM model (Fig. 4.1)
is applied to laminar activity recorded using silicon polytrodes to characterize responses to
dynamic, natural stimuli.

In previous chapters, neural activity was studied as a function of visual stimuli alone,
largely ignoring ongoing cortical dynamics that are not directly related to the stimulus. In
primary visual cortex, the majority of axonal inputs are coming from other cortical neurons
rather than direct inputs from the thalamus®'. Within layer 4 alone, it has been estimated
that roughly 5% of the excitatory input arises from the LGN, with the majority resulting
from intracortical inputs®“!. Ignoring the internal state of this system and focusing purely
on stimulus driven activity is bound to lead to an incomplete picture. In particular, a growing
body of literature suggests that oscillations in the LFP are linked to cortical states and may
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mediate communication of global information related to attention and feature binding**'%!.

The GLM framework developed here is an attempt to quantify these relationships in a
principled manner. This is illustrated in Fig. 4.2, which shows cross-correlograms of spike
coefficients with LFP coefficients. A striking relationship between the timing of spike events
and LFP activity in different lamina is readily apparent.

. | population
Ny

spiking
\ 4
\Il' | spike-spike
17| interaction
' predicted
. receptive non- spike
stimulus field linearity rate
:L. A .
Mm ” @Zm € ” A/L
Q ) spike-LFP
1k |interaction
A
Data LFP
Model parameters pkj components

Figure 4.1: Spike-LFP GLM model. A schematic of the GLM model used to predict population
spike or LFP coefficients. The distribution of coefficients for each basis function was assumed
to be exponential conditioned on the data and model parameters. Input data to the model
consisted of the stimulus, spike coefficients, and LFP coefficients. The model parameters for the
spike GLM model included spatio-temporal receptive fields, spike-spike interactions, and spike-
LFP interactions. The LFP GLM model included LFP-LFP interactions instead of spike-spike
interactions. The contributions from each data source were summed, mapped by a non-linearity
to produce a predicted firing rate \;(¢) for each spike or LFP component. Data is indicated by
blue and model parameters by red boxes. This model is described in Sec. 4.2.1.
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Figure 4.2: Cross-correlograms of spiking and LFP coefficients. Spike coefficients have
characteristic distributions of activity with respect to LFP coefficients, often firing near the trough
of the LFP waveform. On the vertical axis are spike basis functions ordered by lamina. On the
horizontal axis are the LFP basis functions. The time scale is 2 ms for spike basis coefficients
and 128 ms for LFP coefficients. Cross-correlograms of spike and LFP coefficients are normalized
and computed over the course of a long natural movie, with time axis spanning -64 ms to 64 ms,
aligned to the corresponding LFP basis function. The vertical scale for cross-correlograms is
0, .2] with 1 indicating perfect correlation. Spike coefficients tend to be active during negative
peaks in the potentials in the corresponding lamina of LFP basis functions. Conversely they are
suppressed during positive peaks in LFP potential. These statistics demonstrate a high degree of

correspondence between spiking in different lamina and the structure of the LFP.
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Figure 4.3: Distribution of coefficients. Normalized log-histograms of spike coefficients for
the 13 basis functions corresponding to Fig. 4.4 in units of xV/frame. Coefficients were down-
sampled to the frame rate (6.7 ms), the time resolution of the GLM model. The distributions are
highly kurtotic, with a large peak at zero. In the GLM model, we approximate these coefficient
histograms using an exponential distribution. Most of the log-histograms have linear tails and
correspond well to the shape of the model distribution, though some are significantly heavier
tailed. LFP coefficient histograms were similarly distributed (not shown).

4.2 Methods

4.2.1 Exponential GLM

The spiking GLM model is described here. The LFP GLM model is highly analogous. The
activity n;(t) of the i-th spike unit in time bin ¢ is modeled as exponentially distributed
conditioned on the model parameters ® and data X,

P(ni(1)©,X(1)) = 5 tt)e—niu)/xi(t)

%
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where X(¢) indicates all data up to but not including time ¢. The conditional intensity of
coefficient activation is,

A(t) = f (bi + ) Bin(t) = My (t) + Z Wo(t) «n(t) + > Qi) = Mt)) (4.1)

where * denotes convolution in time. The model parameters ® = {b, ®, ¥ Q} are,

b; : bias
®,,, : spatio-temporal receptive fields for movie m
W, ; : spike-spike coupling with spike basis j
Q. : spike-LFP coupling with LFP component k

The data X = {M, n, p} consists of,

M, : spatio-temporal movie m
n; : spike rate for basis j

pi - LEP rate for component k

The point-wise non-linearity was chosen as f(z) := exp(x), which is convex and log-concave,
a requirement for the full model to be convex. This form of the non-linearity outperformed
other tested functions in the differentiable, convex, log-concave family. The log-likelihood of
the model is,

£(®) =) logp(n(t)X(t),©)

— Z (log Ai(t) +ny(t)/Ni(t))

which is concave in model parameters ® and could be maximized using standard methods
for unconstrained optimization. A model schematic is illustrated in Fig. 4.1. The time scale
used for this analysis was the frame rate of the stimulus, or 150 Hz. Spike coefficients n;(t)
and LFP coefficients py(t) were binned at the frame rate.

To reduce the number of free parameters in the optimization, we made the simplifying
assumption that the spatio-temporal kernels ® are space-time separable, that is,

The log-likelihood in this case is not jointly convex in & and 7, requiring alternative convex
maximization steps where either set of variables is kept fixed. Though a global optimum is
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not guaranteed in this approach, a number of checks were used to test if the optimization
had reached a local minimum.

To further reduce the dimensionality of the temporal dimensions of the kernels, we con-
strained their structure to be represented in a log-cosine bump basis®®. These basis functions
are logarithmically spaced in time to give higher resolution near ¢ = 0 and constrain param-
eters to be smooth in time. For the temporal receptive field & over the stimulus, we chose a
5-dimensional basis spanning 240 ms, whereas for the spike-spike and spike-LFP couplings,
we chose a 4-dimensional basis spanning 54 ms. In all cases, the kernels were forced to be
zero at t = 0 to ensure strict causality. Only the temporally localized basis functions for
the LFP were included in the model, with their coefficient times shifted by their temporal
support to maintain causality.

To aid fitting the spatial receptive fields, ®° were represented in a basis learned from
natural images using sparsenet® with a sparse prior imposed on coefficients. In the op-
timization, this was implemented by projecting the movie onto the sparsenet basis and
enforcing sparsity on the weights of these regressors by an L; regularizer with a single pe-
nalization parameter that was chosen in each case using cross-validation. This framework
allowed estimating a model over multiple mappings of the same stimulus movie, each pro-
jected onto a suitable basis for regularization.

4.2.2 Optimization implementation

The optimization routines were constructed such that any subset of the model parameters
could be held fixed while the remaining were optimized. Two initialization optimizations
were run prior to the main optimization to pick good starting model parameters. The first
determined the bias parameters b; while the other parameters were kept at zero. This step
was necessary to avoid numerical instabilities introduced by the exponential non-linearity,
where the bias makes the single largest contribution to the log-likelihood. Then, the spa-
tiotemporal receptive field kernels ®* and ®” were initialized by performing a singular value
decomposition (SVD) of their STAs (Sec. 3.3.4). The SVD in this case provided the optimal
rank-1 least-squares estimate for the STA in terms of an outer product of spatial and tem-
poral components. An optimal scaling of these kernel estimates together with the bias terms
was determined with an optimization. Then a series of alternating steps were performed
where either ®° or ®” was held fixed and all other parameters were optimized. Finally, after
the optimization had converged, two additional optimizations were performed to reduced the
shrinkage effects of the L; regularization on the spatial receptive fields. First, only ®° was
optimized for a large number of steps to ensure coefficients near zero were pegged exactly to
zero. Then a full optimization with all parameters was performed where the support of ®*
was held fixed, but no sparseness penalty was enforced on the nonzero components. Without
such an unbiasing step, the scale of predicted \;(t) were often too small.

Though the dimensionality reduction in model parameters described above made opti-
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mization more tractable, the size of the data posed a challenge. In order to have a sufficiently
rich model while using as much of the data as possible in a single optimization, the opti-
mization algorithm needed to be parallelized. A data parallel cython implementation of the
L;-regularized limited-memory quasi-Newton method® described in Sec. 2.2.5.2 was devel-
oped. This allowed the optimization to scale almost linearly with the size of the data and be
run on a large cluster of computers. Additionally, significant computational efficiency was
achieved by pre-filtering data with their respective log-cosine temporal bases and caching
them to disk such that no convolutions needed to be performed online in objective and
derivative calculations.

4.2.3 Natural movie data

In order to fit the GLM model, we used a 29.6 minute, 260,000 frame Duck30 movie that
was spatially down-sampled 16-times to 32 x 24 pixels, then whitened (3.2.4). The degree of
downsampling used was in line with our knowledge of the spatial frequency preference of the
recorded column. We extracted 12 x 12 or 16 x 16 central regions of the down-sampled movie
which approximately corresponded to the location of the classical receptive field. This down-
sampled movie was then projected onto a complete or overcomplete sparsenet basis®?. A
second movie was created from the first by squaring of pixels. It was, however, not projected
onto any basis. This simple transformation was intended to capture some of the known
spatial phase invariances of cortical neurons. The first 200,000 frames of the stimulus were
used for fitting and the remainder for validation of the single regularization parameter. For
all examples in this section, we chose a subset of spike and LFP basis functions. For the
spiking GLM model, 13 of 100 spike basis functions were selected where STAs computed from
natural movies had discernible structure. STAs for these spike basis functions are shown in
Fig. 4.4. 18 of 32 LFP basis functions were selected that had structure localized in time. The
model was estimated on data from a single penetration that was verified to span all layers of
cortex. After fitting the parameters of the GLM to the long natural movie, the model was
used to predict responses to repeated 30 second short natural movies. Predicting repeated
movie response assessed the ability of the model to account for trial-to-trial variations in the
response.

4.2.4 Modeling LFP coefficients

The GLM framework described above is a description of spike coefficient activity in terms
of other data. The same framework was used to study LFP coefficient activity as a function
of spiking and the stimulus. The model and optimization steps were similar in all respects.
We used 18 of 32 LFP basis functions as in the spiking GLM case and 37 of 100 spike basis
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Figure 4.4: Long natural movie STAs for example population. A subset of the basis
functions from Fig. 3.17. These units were chosen to evaluate the model in this section as their
receptive fields had discernible structure that could be easily compared to GLM model fits.

functions. The model parameters @ = {b, ®, ¥, Q} in this case are,

b; : bias
®,,, : spatio-temporal receptive fields for movie m
W,;; : LFP-LFP coupling with LFP component j
2. : LFP-spike coupling with spike component &

The data X = {M, n, p} consists of,

M,, : spatio-temporal movie m
n; : LFP rate for basis j

P - spike rate for component k

and \;(t) in (4.1) the conditional intensity of activity of LFP component i.

4.3 Results

In previous chapters, a descriptive overview was presented of the laminar structure of the
spiking and LFP activity in a column of cat visual cortex, without making attempts at a
quantitative description or a mechanistic model of the observations. The GLM framework
is a full statistical model of how the stimulus as well as the dynamics of spiking and LFP
give rise to the observed data. This statistical framework quantifies dependencies between
different parts of the response as well as assessing the degree to which the model is able to
predict spiking and LFP.

80



Chapter 4. A statistical model of population response

4.3.1 GLM model of spiking response

Fig. 4.5 shows results of fitting a GLM model to responses of 13 spike basis functions spread
across lamina. The stimulus component consisted of two movies, a long whitened natural
movie and its pixel-wise square, indicated by z and 22 in Fig. 4.5a. As a result, each spike
unit has two spatiotemporal receptive fields associated with it, corresponding to the two
movies. Several of the spatial receptive fields show fine oriented, bandpass structure, similar
to the corresponding STA kernels in Fig. 4.4. One unit, an LGN axon terminal, has a
circular receptive field with a biphasic temporal response. The squared movie kernels did
not show structure in this case. The temporal course is similar for most cells with a full-width
half-maximum of approximately 60 ms.

The spike-spike interaction terms are shown in Fig. 4.5b. Inset plots are temporal con-
volutional kernels, forced to zero at ¢t = 0 to ensure causality. These model parameters
indicate how likely a cell is to fire given its own past firing as well as the firing of the rest
of the population during the previous 54 ms. The dominant structure along the diagonal
indicates that many cells have a tendency to fire in bursts. Distinct subpopulations of cells
in the granular and deep layers have inhibitory kernels other, whereas other groups between
superficial and granular layers had excitatory couplings. These patterns of coupling hint at
wiring structure that is in agreement with known neuroanatomy of this circuit®!. The rela-
tive smoothness of kernels across neighboring cells may hint at homogeneity of cells within
layers. However, this could also be a confound of cross-talk between neighboring units in the
learning algorithm (Sec. 2.3.3).

Fig. 4.5¢ shows interactions between spiking and the LFP components. A clear pattern
emerges where many of the LFP basis functions that have a localized negative peak are
strong predictors of spiking in broadly the same layer as the corresponding spike basis func-
tion. Contamination of the LFP waveform with spike remnants might be at least partially
responsible for this effect. Note, however, that the causality of the model prevents the trough
of the LFP basis function to line up exactly with the spike times. Additionally, a significant
number of basis functions show strong facilitation across layers.

Direct inspection of the model parameters can give important insights into circuit struc-
ture, but to validate if the model is capturing the structure of the data, model predictions
were calculated to compare with actual spike rates. Fig. 4.6 shows prediction using GLM
model fits across 60 trials of a 30 s natural movie. For two example cells shown, good agree-
ment exists between the observed spike rates and the model predictions. The model is also
successful at predicting trial-to-trial variability. It would have been impossible to achieve
this kind of fit with a model that is based purely on the stimulus and did not take into
account spiking of other neurons and the dynamics of ongoing activity in the LFP. In order
to understand how different model components contribute to describing the data, a number
of model fits were performed leaving certain components out. Fig. 4.7 shows log-likelihoods
for these fits. The population spiking activity contributed far more than spike-LFP interac-
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tions. Self-spiking interactions, a dominant feature in the model fits (Fig. 4.5), contributed
less than half of the the total spike-spike interactions to the log-likelihood.
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Figure 4.5: Full spiking GLM model. A GLM model fit for 13 spike units. (@) Two movie
regressors were used, a whitened natural movie and its square. This corresponds to the two
columns of spatial and temporal kernels. The waveforms of the basis functions are shown in
green and are ordered by lamina. The temporal extent of the kernels is 240 ms. (b) A matrix
of spike-spike interactions with each inset block a temporal convolution kernel of how much the
basis functions along the horizontal axis influence activity in basis functions along the vertical
axis. Self interactions dominate the spike-spike parameters. The kernels along each row are
on the same vertical scale. (c) A matrix of spike-LFP interactions. LFP basis functions are
plotted as convolution kernels aligned in time with fitted interaction kernels. The temporal span
of spike-spike and spike-LFP kernels is 54 ms.
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Figure 4.6: Example model predictions. A GLM model fit to a long natural movie was used to
predict trial-to-trial spike coefficient responses to a different repeated natural movie. Here, the 4
cells from the population in Fig. 4.5 are shown. Each pair of plots show trial-by-trial coefficient
activations. Predictions are conditional intensities A(f) computed using the GLM model. The
model is able to correctly capture a large degree of the variance of responses, including the
inter-trial structure.
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Figure 4.7: Explanatory power of spike GLM components. Log-likehoods for GLM fits on
11 minute subsets of the Duck30 recording session for models with different subsets of compo-
nents, including, x: whitened movie only, x,x2: whitened movie and squared whitened movie
only, no self: receptive field (RF) components (x,x?) and spike-spike interactions, but no self-
interactions, spiking: RF components and spike-spike interactions, LFP: RF and spike-LFP in-
teractions, all: all model components. The bias portion of the log-likelihood has been subtracted
out in all cases and log-likelihoods rescaled to a maximum of 1.
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4.3.2 GLM model of LFP response

LFP coefficient activity as a function of spiking, stimulus, and other LFP components was
modeled using the same GLM framework used above. The LFP is thought to be generated
mainly by dendritic processing of synaptic inputs*’ though this is a subject of much debate.
Recently, new studies have formulated biophysically realistic forward models of a cortical
column to better understand the LFP and its significance®?. Our strategy is complementary
as it provides a statistical approach based on real recordings that can test predictions of
these models.

Figs. 4.8-4.9 show GLM model fits for 18 LFP basis functions with local temporal struc-
ture. LFP basis functions with extended temporal structure are difficult to interpret in this
setting of a causal predictive model and were not considered in the analysis. However, cross-
correlograms of these basis functions with spiking (Fig. 4.2) show clear structure and we hope
to include them in future work. In contrast to the spiking spatio-temporal kernels, the LFP
kernels did not have structure to the whitened movie. However, it did have structure to the
squared movie. LFP-LFP coefficient interaction terms show interesting temporal ordering
of different LFP components. Basis functions with coherent positive peaks negatively inhib-
ited basis functions with coherent negative peaks. Fig. 4.8c shows a matrix of LFP-spike
couplings. LFP componentsare along the vertical axis and spike units ordered by lamina
along the horizontal axis. The LFP coefficients with negative peaks in certain lamina tend
to be active where there is spiking in the corresponding lamina. The converse is true for
LFP coefficients with positive peaks. However, this component of the model does not make
a significant contribution to the GLM fits and it is unclear if the fine structure is significant.
Fig. 4.10 shows log-likelihoods for model runs with different subsets of model components
to assess which components contributed most towards the fit. The LFP coefficients seem to
be best modeled by the activity of other LFP basis functions and not by the stimulus or
spiking activity across lamina.
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Figure 4.8: LFP GLM model fit. A GLM model fit for 18 LFP components. (a) LFP spatio-

temporal kernels for whitened movie and whitened movie squared. The temporal extent of the

LFP

(b) LFP-LFP interaction kernels, with time axis spanning 54 ms.

activations for basis functions along the horizontal occur at t = 0 and are not aligned with the

kernels is 240 ms.
temporal kernels.
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Figure 4.10: Explanatory power of LFP GLM components. Log-likehoods for GLM fits on 11
minute subsets of the Duck30 recording session for models with different subsets of components,
including, x: whitened movie only x,x2: whitened movie and squared whitened movie only, no
self: RF components and LFP-LFP interactions, but no self-interactions, LFP: RF and LFP-
LFP interactions, spiking: RF and spike-LFP interactions, all: all model components. The bias
portion of the log-likelihood has been subtracted out in all cases and log-likelihoods rescaled to
a maximum of 1.
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4.4 Discussion

In this chapter, we developed a statistical model of spiking and LFP activity in two GLM
models that incorporate the stimulus as well as interactions between spiking and LFP com-
ponents. For the spike GLM model, predictions for novel natural movies captured much of
the structure including inter-trial differences. Spike-spike interactions contributed the most
explanatory power of the model components while the stimulus component contributed sur-
prisingly little. In the LFP GLM, the LFP-spike coupling fits showed interpretable structure,
but had minimal explanatory power. This result was not expected given the structure in
the spike-LFP cross-correlograms (Fig.4.2). However, if one assumes that the LFP reflects
the constructive superposition of massive numbers of synaptic currents, it is unreasonable
to expect that one could predict the LFP from the spiking activity of only 37 neurons.

These preliminary results establish the utility of an exponential GLM model of sparse
coefficients. However there are a number of open questions and unresolved issues that remain.
It would be useful for example to have a richer model of the stimulus that breaks up the
image into different spatial and temporal scales and orientations. We also need a way to
quantify the significance of different model parameters. In assessing prediction performance,
we need to quantify log-likelihood on an absolute scale in terms of nats or bits so that we
can compare to other models and datasets.
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Conclusions

5.1 Main contributions

In this work, I contribute several new tools for exploratory analysis of neural population
activity which can be used to characterize the structure of laminar responses in visual cortex
to dynamic, natural stimuli. Specifically,

1. T show how a novel application of sparse coding to laminar recordings can separate
the complex statistical structure of these recordings into tractable and interpretable
underlying causes.

2. I use the new representation afforded by the sparse coding algorithm to characterize
spiking and LFP response in a cortical column to natural movies.

3. I create a framework for understanding population activity in a statistical model that
accounts for network interactions as well as the driving influence of the stimulus.

5.2 Future directions

I plan to expand on the work in this thesis in several directions. The sparse coding model
used as the basis for much of our results was formulated deliberately to be as minimal as
possible to make interpretation when applied to complex neural data feasible. The only
assumptions made were that causes in the data linearly sum and that they are sparsely
active. It was intended to demonstrate that even a simple unsupervised learning algorithm
that takes into account the actual statistics of the data can have far greater exploratory power
than existing methods. However, having established its efficacy in this work, a wide range of
augmented formulations are possible that could enhance performance for certain applications
such as spike sorting. These include different forms of the objective such as space-time
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separable basis functions, autoregressive terms to better model oscillatory phenomenon, and
hierarchical models that attempt to directly characterize the statistical dependencies between
sparse activations of different components.

The methods in this thesis can be applied to a wide range of large-scale neural recordings.
In particular, we have applied them to semi-chronic electrode array recordings in awake
monkey visual cortex and recordings from hippocampus using multi-shank polytrodes. All
algorithms in this thesis were implemented in parallel, which made it possible to apply
to large recordings in a time that scaled with the number of computational nodes used.
Therefore, they can be applied to datasets of unprecedented size, removing key constraints
in the design of future experiments. For example, it enables use of long natural movies that
cannot be loaded into the memory of a single workstation and to perform optimizations and
model fits with entire datasets that can be distributed on a large cluster.

As electrophysiological recording technology improves and datasets grow ever larger and
more complex, scalable unsupervised learning algorithms will be an essential tool for advanc-
ing our understanding of cortical function.
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