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1. Surgery, Electrophysiology, and Experimental Setup for the Brain–
Machine Interface Task. See ref. 1 for full experimental details. Two
adult male rhesus monkeys (Macaca mulatta) were chronically
implanted with multiple microelectrode arrays. Each array con-
sisted of 64 Teflon-coated tungsten microelectrodes (35 μm in di-
ameter, 500-μm interelectrode spacing) arranged in an 8 × 8 array
(CD Neural Engineering). Subject P was implanted bilaterally in
the arm area of primary motor cortex (M1) and in the arm area of
left hemisphere dorsal premotor cortex (PMd), for a total of 192
electrodes across three implants. One hundred thirty-eight identi-
fied single units from this subject were examined. Subject R had
bilateral implants in the arm area of M1 and PMd, for a total of
256 electrodes across four implants. Eighty-four identified single
units from this subject were examined. Localization was performed
using stereotactic coordinates (2). Implants targeted layer-5 pyra-
midal tract neurons and were positioned at a depth of 3 mm
(M1) or 2.5 mm (PMd). Intraoperative monitoring of spike activity
guided electrode depth. Conducted procedures were in compliance
with the National Institutes of Health Guide for the Care and Use
of Laboratory Animals and approved by the University of Cal-
ifornia (Berkeley) Institutional Animal Care and Use Committee.
TheMAP system (Plexon) was used to record unit activity. Only

single units that had a clearly identified waveform with a signal-to-
noise ratio of at least 4:1 were used. An on-line spike-sorting
application (Sort-Client; Plexon) was used to sort activity before
recording sessions. Large populations of well-isolated units and
up to 128 LFP channels (1 kHz sampling) were recorded during
daily sessions for both monkeys.
Monkeys were trained to perform a center-out delayed reach-

ing task using aKinarm (BKINTechnologies) exoskeleton (manual
control) as well as a brain–machine interface task where a cursor
was controlled by neural activity (brain control). During training
and recording, animals sat in a primate chair that permits limb
movements and postural adjustments. Head restraint consisted of
the animal’s headpost fixated to a primate chair. Recording sessions
typically lasted 2–3 h/d. Because of their longer session duration,
only brain control sessions are discussed in this paper. During brain
control sessions a visually presented cursor was continuously con-
trolled by neural activity while both hands were restrained. Subjects
self-initiated trials by bringing the cursor to the center for a hold
period of 250–300 ms, followed by the presentation of a GO cue
(color change of center cue). A trial error occurred if the cursor
failed to reach the target within 10 s after aGOcue. The goal was to
perform a center-out task,moving the cursor from the center to one
of eight peripheral targets distributed over a 14-cm–diameter circle.
Target radius was typically 0.75 cm. A liquid reward was provided
after a successful reach to each target.
ForallsessionsforsubjectP,fromthe192implantedelectrodes,128

LFP channels recorded, with >160 distinct units identified via auto-
matic spike sorting.Only cellswith a spike rate>1Hzwereexamined.
Different figures display results from different numbers of neurons
from distinct sessions: specifically, Fig. 2, 1 neuron from session
paco020608c; Fig. 3 B and D, 4 neurons from session paco020608c;
Fig. 3 E–H, 138 neurons from session paco020608c; Fig. 4A, 138
neurons from sessions paco020608b, -c, and -d; Fig. 4B, 138 neu-
rons from all sessions; Fig. 4C, 1 neuron from session paco020608c;
Fig. 4D, 1 neuron from session paco020608c; Fig. 4I, 138 neurons
from session paco020608c; Fig. S2 A–C, 1 neuron from session
paco020608b; Fig. S3, 138 neurons from session paco020608c.

2. Surgery, Electrophysiology, and Experimental Setup for the
Working Memory Task. See ref. 3 for full experimental details. Two
male rhesusmonkeys (M.mulatta, subjectsA andB)were implanted
with head positioners and two recording chambers, the positions of
which were determined using a 1.5-T magnetic resonance imaging
(MRI) scanner. Acute simultaneous recordings were made using
arrays of 10–24 tungsten microelectrodes (FHC Instruments). Over
several days, recordings were made in dorsolateral prefrontal cortex
(DLPFC), ventrolateral prefrontal cortex (VLPFC), orbitofrontal
cortex (OFC), and anterior cingulate cortex (ACC). Target elec-
trode positions were determined from MRI images and electrodes
were advanced using custom-built, manual microdrives until they
were located just above the cell layer. Electrodes were slowly low-
ered into the cell layer until neuronal waveforms were obtained.
Neurons were randomly sampled with no attempt made to select
neurons on the basis of responsiveness. Waveforms were digitized
and analyzed off-line (Plexon). Recording locations were recon-
structed bymeasuring recording chamber position using stereotactic
methods, with the correspondence between MRI sections and re-
cording chambers confirmed by mapping the position of sulci and
gray and white matter boundaries using neurophysiological re-
cordings. The distance of each recording location along the cortical
surface, from the genu of the ventral bank of the principal sulcus and
the lateral surface of the inferior convexity, was traced and mea-
sured, as were the positions of the other sulci relative to the principal
sulcus. All procedures were in accord with the National Institutes of
Health guidelines and the recommendations of the University of
California (Berkeley) Animal Care and Use Committee.
Subjects engaged in a task targeting reward-dependent modu-

lation of working memory. National Institute of Mental Health
Cortex was used to control the stimulus presentation and task
contingencies. Eye position and pupil dilation were monitored us-
ing an infrared system at 125 Hz sampling rate (ISCAN). Trials
began with subjects fixating a central square cue (subtending 0.3° of
visual angle). Subjects maintained fixation within 2° of the fixation
cue throughout the trial until the fixation cue changed color, after
which subjects made their response. Failure to maintain fixation
resulted in a 5-s “time out” and trial abortion. Following fixation,
two cues appeared sequentially and separated by a delay, one of
which was a spatial location that the subject had to hold in working
memory (the mnemonic stimulus), and one of which indicated to
the subject howmuch reward they would receive for performing the
task correctly (the reward-predictive cue). Following a second delay
a fixation-cue color change indicated that subjects could saccade to
the location of the mnemonic stimulus. Once subjects made eye
movements indicating their response, they had 400 ms to saccade
within 3° of the target location. Successful target saccades with 400
mswere followed by a fixation hold of 150ms. Failures to saccade to
the target within 400 ms or fixate the target for 150 ms were clas-
sified as trial errors and terminated the trial without delivery of
reward. Twenty-four locations forming a 5 × 5 matrix centered at
fixation (each location separated by 4.5°) were used as spatial tar-
gets. There were five different reward sizes. Each reward amount
was represented by one of two pictures. All experimental factors
were fully counterbalanced, and different trial types were randomly
intermingled. Subjects completed ≈600 correct trials per day.
Different figures display results from different numbers of neu-

rons fromdistinct sessions: specifically, Fig. 4I, 329 neurons from all
sessions from subject A and 262 neurons from all sessions from
subject B.
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3. Analysis: LFP Filtering and Phase Extraction. Analyses were done
usingMATLAB(Mathworks)orPython.Allfilteringwasdoneusing
Gaussian chirplet basis functions (4). A Gaussian chirplet is fully
defined by four parameters: namely, the center time t0, the center
frequency v0, the duration parameter s0, and the chirp rate c0 (5). In
the time domain, the chirplet g is given as g(t | t0, v0, s0, c0) = 21/4exp
[(−1/4)s0− π(t− t0)

2exp[−s0] + π(t− t0)(c0(t− t0) + 2v0)]. Although
informal investigation suggests that it is worthwhile to optimize the
parameter set (center frequency, duration parameter, chirp rate)
for each neuron separately, for simplicity and ease of comparison
in this study we use a fixed chirp rate of 0 Hz/s (no chirping) and
a fixed fractional bandwidth (FWHM/center frequency) of 0.325.
A constant fractional bandwidth means that chirplets with higher
center frequencies have wider frequency-domain passbands, as in
thewavelet transform. To extract localfield potential (LFP) phases,
first the raw LFP signal xRAW(t) for a given channel was convolved
with a complex-valued Gaussian chirplet basis function g(t) to
generate a complex-valued time series, which has the same number
of sample pointsNtime as the raw LFP signal. The complex angle of
this time series defines a 1×Ntime time series of phase variables θ(t).
This process was repeated for all Nchannel simultaneously recorded
LFP signals to generate amultivariateNchannel×Ntime time series of
phase variables θ(t).

4. Analysis: Multivariate Phase Model. To model the pairwise phase
distribution of LFPmeasurements we used a recently derivedmodel
and estimation technique of coupled oscillator systems (6). The
model specifies a probability distribution, which corresponds to the
maximum entropy distribution given pairwise phase measurements.
Furthermore, it can be shown that the probabilisticmodel implies an
underlying dynamical system of coupled oscillators and the pa-
rameters of the probability distribution are the interactions between
the oscillators (6). Therefore, the parameters of the probability
model can be interpreted as the interaction strengths between
coupled oscillators.
In this section we derive the estimator for the pairwise phase

distribution given phasemeasurements.We then show that a specific
dynamical system formulation of coupled oscillators leads to the
same pairwise phase distribution and that estimating the probability
distribution recovers the interactions of the coupled oscillators. We
then describe how the observed empirical distribution of two oscil-
lators relates to the direct interaction (or isolated distribution) be-
tween the oscillators and the indirect interaction (or network
distribution). Finally, we provide a series of examples to illustrate
potential differences between the measured empirical distribution
and the true coupling interaction and show how properly estimating
the distribution correctly infers the true interaction.
4.1. Pairwise maximum entropy phase distribution. Here we derive the
maximum entropy phase distribution given pairwise phase sta-
tistics. This distribution allows us to evaluate the phase coupling
patterns conditioned on spikes and thus the relationship between
spikes and the recorded LFP phases in multiple areas.
Given a set of measurements (i.e., pairwise phase statistics),

there is a unique maximum entropy distribution that reproduces
the statistics of these measurements. A number of maximum
entropy distributions are used throughout the science and engi-
neering communities. In the real-valued case the multivariate
Gaussian distribution and in the binary case the Ising model serve
as widely used multivariate maximum entropy distributions
consistent with second-order statistics. For multivariate phases,
the first circular moment is a measurement between two phases, k
and l, and is defined as the complex quantity heiðθk − θlÞi. The real
and imaginary parts are given as

Re
hD

eiðθk − θlÞ
Ei

¼ hcosðθk − θlÞi
¼ hcosðθkÞcosðθlÞ þ sinðθkÞsinðθlÞi

Im
hD

eiðθk − θlÞ
Ei

¼ hsinðθk − θlÞi
¼ hsinðθkÞcosðθlÞ− cosðθkÞsinðθlÞi

Written in thisway, thestatisticalmeasurements for thefirst circular
moment contain bivariate terms between pairs of phases and are
thus second-order phase statistics. Given these statistics it follows
that the corresponding maximum entropy distribution is given as

pðθ;KÞ ¼ 1
ZðKÞ exp

�
−
1
2

∑
d

i; j¼1
κij cosðθi − θj − μijÞ

�
; [S1]

where θ is the d-dimensional set of phases and K specifies the
parameters of the distribution.We used trigonometric identities to
combine the sine and the cosine of the differences of the phase
pairs into one term for each pair of phases. The terms κij and μij are
the coupling between phases i and j and the phase offset between
phases i and j, respectively. The term Z(K) is the normalization
constant and is dependent on the parameters of the distribution.
Next we derive an estimator for this distribution: a method for
determining the parameters K from phase measurements.
Given phases from Nchannel different LFP channels, we can

estimate the probability of observing a particular N-dimensional
vector of phases using a multivariate phase distribution. An
equivalent but more compact expression for the probability dis-
tribution given in Eq. S1 is

pðθ;KÞ ¼ 1
ZðKÞexp½−Eðθ;KÞ�

Eðθ;KÞ ¼ 1
2
z∗Kz; [S2]

where we define the N-dimensional vector of phase variables as
a vector of unit length complex variables, zk, where zk = exp(iθk)
and θk is an element of the real-valued interval [−π, π). The
Nchannel × Nchannel coupling matrix K is Hermitian and traceless.
The elements of K encode the coupling parameters between
channels; e.g., Kij encodes the coupling between the ith and jth
phase variables. Each element of K is a complex number Kij =
κijexp(iμij), where the modulus κij encodes coupling strength and
the angle μij denotes the preferred phase offset between chan-
nels. The diagonal elements of K are zero (Kii = 0), but non-
uniform univariate phase distributions can be modeled by
augmenting the observed matrix of phase variables with an ad-
ditional variable of fixed phase, resulting in a (Nchannel + 1) ×
(Nchannel + 1) coupling matrix K. The normalization constant Z
(K) is a function of the coupling matrix and in general cannot be
computed analytically. Note that Eqs. S1 and S2 are equivalent
but Eq. S2 uses complex notation.
Given an observed set of phase variables, we then estimate the

parameters of thedistributionusing anefficient techniquederived in
ref. 6. The lack of a closed form to the partition function Z(K)
makes standard maximum-likelihood estimators computationally
expensive and prone to convergence problems. The estimator de-
rived in ref. 6 is a linear system of equations using themeasurements
of the phase variables. The estimated coupling terms, elements of
the matrix K, are found by solving the linear system of equations

∑
d

k;l¼1

�
δjlCik þ δikClj − δjkCiljk − δilCiljk

�bKkl ¼ 4Cij; [S3]

where the expectation values are defined as Cij ¼ hzi z∗ji and
Cijkl ¼ hzi zj z∗k z∗li. Because the diagonal elements of K are zero,
we can remove the corresponding equations where i = j from
the system. We solved this linear system of equations using
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standard techniques. This estimator has been shown to corre-
spond to the maximum-likelihood estimate and performs well in
high dimensions and with limited data (6). Code to estimate the
distribution is available at ref. 7.
In summary, the pairwise phase distribution in Eq. S1 provides

the most parsimonious statistical model of the joint multivariate
phase distribution given only pairwise phase measurements. The
corresponding estimator in Eq. S3 provides the unique maximum
entropy solution. Maximum entropy solutions serve as the least
biased estimate of the distribution possible and can be used when
the true joint distribution is unknown.
4.2. Pairwise phase distribution and models of coupled oscillators. In this
section we show that the parameters of the phase distribution
have a physical interpretation in a dynamic system of coupled
oscillators and interestingly, the parameters in the phase distri-
bution are identical to the interactions between the oscil-
lators. We can derive the multivariate phase distribution from
a dynamical systems model of coupled oscillators. Given the
dynamical system,

∂
∂t
θiðtÞ ¼ ω− ∑

d

j¼1
κij sin

�
θiðtÞ− θjðtÞ− μij

�
þ viðtÞ;

a corresponding steady-state distribution can be derived using
a suitable Langevin equation. The probability distribution for the
phases of this coupled oscillator system is identical to that given
above in Eqs. S1 and S2, save for the introduction of a parameter
β within the exponential to account for the variance of the noise
terms νi(t). Thus the parameters of the matrix K estimated from
observed phase data may be interpreted as the interaction terms
between a physical system of coupled oscillators.
4.3. Phase-locking value, phase concentration, and phase coupling. In this
section we show the relationship between the commonly used
phase-locking value, the measured phase concentrations, and the
phase coupling parameters in the probability distribution. Im-
portantly, the phase-locking value and the phase concentration
are only indirectly related to the phase coupling parameters.
The phase-locking value (PLV) (8) is the amplitude of the

first circular moment of the measured phase difference between
two phases,

PLV :¼
����Deiðθk − θlÞ

E����; [S4]

with the expectation h:i taken over the phase measurements,
and |x| is the complex modulus or amplitude of the complex value
x. We can see the relationship between the phase-locking value
and the coupling parameters, i.e., κkl, in the probability distri-
bution by examining the marginal distribution of phase differ-
ences. The marginal distribution is defined as

pðθk − θl;KÞ ∼
ð
∏
d

i;j¼1
exp
�
1
2
κij cosðθi − θj − μijÞ

�
dθd− 2; [S5]

in which the integration is over all phases θm with m ≠ k, l, which
can be either the first or the second variable in the cosine.
After applying the variable substitution θm ¼ ~θm þ θl, all terms
in Eq. S5 either depend on the phase difference θk − θl or are
independent of θk and θl. The independent terms integrate to
a constant and the remaining terms combine to a von Mises
distribution in the pairwise phase difference given by

pðθk − θl;KÞ ¼ 1
ZðγklÞ

eγklcosðθk − θl −ΔklÞ; [S6]

with mean phase Δkl and concentration parameter γkl. We call
the concentration parameter γkl for a pair of phases the phase
concentration. The parameters of the distribution in Eq. S6 can
be estimated from the first circular moment heiðθk − θlÞi ¼: rkleiΔkl :

the mean phase Δkl is the complex angle of the first moment and
the concentration parameter γkl can be obtained by numerically
solving the equation

rkl ¼ I1ðγklÞ=I0ðγklÞ; [S7]

and the normalization constant Z(γkl) is given by Z(γkl) =
2πI0(γkl). I0(x) and I1(x) denote the modified Bessel functions of
zeroth and first order, respectively. Note that PLV = rkl. The
value of γkl is related to the coupling parameters K through
Eq. S5 and thus PLV is related to the coupling parameters
through Eqs. S5–S7. Therefore, there is a nontrivial relationship
between the phase-locking value or the measured phase con-
centrations and the coupling parameters.
Under the dynamical system interpretation of the probability

distribution, the interaction between two oscillators i and j is
given by the coupling parameters kij and μij. In general there is no
simple relationship between these coupling parameters and the
measured phase-locking value or phase concentration. However,
by properly estimating the coupling parameters from the meas-
urements (SI Methods 4.1), we can infer the direct interactions
between the oscillators.
4.4. Empirical, isolated, and network distributions. We next show the
relationship between the measured empirical distribution, the
isolated distribution, and the network distribution. Given a set of
phase measurements, we can directly compute the marginal dis-
tribution of the phase difference between a specific pair of pha-
ses.Wecall themarginal distribution computed fromthedifference
of phasemeasurements of θk and θl the empirical distribution p(θk−
θl). In a network of many oscillators the empirical distribution is
determined by a direct interaction between nodes k and l and an
indirect interaction through the rest of the network. Given the
probabilistic model in SI Methods 4.1, we next show how the em-
pirical distribution can be decomposed into an isolated distribution,
which captures the direct interaction, and a network distribution,
which captures the interaction through the network.
For a given set of oscillators and coupling parameters the

empirical distribution is given as

pðθk − θl;KÞ ∼
ð
∏
fi;jg

eκijcosðθi − θj − μijÞdθd− 2;

which is a reformulation of Eq. S2 but with the product con-
taining only one term for each pair of oscillators. The integration
is over all phases θi with I ≠ k, l. Because the integration is over
all phases not equal to k or l, we can factor out the terms con-
taining the coupling parameters between k and l:

pðθk − θl;KÞ ∼ eκklcosðθk − θl − μklÞ
ð

∏
fi;jg≠fk;lg

eκijcosðθi − θj − μijÞdθd− 2:

[S8]

We can apply the variable substitution θm ¼ ~θm þ θl and all
terms in Eq. S8 either depend on the phase difference θk − θl or
are independent of θk and θl. The independent terms integrate to
a constant and the remaining terms combine to a von Mises
distribution in the pairwise phase difference. We can therefore
decompose the empirical distribution into a product of two von
Mises distributions,

pðθk − θl;KÞ ¼ pisoðθk − θl; κkl; μklÞ pnet ðθk − θl; �KklÞ

pisoðθk − θl; κkl; μklÞ ¼ eκklcosðθk − θl − μklÞ

pnetðθk − θl; �KklÞ ¼ e�κklcosðθk − θl − �μklÞ;

where �Kkl is the set of parameters excluding the direct
coupling parameters κkl and μkl and the concentration �κkl and
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phase offset �μkl are determined through the integral in Eq. S8
and depend on all of the parameters Kkl excluding κkl and μkl.
We refer to the distribution that contains the direct coupling
parameters as the isolated distribution because it is the distribu-
tion that would be measured if only the direct interaction were
present and there was no interaction due to the network (the two
nodes would be isolated from the rest of the system). We refer to
the distribution that contains the network effects on the empir-
ical distribution as the network distribution because it is the dis-
tribution that would be measured if there were no direct
interaction between the nodes and only the interaction through
the network was present.
4.5. Example phase-coupled systems and their estimation. In this
section we illustrate the differences between phase concen-
tration and estimated phase coupling using a series of sim-
ple networks. We also present a more complicated network
that shows that the method generalizes to complex networks of
interactions.
In Fig. S4 we illustrate three simple networks, their phase con-

centrations, and estimated phase couplings. For each network we
simulated the dynamic system described in SI Methods 4.2. We
then measured the phase concentration between the indicated pair
of oscillators (A and B). We also estimated the coupling param-
eters using Eq. S3. Each network illustrates a specific effect that
can be found in the experimental data we examined: spurious
coupling, missing coupling, and incorrect phase offset. In each case,
phase concentration does not reflect the true direct interaction
between the indicated oscillators. Inferring the parameters of the
full probabilistic distribution correctly recovers the true coupling
between the indicated oscillators and all other pairs. In the last
column in Fig. S4 we illustrate the empirical distribution and the
isolated distribution (similar to Fig. 2 B–G).
In Fig. S5 we present a more complex case of eight coupled

oscillators. Again, phase concentrations poorly reflect the direct
interactions between oscillators whereas phase coupling esti-
mation correctly infers the true interactions. For a more rigorous
analysis of the model estimation performance and behavior of
phase coupling estimation see ref. 6.

5. Analysis: Baseline, Spike-Triggered, and Preferred Phase Coupling
Patterns and the Generation of Coupling-Based Rates from Phase
Data. The previous section (SI Methods 4) describes how multi-
channel LFP data observed during experiments can be used to
estimate the coupling within a network of distinct brain areas.
How can this information be used to predict the spiking activ-
ity of a single neuron? Because the multivariate phase model
specifies a joint distribution over the phase variables, we can
apply Bayes’ rule to determine the probability of a spike condi-
tioned on the state of the multivariate phase up to a normaliza-
tion constant. Specifically, we can estimate the prior probability
of the multivariate phase p(θ) and the conditional probability of
the multivariate phase given a neural spike p(θ|spike). We then
apply Bayes’ rule to arrive at an estimate of the probability of
a spike given a measured multivariate phase state:

pðspikejθÞ ¼ pðθjspikeÞ p ðspikeÞ
pðθÞ :

Inserting the equations for the multivariate phase distributions,
we find

pðspikejθÞ∝exp
�
− 1

2 z
∗Kspikez

�
exp
�
− 1

2 z
∗K0z

� pðspikeÞ∝ exp

 
−
1
2
z∗ðKspike −K0Þz

!

Thus the probability of a spike is modulated by a multivariate
phase distribution with coupling parameters KΔ = Kspike − K0.
The two coupling matrices K0 and Kspike can be estimated as
described in SI Methods 4. K0 is estimated from the time series of

all phase measurements, θ(t), and Kspike is estimated from phase
measurements at spike times fθðtÞjt ¼ tspikeg.
The coupling matrix KΔ encodes the neuron-specific preferred

pattern of phase coupling, as shown in Fig. 2H, and can be
thought of as a phase-coupling receptive field. The dependency of
the coupling-based spike rate r(θ; KΔ) can then be expressed in
terms of the phase-dependent differential energy:

log rðθ;KΔÞ∝ −Eðθ; KΔÞ ¼ −
1
2
z∗KΔz:

We then find a linear regression of log r(θ; KΔ) against
−E(θ; KΔ) yielding two parameters, a and b, where
log rðθ;KΔÞ ¼ − aEðθ; KΔÞ þ b. This relationship can then be
used to predict the neural spike rate given the state of the
multidimensional LFP phase.

6. Analysis: Determining Independent Components of the Population
Phase Coupling. To investigate the relationships among the phase-
coupling receptivefields of individual neuronswe apply independent
components analysis (ICA) to the ensemble of the logarithm of
coupling-basedpredicted spike rates.Wedenote theensembleof the
logarithm of coupling-based predicted spike rates as the vector
v, where vi ¼ logriðθ;KΔ;iÞ and i indexes the neuron-specific rate, ri,
and differential coupling matrix, KΔ,i. Under the ICA model the
observations, vi, are a linear mixture of NICA sources, sj, such that

vi ¼ ∑
NICA

j¼1
Aijsj:

Given a set of observations from different time points, we can
estimate the mixing matrix A using standard techniques (9). We
can then determine the estimated sources as

s ¼ ATv

given an observation vector, v, where the unmixing matrix, AT, is
given by the transpose of the mixing matrix. Because the ICA
model produces a linear mixture, each source component can be
reexpressed to show that it is selective for a specific phase cou-
pling relationship. By substituting the neuron-specific coupling
into the rate we arrive at

sj ¼ ∑
NICA

i¼1
Aij log ri

�
θ;KΔ; i

� ¼ −
1
2
z∗KICA; jz

KICA; j ¼ ∑
NICA

i¼1
Aij
�
aiKΔ; i

�
;

where we use the regression relation log riðθ;KΔ; iÞ ¼
− aiEðθ; KΔ;iÞ þ bi as determined in the previous section for each
neuron and ignoring the constant offset bi. Therefore, each ICA
source, sj, is selective for a specific phase coupling pattern, KICA,j,
in the LFP. Depending on the statistics of the neural ensemble
these sources may represent phase coupling patterns that are
relevant only for a single neuron or may capture shared coupling
preference among multiple neurons. As we show in Fig. 3G, we
find that a small number of components are predictive of the
majority of neurons, indicating that phase coupling preferences
are shared among the neural population.

7. Analyses for Specific Figures. Figs. 2A and 4 E–H each show the
dependence of spiking in a single neuron upon LFP phase for a set
of distinct LFP channels recorded simultaneously. Importantly, this
analysis considers each LFP channel separately and does not at-
tempt to model effects due to phase coupling between different
channels. To generate these figures, first frequency-specific phases
were extracted as describe in SI Methods 3. One hundred twenty-
eight logarithmically spaced center frequencies were used, ranging
from 0.3 to 64 Hz. For each center frequency, a constant fractional
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bandwidth of 0.325 was used for filtering. Second, for each LFP
channel and center frequency the set of phases occurring at the spike
times of the neuron of interest was used to estimate the von Mises
distribution parameters μ and κ, circular variable analogs to the
Gaussian distribution mean and variance. μ indicates the mean
anglewhereas κ, ameasure of dispersion, encodes the concentration
of the distribution around μ. This estimation was done using the
fitting algorithm described in SI Methods 4 for which code is avail-
able online at ref. 7. Third, the von Mises concentration parameter
κ, encoding the concentration of the probability density function
prob(θ | spike), and the overall mean spike-count rate, encoding
prob(spike), were combined using Bayes’ rule to estimate prob
(spike | θ). Unlike in SI Methods 5, here θ is a univariate phase
variable. The percentage of modulation in spike rate was calculated
from this PDF, defined as 100 × the difference in maximum and
minimum spike rates divided by the mean spike-count rate. Fourth,
the percentage of modulation in spike rate was calculated for all
center frequencies and LFP channels for all neurons examined in
this study. Fig. 2A shows the results for one neuron from subject P;
Fig. 4 E–H shows the results for four simultaneously recorded
neurons from subject B.
Fig. 4I shows rate modulation vs. frequency traces for all 813

neurons examined in this study after normalization and sorting.
For each neuron, first the LFP channel from the microelectrode
used to record spike times of that neuron was removed and then
the LFP channel showing the maximum modulation was found
from the remaining traces. Second, this trace was divided by the
maximum modulation value to scale trace values to fall between
0 and 1 to facilitate comparisons across different neurons. Third,
the frequency of maximum modulation was identified for each
trace and used to reorder traces as a function of modulation
frequency.
Fig. 2 B–G shows examples of spike-triggered empirical and

isolated phase PDFs. To estimate empirical PDFs for particular
phase variables (black traces in Fig. 2 B–D), von Mises distribution
parameters μ and κ were estimated using the set of phases observed
on a given LFP channel during spike times. Similarly, von Mises
distributions were also used to estimate empirical PDFs for phase
differences between two channels (black traces in Fig. 2 E–G). To
generate isolated PDFs for these variables (red traces in Fig. 2 B–
G), the matrix Kspike representing the spike-triggered pattern of
phase coupling for a given neuron was estimated as described in SI
Methods 5, with code available at ref. 7. This estimate takes into
account both the direct interaction between pairs of phase variables
and indirect interactions through the rest of the network. There-
fore, using this estimate we can easily separate out the parameters
of the corresponding isolated distribution: They are given by the
corresponding parameters κij and μij. This procedure produces a
univariate phase PDF of von Mises form representing either the
absolute LFP phase (red traces in Fig. 2 B–D) or LFP–LFP phase
differences (red traces in Fig. 2 E–G).
Fig. 2H shows a representation of the preferred pattern of phase

coupling for one neuron and was generated from the matrix KΔ,
which was computed as described in SI Methods 5. Nodes represent
phase variables and are color coded by area. Links represent cou-
pling between phase variables. The width/contrast of links is pro-
portional to the absolute value of the entries in the matrixKΔ. Node
size is proportional to the sum of the weights on links entering that
node. Plotting of Fig. 2H was done using the Python programming
language package NetworkX (http://networkx.lanl.gov/).
Fig. 2 I and J shows the correlation between the predicted cou-

pling-based rate and the measured rate. To generate Fig. 2 I and J,
first a set of training data was used to estimate the coupling matrix
KΔ; second, LFPs from two different test sets of data were used to
generate coupling-based rates for a given neuron, as described in SI
Methods 5. Third, a binary time series representing the spike train of
that neuron was generated. This time series had the same number of
sample points as the coupling-based rate (Ntime) and had a value of 1

at spike times and 0 at other times (no spiking). Fourth, to facilitate
an upcoming binning procedure using 200 bins, these time series
were truncated to sizeNtr × 1, whereNtr =Ntime –mod(Ntime, 200);
that is, mod(Ntr, 200) = 0. Fifth, the coupling-based rate and spike
train were combined to form a single Ntr × 2 matrix C. Sixth, the
rows of C were sorted as a function of the values of the coupling-
based rate, such that the first column of C is a nondecreasing
monotonic function consisting of sorted values of the coupling-
based rate (sortrows.m in MATLAB). The second column of
C is a binary vector representing reordered spike times. Seventh,
C was reshaped into a 3D array of size (Ntr/200, 200, 2). Eighth, C
was separated into two matrices C1 and C2, both of size (Ntr/200,
200). C1 consisted of sorted and reshaped coupling-based rate data
and C2 consisted of the sorted and reshaped binary data corre-
sponding to the spike train. Ninth, the mean of C1 over the first
dimension was taken, producing a 200 × 1 vector of mean predicted
rates, where each entry corresponds to the average of 1 of 200 equal-
count bins. That is, each bin has an equal number of sample points
(Ntr/200) and each bin captures one-half percentile of the full range
of coupling-based rates. Tenth, a 200 × 1 vector of measured rates
was generated from C2 by taking the sum of C2 over each column
(the number of spikes occurring in each bin), divided by the number
of rows (the number of 1-ms sample points within each bin), mul-
tiplied by the sampling rate of 1,000 Hz. This procedure produces
a value with units of spikes per second. Eleventh, the 200 × 1 mean
predicted rate vector was used as a regression predictor for the 200×
1 measured rate vector, with the fraction of explained variance (r2)
and the associated uncorrected P value recorded. Finally, the pre-
dicted and measured rates were normalized by subtracting the
minimum value and dividing by the maximum value. To summarize,
after generating a coupling-based rate, all time samples where the
value of the coupling-based rate falls within a narrow bin were
identified, and then the number of spikes occurring at these sample
points was noted and used to calculate a measured rate that can be
compared with the predicted, coupling-base rate.
For Fig. 3, coupling-based rates were generated for 4 neurons as

described in SI Methods 5. Fig. 3 B and D shows 2-s examples of
coupling-based rates. For Fig. 3E, first the correlation coefficients
between coupling-based rates were calculated for all 138 simul-
taneously recorded neurons in one session from subject P, gen-
erating a 138 × 138 correlation matrix C. Second, the interneuron
distance for all pairs of neurons occurring within one cortical area
was determined. Third, interneuron distance was used as a re-
gression predictor for the correlation coefficients, resulting in
a nonsignificant regression. Fourth, pairs of neurons were as-
signed to one of nine bins on the basis of interneuron distance.
Fifth, the mean correlation coefficient for all pairs within one bin
was calculated, as well as the SEM (through bootstrap resam-
pling). For Fig. 3F, first the tuning direction of each neuron was
estimated using cosine fits to the target-specific spike rates for
each neuron. Directional tuning was estimated by comparing the
mean firing rate as a function of target angle during execution of
the movement. The first 2 s of each trial were used. A similar
method was also used for shorter time windows (e.g., 200 ms).
Essentially identical results were obtained with window sizes of 1
and 1.5 s. The tuning curve was estimated by fitting the firing rate
with a sine and a cosine as

f ¼ ½B1B2B3�×
24 1
sin θ
cos θ

35;
where θ corresponds to reach angle and f corresponds to
the firing rate across the different angles. Linear regression was
used to estimate the B coefficients. The preferred direction (PD)
was calculated using the following: PD = tan−1(B2/B3), resolved
to the correct quadrant. The depth of modulation was measured
by calculating the difference between the maximum and the
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minimum of the tuning curve (in hertz). B1 was taken to be the
mean firing rate for a session. Second, the absolute difference in
tuning direction was determined for each pair of neurons. Third,
the difference in direction tuning was used as a regression pre-
dictor for the correlation coefficients between coupling-based
rates. Fourth, neuron pairs were binned into one of nine bins as
a function of tuning difference. Fifth, the mean (and SE) cor-
relation coefficient for all pairs within one bin was calculated.
For Fig. 3G, first the 138 × Ntime matrix of coupling-based

energies −E(θ; KΔ) for all simultaneously recorded neurons in
one session from subject P was generated as described in SI
Methods 5. Second, ICA was performed on this matrix, using the
runica.m function from the EEGLAB toolbox (10). Third, as
described in SI Methods 6, the ICA unmixing matrix was applied
directly to the preferred phase-coupling network matrix KΔ to
generate a set of 138 ICA-component–specific phase-coupling
network matrices, each of size 49 × 49. Fourth, phase data
for a new set of test data were generated as described in SI
Methods 3. Fifth, the ICA-component–specific phase-coupling
networks were applied to these phase data to generate an ICA-
component–specific, coupling-based energy time series. Sixth,
coupling-based rates were generated from these energy time se-
ries as decribed in SI Methods 5. Seventh, each ICA-component–
specific coupling-based rate was tested against the spike times of
the 138 neurons (see predicted rate/measured rate methods in
Fig. 2 I and J) to determine the percentage of neurons signifi-
cantly predicted by each component. Eighth, a small set of highly
predictive ICA components (red in Fig. 3G) was identified by
inspection.
For Fig. 3H, first the 138 × Ntime matrix of I time series for all

simultaneously recorded neurons in one session from subject P was
generated as described above. Second, all values for ICA compo-
nents will low predictive efficacy (black in Fig. 3G) were set to zero.
Third, the inverse of the ICA unmixing matrix was used project the

activity of the remaining ICA components upon each of the 138
neurons. That is, each neuron-specific coupling-based energy time
series is a linear combination of ICA-component–specific coupling-
based energy time series, and the above procedure retains only the
ICA components with high predictive efficacy (red in Fig. 3G).
Fourth, these energies were used to generate coupling-based rates,
as described in SI Methods 5. Fifth, the 138 × 138 matrix of corre-
lation coefficients between these neuron-specific ICA-denoised
rates was calculated. Sixth, this correlation matrix was sorted using
a clustering algorithm (reorderMAT.m from the Brain Connectivity
toolbox: http://sites.google.com/a/brain-connectivity-toolbox.net/bct/
visualization).
Fig. 4A displays the percentage of neurons exhibiting spike de-

pendence on phase coupling patterns, sorted by functional group.
The BMI group consists of 39 M1 neurons directly involved in
cursor control (1), whereas the non-BMI group is composed of 62
M1 neurons not involved in cursor control. All neurons were re-
corded simultaneously. Permutation resampling was used to test
for significance.
For Fig. 4B, first the 138 × Ntime matrix of ICA-component–

specific coupling-based rates was generated for each examined BMI
data set for subject P. Second, the go-cue onset times for successful
BMI trials were identified. Third, epochs starting 2 s before until 4 s
after cue onset were extracted for each of the 138 coupling-based
components. Fourth, these cue-locked epochs were averaged for
each component to generate a time series similar to an event-related
potential. Fifth, these traces were smoothed using a Gaussian win-
dow (SD of 250 ms). Sixth, the 138 traces were reordered on the
basis of the value occurring 100 ms after cue onset. Fig. 4 C and D
shows two of the traces described above (red) as well as peri-
stimulus-time histograms (PSTHs). Cue-locked PSTHs were gen-
erated in an identical fashion using spike trains rather than ICA
components.
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Fig. S1. Example of phase extraction and identification of spike-triggered phases. (A) A 1-s example spike train. Spike times are indicated by vertical lines. (B)
LFP trace from a different microelectrode, filtered with a center frequency of 36 Hz and a fractional bandwidth of 0.325. Spike times are indicated as red dots.
(C) Amplitude envelope of of filtered LFP trace. (D) Phase time series extracted from filtered LFP trace. Phase values range from –π to π. Red dots indentify spike
times and define the spike-triggered LFP phases.
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Fig. S2. (A) Example of raw LFP trace (black) and filtered LFP trace (red), with neuronal spike times marked (blue). (B) Phases extracted from filtered LFP often
exhibit a uniform distribution, as indicated by the histogram. (C) In contrast, phases that occur at spike times often concentrate around a preferred phase. (D)
Probability density functions (PDFs) for phase estimated from all data (black) or at spike times only (blue) often differ, indicating mutual information between
spike timing and LFP phase. (E) Similarly, PDFs of the phase difference between two LFP channels may differ when all data are considered (black) versus spike
times alone (blue).
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Fig. S3. Spikes depend on proximal LFP phases, distal LFP phases, and LFP–LFP phase coupling between electrode pairs. (A) Even after accounting for the
proximal LFP phase near the cell body, a majority of neurons (55.1% or 76/138) are more strongly coupled to distal LFP phases than to the proximal LFP phase.
Bars show the percentage of neurons where the strongest coupling to (absolute) LFP phase fell into one of three groups. LFP electrodes were classified as
proximal to the electrode used to record neuronal spikes if the interelectrode distance was <0.75 mm. A total of 45.0% (66/138) of neurons exhibited the
strongest coupling to proximal LFP phase. Distal ipsilateral LFP electrodes were >0.75 mm from the neuron electrode, with a maximum of 9 mm separation in
this study. A total of 31.9% (44/138) of neurons were most strongly coupled to a distal ipsilateral LFP phase. Distal contralateral LFP electrodes were in the
opposite hemisphere (several centimeters), with 23.2% of neurons locking most strongly to a distal contralateral LFP phase. (B) The strength of distal–distal
LFP–LFP phase coupling preferred by a neuron is comparable to the strength of proximal–distal LFP–LFP phase coupling preferred by a neuron. For each
neuron, the LFP signal from the closest electrode was identified (maximum separation of 0.75 mm), and the mean preferred phase coupling between this
proximal LFP signal and all other (distal) LFP signals was computed. Similarly, the mean preferred phase coupling between all pairs of distal electrodes was
computed and is shown here to be of comparable magnitude. This result suggests that neurons in one location may nonetheless exhibit sensitivity to the
magnitude and angle of phase coupling between LFPs in two distant sites.
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Fig. S4. Phase coupling estimation correctly estimates phase coupling in networks where phase concentrations are misleading. Here we show three example
networks (one in each row). The first column (A, D, and G) shows the network coupling used to simulate a system of oscillators. The second column (B, E, and H)
indicates the measured phase concentration (black vector) and estimated phase coupling (red vector) between oscillators A and B. The magnitude and angle of
the phase concentration are plotted on the polar plot with angle equal to ΔA,B and radius equal to !A;B. The estimated phase coupling, κA,B, and angle, μA,B, are
plotted similarly. The third column indicates the isolated distribution pisoðθA − θB; κA;B; μA;BÞ (red line) and the empirical distribution p(θA − θB) (black line) for the
phase difference θA − θB. (A–C) Spurious coupling: phase concentration measurements (black vector and black line) indicate interaction between A and B when
the true coupling and the estimated coupling (red vector and red line) have 0 magnitude. (D–F) Missing coupling: phase concentration indicates a lack of
coupling between A and B, but the estimated phase coupling and true phase coupling indicate a strong interaction. (G–I) Incorrect phase offset: phase
concentration indicates that oscillator A leads oscillator B; however, the true interaction and the estimated phase coupling indicate that oscillator A lags
behind oscillator B.

Fig. S5. Phase coupling estimation correctly infers phase coupling in complex networks. (A) A network of eight oscillators where solid lines indicate a coupling
interaction of κij = 1 and μij = 0 and no line indicates that κij = 0 (no coupling). (B) The measured phase concentration (green dots) and the estimated phase
coupling (red dots) for all pairs of oscillators plotted against the true coupling in the simulated network (x axis). Phase coupling estimation correctly recovers
the presence of coupling or lack of coupling. Phase concentration includes contributions from the direct interaction between the oscillators and through the
network of oscillators and therefore does not reflect the direct interaction.
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Fig. S6. (A) As in Fig. 2 I and J, for one neuron from subject R. Relationship between predicted coupling-based rate and measured rate is shown. (B) As in Fig.
3H, for subject R. Correlation matrix between coupling-based rates is shown for the 84 simultaneously recorded neurons.
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