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Abstract

Cognitive function certainly poses the biggest challenge for computational neuroscience. As we will
argue, past efforts to build neural models of cognition (this target article included) had a too narrow
focus on implementing rule-based language processing. The problem with these models is that they
sacrifice the advantages of connectionism rather than building on them. Recent and more promising
approaches for modeling cognition build on the mathematical properties of distributed neural
representations. These approaches truly exploit the key advantages of connectionism, that is, the high
representational power of distributed neural codes and similarity-based pattern recognition. The
architectures for cognitive computing that emerge from these approaches are neural associative
memories endowed with additional mapping operations to handle invariances and to form reduced
representations of combinatorial structures.

Introduction
There is an abundance of cognitive phenomena that our existing models are unable to explain.

Jackendoff (2002) has singled out four from language, and the target article proposes to solve them with
a neural blackboard architecture. How likely are we to come up with the right cognitive architecture by
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starting with language? While language is a cognitive function without an equal, it is only a fraction of
what makes up human cognition. It is also evolution's latest invention. In keeping with the principles of
biological design, it rests fundamentally on earlier inventions that are found in mammals and many other
animals. These include rich sensor integration, complex learned motor-action sequences, memory for
places and things, learned judgment, memory for learned actions, mental imagery (imagination), learning
from example, and signaling. In other words, neural mechanisms that predate language are capable of
incredibly rich adaptive behavior. It therefore seems prudent to seek neural-based solutions to these
more basic cognitive functions first, and then to model language by elaborating on the mechanisms for
the basic functions. However, that is not the tradition in cognitive modeling (Feigenbaum & Feldman,
1963; Newell & Simon, 1972).

Local versus distributed representation
Language is the part of cognition that we are the most cognizant of. This has led us to modeling the rest

of cognition with language and language-like systems such as logic, rather than the other way around.
The target article exhibits the typical hallmark of these approaches, local representation, as de Kamps
and van der Velde represent words by nonoverlapping cell populations. In nature, this
single-neuron--single-function design is found only in relatively primitive animals, in the most basic
life-sustaining functions of higher animals, and at the outer sensor and motor periphery -- that is, far
from where cognition is assumed to take place.

Local representations make rigid assignments of what part in a connectionist architecture represents
what entity. The more flexible and more promising alternative is distributed representation which means
more than neuronal patterns involving activity in cell populations rather than single cells. A code is
distributed if the neurons truly collaborate. In other words, not the activity in any single neuron in the
network but only a distributed pattern of activity can fully specify a certain representation. Cell
assemblies, by Hebb's (1949) definition, fulfill this property. Experimental neuroscience offers ample
evidence for distributed codes. Braitenberg (1978) has pointed out that results of single-cell physiology
suggest strongly of distributed representations. Many neurons respond to generic features (such as
edges in visual input) that are shared by a large class of stimuli, rather than to one specific one. Recent
techniques for recording the activity in many cells at the same time prove direct evidence for distributed
patterns (Harris et al., 2003; Ikegaya et al., 2004). Quite confusingly, van der Velde and de Kamps use
local representations but describe their model in the language of (distributed) cell assemblies and
populations.

Advantages of distributed representation have been emphasized in early artificial neural-network
models, such as neural associative memories. Distributed representation yields drastically increased
representational power: A network with # neurons can represent n/k localist population codes with &
neurons, but (7 choose k) ~ (n/k)"k distributed representations. This means that a connectionist
architecture with distributed representation can process more items than it has neurons, which might be
crucial for many brain regions. Second, distributed representations form metric spaces where the metric
is given by pattern similarity, such as pattern overlap or the inner product. In high-dimensional
representational spaces, these metrics behave entirely differently from the Euclidean distance in two or
three-dimensional space. For instance, a pair of random vectors is in general almost maximally
dissimilar. The properties of these metrics are the mathematical basis for the pattern-recognition
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properties of artificial neural networks.

Neural architectures for processing distributed representations

Neural associative memories (Willshaw et al., 1969; Kohonen, 1977; Palm, 1982; Hopfield, 1982) are
essentially the artificial neural-net implementation of cell assemblies (Sommer & Wennekers, 2003). In
these models, cell assemblies are distributed memory patterns that can be formed by learning and can
later be recalled. A cell assembly is formed by incrementing the synaptic strengths between all its active
neurons, and it can be recalled by stimulating a large enough fraction of its cells. The recall is a
pattern-recognition process based on the previously described pattern similarity: a noisy input pattern
will evoke this most-similar cell assembly. Associative memories also provide a form of short-term
memory: once a cell assembly is active, the recurrent excitation keeps it persistent (Amit, 1989).

However, the above described models of associative memory cannot perform invariant pattern
recognition nor can they represent composite or combinatorial structures. The main problem is that
memory recall hinges exclusively on overlaps with stored patterns. Input patterns that do not have
meaningful overlaps with stored patterns cannot be recognized. Architecture that overcomes this
limitation have been proposed (Anderson & van Essen, 1987; Dotsenko, 1989; Olshausen et al., 1993;
Arathorn, 2002) and we will refer to them as feature-mapping memories. In these models the input is
transformed by a parameterized mapping before it enters the associative memory. By tuning the mapping
parameters while searching for a recognizable stored pattern, these systems can cope with invariance that
is not reflected in the direct overlap-similarity of the input. The result of memory retrieval is then not
only a stored pattern but also the appropriate mapping parameters for mapping the current input to the
memory. These architectures have also been extended to more general graph-matching operations (v.d.
Malsberg & Bienenstock, 1987; Kree & Zippelius, 1988).

The above feature-mapping memories can perform invariant pattern recognition but they do not provide
for a more sophisticated working memory that would allow combinatorial structures to be composed
and decomposed on the fly. This requires the introduction of an (invertible) mapping operation for
binding (and decomposition) of representations. Smolensky (1990) proposed a map into
higher-dimensional space, the tensor product of the representational spaces of the constituents. Such a
dimension-expanding binding operation can keep the full structure of the constituents. But this comes at
a high price. The problem is that the depth of nested structure is severely limited by affordable
dimension and that atoms cannot be substituted for nested structures. Because of the downsides of
dimension-expanding binding, Hinton (1990) proposed reduced representation of nested structures in
the original space of the constituents. Different binding operations have been proposed for generating
reduced representations, in particular, convolutions (Plate, 1994) elementwise multiplication (Kanerva,
1994, 1997; Gaylor, 1998) and permutation-based thinning (Rachkovskij & Kussul, 2000).

Gaylor (2003) has detailed how the Jackendoff problems can be solved with reduced representations.
For instance, he uses binding of a representation with a permuted version of this representation to
generate frames (for keeping the little star and the big star apart). It is important to note that systems of
reduced representations have to be embedded in networks of cell-assembly memory as we described
above. This is because the reduction in the binding process produces a noisy result upon decomposition.
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The patterns resulting from decomposition have to be passed through a similarity-based filtering
process, a clean-up process. In this regard the cognitive operations with reduced representations have
close similarity to the recognition of a pattern in feature-mapping memories that we have earlier
described.

Conclusions

We believe that connectionist models for cognitive processing should exploit the strengths of
connectionism, that is, high representational power and the ability for pattern recognition. These
strengths rely fundamentally on distributed representation and, as we have explained, are not realized in
the blackboard architecture proposed in the target article. Neural associative memories, in their original
form, incorporated the described strengths of connectionism but were too limited in function. Recently,
however, memory-based architectures have been developed that can perform invariant pattern
recognition in difficult perceptual problems (Arathorn, 2002). Thus, it seems promising to realize neural
cognitive architectures by adding operations for processing reduced representations in similar memory
systems. In general, we believe that serious progress in cognitive modeling will be based on
understanding the general mathematical properties of high-dimensional representational spaces rather
than on a specific solution to a relatively narrow set of challenge problems.
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