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Abstract

Synfire chain models store and retrieve hetero-associative sequences of firing patterns,

thereby explaining basic aspects of the neuronal processing of temporal information. Existing

models were based on McCulloch–Pitts or integrate & fire neurons and therefore neglect most

physiological properties of real neurons. Here, we study a model with conductance-based

neurons and both, hetero- and auto-associative couplings which support synfire vs. attractor

activity, respectively. We show that the speed of synfire recall is influenced by slow neuronal

variables and is sensitive to the ratio between auto- and hetero-associative synapses while quite

insensitive to background activity. We then propose a bidirectional synfire model where the

duration of states in a synfire chain is variable and can be coordinated by a timed but

otherwise unspecific external signal.
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1. Introduction

Learning and reproduction of temporal sequences of events seems one of the
major tasks for the brain. Classical neural models for this task are synfire chain
see front matter r 2004 Elsevier B.V. All rights reserved.

.neucom.2004.10.015

nding author. Tel.: +650 321 8282.

dresses: fsommer@rni.org (F.T. Sommer), thomas.wennekers@plymouth.ac.uk (T. Wennekers).

www.elsevier.com/locate/neucom


ARTICLE IN PRESS

d d

s si

(a) (b)

Fig. 1. Network architectures. (a) Single-pool network: (s,d) soma/dendritic compartment of excitatory

cells, (i) inhibitory neuron, (�) excitatory Hebb synapse, (�) inhibitory synapse. (b) Bidirectional network:

each pool (within a dashed boundary) has individual inhibition.
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models [11,1] in which temporal sequences of patterns (synfire chains) are learned by
storing associations between subsequent states in Hebbian synapses.

Recently, another classical neural model has regained influence in a debate about
the relationship between processing of temporal information and persistent neural
activity that is observed in various brain regions: attractor memories with auto-
associative synaptic projections [8,4]. An early example is the pump of thought
model by Braitenberg [3], which is basically an attractor memory network with
dynamic threshold control.

Earlier synfire chain models with spiking neurons [2,10,9] used units of the
integrate & fire type and did not incorporate attractor memory. Here we investigate
the combination of synfire chains and attractor memories [5] in biologically realistic
neuronal networks with conductance-based neurons. We study two different
network architectures, a single pool and a bidirectional network, see Fig. 1. First
we ask how the characteristic time constants of synfire chains in the model depends
on its basic parameters, such as the ratio of the strengths of hetero- and auto-
associative projections or the level of background activity. Second, we propose a
bidirectional model in which the timing of synfire chains can be coordinated with
sensory inputs and other brain activity.
2. Methods

Our simulation model contains biophysically matched two-compartment neu-
rons—Pinsky–Rinzel (PR) neurons—with a dendritic compartment including slow
variables for the calcium level and calcium level dependent ion channels [6]. Pattern
associations are stored in synapses with (clipped) Hebbian learning. For a detailed
description of this modeling approach, see [7]. The synfire chains used for learning
are sequences of sparse random patterns. The learned associations include
transitions between patterns (hetero-associations) and auto-associative memory.

The network architectures we studied are depicted in Fig. 1. The single-pool

network contained 200 fully connected neurons and the bidirectional network has 100
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cells in each pool. Inhibition within a pool through GABA-A receptors is modeled
by a single gradual neuron. The synfire chain used for training of the single-pool
network consisted of 10 patterns, each pattern with 10 active neurons. In the
bidirectional network, the synfire chain included 18 of these patterns with pattern
transitions stored in the connections between the pools. Thus, the stored sequence
involved both patches in an interleaved fashion (nine patterns in each pool). Each
pool contained an additional pattern stored in the auto-associative connections, but
unconnected to the synfire chain.
3. Results

3.1. Single-pool network

Fig. 2 summarizes the activity processes in the single-pool network with auto- and
hetero-associative couplings of equal strength. There is a rhythmic activity in the
beta- to gamma-range, and repetiting spindle activity on a long scale. Overlaps with
learned patterns (b) and (c) show that retrieval takes place through associative
spindles formed by brief excitatory–inhibitory activation cycles, cf. [7]. Spindles
reveal a varying number of individual retrieval events (cf. Figs. 3 and 4). Note that
spindles of different patterns can somewhat overlap in time.

In a first series of experiments, we investigated how a shift in the ratio between
auto- and hetero-associative connection strength impacts the timing of sequence
retrieval. Fig. 3 shows that the recall speed of sequences can be changed by several
orders of magnitude. For ratios near 50 percent, the switching pace between patterns
reaches a few hundreds of milliseconds.

A second series of experiments assessed how unspecific background activation can
affect the timing of sequence recall. The experiments used the same parameters as in
Fig. 3 but now with a fixed ratio between auto- and hetero-associative connections of
0.5. The quite moderate influence of background activity is displayed in Fig. 4.
Interestingly, the spindle duration (b) and the number of retrieval events per spindle
(a) increase with background activity whereas the total duration of sequences
decreases (c). (The very short cycle times in (c), in particular at I s ¼ 300, result from
retrieval errors that cause leaps in the sequence.) The sequence duration decreases
because associative spindles of subsequent patterns increasingly overlap in time as
background activity is raised. This series of experiments suggests that variation of
background activity cannot provide a wide speed control of recalled sequences.

3.2. Bidirectional network

Timing of sequence transitions can be controlled by an unspecific neural input in a
bidirectional network with a sequence stored in an interleaved fashion, see Section 2.
The control input stimulates a pattern stored in one pool, put unconnected to the
synfire chain. The simulation sweep in Fig. 5 illustrates the recall process with and
without control input. Shown are the time courses of control input and overlaps with
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Fig. 2. (a) Soma potential (mV) of a neuron (participating in pattern #0 and # 4) after initiation of activity

in pattern #0. (b) and (c) Overlaps for pattern #0 and #1 (# of active neurons common with a pattern). (d)

Onsets (circles) and terminations (squares) of associative spindles for the patterns in the chain (#0–#9).
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Fig. 3. Auto-associative connections influence the timing of sequences. (a) Number of retrieval cycles per

associative spindle. (b) Duration of spindles. (c) Duration of synfire chain consisting of 10 patterns. The x-

axis displays the fraction of auto-associative efficacy. The total excitatory efficacy (auto þ hetero) is

constant.
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stored patterns (in the pool not receiving control input). Without control input, the
bidirectional recall of synfire chains is similar as in the single-pool network. As
control input is applied at the end of the first cycle, the current pattern (# 9) is held as
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Fig. 4. Impact of unspecific background activity on timing of sequence retrieval. The x-axis display the

level of background current (I s in 10�8 A=cm2) into the somatic compartment of the PR-cells. The plots

(a), (b) and (c) display the same quantities as in Fig. 3. Symbols represent individual measurements of the

displayed quantities in repeated simulations.
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Fig. 5. Synfire retrieval in the bidirectional network and the influence of input. Black traces visualize the

onset and duration of patterns (#1–#9) retrieved in the first pool. The different patterns in the synfire chain

are labeled on the y-axis. The gray trace visualizes the control input applied to the second pool.
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long as the control input lasts, much longer than the previous spindles following the
intrinsic dynamics. After release of control input, the synfire chain resumes and
switches to pattern 1 which is then again prolonged by control input.
4. Conclusion

By simulation experiments we have investigated the dynamics of synfire chains in
networks of biologically realistic conductance-based neurons. We found that while
the intrinsic dynamics of synfire chains is insensitive to background activity, it is
strongly influenced by the strength of auto-associative synapses. The latter can
prolong the duration of states and create persistent activity up to few hundreds of
milliseconds, in a range that is relevant for temporal processing in behavior (syllable
rhythm, voluntary movements, etc.).
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A further question of this study was how switching in a sequence stored in a brain
region can be influenced by neuronal input for the purpose of coordinating dynamic
memory recall with other processes in the brain or in the environment. As we saw in
Section 3, background activity has no strong systematic effect on sequence timing,
however, the ratio of auto-associative connections has a strong effect. Stronger auto-
associative couplings prolong the persistence of patterns but it is unclear how the
coupling strengths could be influenced by other neural activity. A similar effect could
be achieved by an input that specifically stimulates currently active patterns.
However, a sequence model requiring such a timing input would be useless since the
external source would have to memorize the whole pattern sequence as well.

As a possible solution to the time control problem, we propose sequences to be
stored in several neuronal pools with intrinsic auto-associative and mutual hetero-
associative connections. For a reciprocal cortical pathway the concept is demon-
strated in our bidirectional network model, where associations between two states in
one region are mediated by states in the other region. Sequence transitions can be
halted by input that suppresses the sequence state in one region while leaving
the state in the other region undisrupted. Thus, after the release of control input,
the sequence resumes (at intrinsic pace). Our model demonstrates that pacing of
synfire chains can be controlled by unspecific timing signals, either reflecting sensory
input (sequence recognition) or input from other brain regions (coordinated
sequence recall, sequence execution).
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