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Abstract

Information encoding in spikes and computations performed by spiking neurons are two

sides of the same coin and should be consistent with each other. This study uses this

consistency requirement to derive some new results for inter-spike interval (ISI) coding in

networks of integrate and fire (IF) neurons. Our analysis shows that such a model can carry

out useful computations and that it does also account for variability in spike timing as

observed in cortical neurons. Our general result is that IF type neurons, though highly non-

linear, perform a simple linear weighted sum operation of ISI coded quantities. Further, we

derive bounds on the variation of ISIs that occur in the model although the neurons are

deterministic. We also derive useful estimates of the maximum processing speed in a

hierarchical network.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that neurons communicate using spikes. But how is information
encoded in the spikes that travel from one neuron to another? Since outputs of
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neurons are fed to other neurons for further processing, a generic information
encoding scheme will need to have the same encoding mechanism at the input to a
neuron as at the output. Given such an encoding scheme, neurons of the same type
can be organized in multiple layers to perform useful computations [2]. A
computational model for a neuron should, therefore, perform computations on its
input spike trains and produce the result of the computation at its output with the
same encoding as at its inputs. Thus, information encoding, computation and
neuron models are part of the same problem and should be consistent with each
other.

As an example, consider the Poisson rate coding hypothesis where the spike trains
are modelled as Poisson processes, with the rate of the process carrying the relevant
information [4]. Softky and Koch showed that the rate coding hypothesis is
inconsistent with integrate and fire neuron models [6]. A neuron model which is
consistent with the rate coding hypothesis would require a random number
generator inside the neuron so that the outputs are Poisson as well. This example
illustrates that it is important to consider neuron models together with an
information encoding and processing mechanism.

What is a consistent kind of coding mechanism for the widely used integrate and
fire (IF) neurons? What computation do IF neurons perform with its inputs and its
outputs coded in that fashion? In this paper, we show that inter-spike interval (ISI)
coding is a viable coding mechanism that can produce useful computations in
networks of IF neurons while being consistent with the above requirements. In
addition, we show that the ISI coding and computation mechanisms as suggested
here could account for spike timing variability as observed in cortical spike trains.

The rest of this paper is organized as follows. Section 2 establishes the general
relationship between ISI coding and IF neurons. Section 3 describes the nature of
computations performed on ISI coded streams by IF neurons. This section also
describes the source of variability arising from these computations. Section 4
compares these results with previous work and suggests topics for further
investigation.
2. ISI coding and IF neurons

One way to encode a stream of non-negative numbers s1; s2; . . . ; sN based on ISIs is
to use these values to control the time elapsed between successive spikes as given by

tnþ1 � tn ¼ f ðsnþ1Þ; (1)

where tn’s are the spike instants and f is a positive valued function. Consider an IF
neuron without leak driven by a constant input current I. Such a neuron would
produce output spikes at regular intervals Tout given by

Tout ¼ V yC=I ; (2)

where V y is the threshold of firing and C is the capacitance of the neuron. We assume
that after firing, the membrane potential is reset to zero. The corresponding
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expression for a leaky integrate and fire neuron (LIF) with leakage resistance R is
given by [7]

Tout ¼ RC ln
1

1 � ðV y=IRÞ

� �
: (3)

Eqs. (2) and (3) satisfy the general form of ISI encoding given in Eq. (1) with the
f ðsÞ ¼ V yC=s for Eq. (2) and f ðsÞ ¼ RC lnð1=½1 � ðV y=sRÞ�Þ for Eq. (3). In both
cases, Tout decreases with increasing I, i.e., f is a decreasing function of the input
magnitude.

Inputs to cortical neurons are spikes rather than constant currents. Moreover, any
given neuron will have many input synapses carrying different spike streams.
Therefore, it is important to know how the output spike intervals of a neuron is
related to the input spike intervals on its synapses. In the next section we derive this
relationship for an IF neuron with two synaptic inputs.
3. Computations with ISI encoded input streams

Consider ISI streams encoding static values s1 and s2 applied as inputs to
an IF neuron with synaptic weights w1 and w2: We assume that streams
s1 and s2 were produced by IF neurons with the same threshold and
capacitance. Initially we consider neurons with no leakage. We then know
that values s1 and s2 correspond to input interspike intervals T1 and T2

where T1 ¼ V yC=s1 and T2 ¼ V yC/s2: Let Tout be an output ISI for these
inputs. We assume that the firing threshold is such that Tout42 maxfT1;T2g:
Then during the interval Tout; synapse 1 received approximately Tout=T1 spikes
and synapse 2 received approximately Tout=T2 spikes. These input spikes
increment the membrane potential of the neuron eventually making it reach the
threshold and fire Tout units after its previous firing. If each spike causes an
increment Vd in the membrane potential, on an average, the neuron fires when the
following condition is met

w1ðTout=T1Þ þ w2ðTout=T2Þ ¼ V y=V d: (4)

Thus, using Eq. (2), the quantity sout encoded by the output ISI Tout can be derived
as

sout ¼ ðV d=CÞ
w1

T1
þ

w2

T2

� �
¼ ðVd=VyÞðw1s1 þ w2s2Þ: (5)

If we assume the ratio V d=V y to be the same for all neurons producing the input
spike streams, a general approximate input–output relationship holds for a neuron
with multiple inputs: sout ¼ Siwisi; where i runs over all synapses of this neuron.
Thus, even though the IF neuron is highly non-linear, the input–output relation
between the spike intervals remains a linear function.

The above derivations of output ISIs are only approximate since we did not
consider the cases where two simultaneous input spikes fire an output spike. The
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maximum output ISI Tmax will occur subsequent to a spike that was fired by two
coincident spikes on the input streams. The next firing, which terminates
the ISI corresponding to Tmax would then occur synchronously with spikes on
either of the synapses. Without loss of generality, we assume that this happens
synchronously at synapse 1. Then Tmax ¼ n1T1; where n1 is the number of spikes
received at synapse 1. Further, the number of spikes received on synapse 2 during
this interval is given by n2 ¼ bTmax=T2c: Equating the weighted number of spikes to
the firing threshold we get an upper bound on the maximum output ISI Tmax:
Similarly, a lower bound for the minimum ISI Tmin can be derived. The two bounds
are as given below by

Tmaxp
ðV y=V dÞ þ maxfw1;w2g

ðw1=T1Þ þ ðw2=T2Þ
; TminX

ðV y=V dÞ � maxfw1;w2g

ðw1=T1Þ þ ðw2=T2Þ
; (6)

where Vy is the firing threshold and Vd is the increment in membrane potential
caused by an incoming spike.

Although the exact probability density of the ISI variation was not derived, from
symmetry arguments we conclude that the average output ISI is the one given by Eq.
(4). This implies a new way of interpreting the output of an IF neuron with static ISI
coded inputs. The output ISIs, on an average, represent the weighted sum of the
quantities represented by the input ISIs. The output ISIs vary about this average and
the variance depends on the relative magnitude of the voltage increments caused by
an input spike. This jitter could account for part of the variability of cortical spike
trains.

The stated results can be extended to time varying input streams by imposing
appropriate constraints on the maximum rate of change of the input streams. Since
an IF neuron loses all the history of inputs after firing, a step change at any of the
input streams is reflected at the output within a time tp2Tmax

out where Tmax
out is the

maximum ISI of the output spike stream. Let Tmax
out ¼ KTmax

in where Tmax
in is the

maximum ISI at the input and KX2 is a constant that depends on the time constant
of the neuron and its synaptic strengths. If we assume that the input spike trains are
faithful samples of a bandlimited input current, then by the sampling theorem,
Tmax

in p1=ð2f maxÞ; where f max is the maximum frequency component of the input
current. Then Tmax

out pðK=2Þf max: This means that the maximum frequency that can
be represented by the spike trains drops by a factor of KX2 for every layer of IF
neurons in a layered architecture. If this condition is violated for any layer, the
output spike stream can no longer be interpreted as ISI coded as described in this
paper. Knowing the minimum rate at which neurons at the highest level of the
hierarchy should respond would give us an upper bound on the input frequencies
that can be faithfully represented and processed using the ISI coding scheme
described here.

The result that the basic type of computation is of the sort sout ¼ w1s1 þ w2s2 is
not only valid for IF neurons, but also holds for LIF neurons. For a
LIF neuron with leakage resistance R and capacitance C, the membrane
voltage decays exponentially with a time constant t ¼ RC as given in
Eq. (3). Therefore, on an average, the neuron fires when the following
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condition is met:

w1ð1 þ e�T1=t þ e�2T1=t þ � � � þ e�ððTout=T1Þ�1ÞT1=tÞ

þ w2ð1 þ e�T2=t þ e�2T2=t þ � � � þ e�ððTout=T2Þ�1ÞT2=tÞ

¼ ðe�Tout=t � 1Þ
w1

e�T1=t � 1
þ

w2

e�T2=t � 1

� �
¼ V y=V d:

By comparing this with Eq. (3), the quantity sout encoded by the output ISI Tout

becomes

sout ¼ ðV d=RÞ
w1

e�T1=t � 1
þ

w2

e�T2=t � 1

� �
¼ ðV d=V yÞðw1s1 þ w2s2Þ: (7)

4. Discussion

The question of how spike timing is used for computations has been under debate
for a long time [1–3]. The challenge lies in finding coding and computational
mechanisms that are consistent with neuron models. Rate coding with Poisson
distributed spikes has been suggested as one mechanism for encoding information in
spikes [4]. But the traditional view of Poisson spikes cannot be implemented with IF
neurons [6]. The ISI coding mechanism we suggested for IF neurons can be
interpreted as an instantaneous rate code. However, in our scheme the spikes are
more precisely timed and hence can carry information at a higher rate compared to
Poisson rate coding [5]. Rank order coding (ROC) [2] is another spike-timing-based
computation suggested in the literature. However, ROC has the disadvantage that a
slight delay in the onset of one of the inputs can disrupt the entire chain. Poisson rate
coding and ROC can be considered to be at the opposite extremes of a continuum of
spike coding mechanisms. The ISI coding we suggested here can be positioned
somewhere between these extremes, thus giving a tradeoff between information rate
and synchronicity requirements. Since ISI codes are nothing but rate codes with
precise timing, all the results we derived in Section 3 are valid in general for all rate
codes.

There has been extensive discussion about the nature of variability of spike trains
in cortex [6,4]. Suggested mechanisms for this variability include random firing
thresholds and stochastic synapses. The ISI coding mechanisms we suggested here
demonstrate that the variability of the spike trains could, at least in part, arise as a
natural consequence of computations based on ISI coded spike stream inputs, even
in entirely deterministic IF neurons. More studies are required to verify what
percentage of the observed cortical variability of spike trains can be explained using
this approach.

We know that neurons in the lower levels of a cortical hierarchy need to respond
faster compared to neurons higher up in the hierarchy. Our model predicts a drop in
the maximum frequency as more computational layers are stacked like in a
hierarchical architecture. Clearly, there is a tradeoff between speed of processing and
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accuracy of representation at each stage. Further studies are required to quantify this
tradeoff. Also, the question of how learning could occur in ISI coded networks is left
as a topic for further study.
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