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SUMMARY

Animals can selectively respond to a target sound
despite simultaneous distractors, just as humans
can respond to one voice at a crowded cocktail
party. To investigate the underlying neural mecha-
nisms, we recorded single-unit activity in primary
auditory cortex (A1) and medial prefrontal cortex
(mPFC) of rats selectively responding to a target
sound from a mixture. We found that prestimulus
activity in mPFC encoded the selection rule—which
sound from the mixture the rat should select.
Moreover, electrically disrupting mPFC significantly
impaired performance. Surprisingly, prestimulus ac-
tivity in A1 also encoded selection rule, a cognitive
variable typically considered the domain of prefron-
tal regions. Prestimulus changes correlated with
stimulus-evoked changes, but stimulus tuning was
not strongly affected. We suggest a model in which
anticipatory activation of a specific network of neu-
rons underlies the selection of a sound from a
mixture, giving rise to robust and widespread rule
encoding in both brain regions.

INTRODUCTION

Humans can select and respond to one person’s voice while

many others are speaking at the same time. We do this effort-

lessly, yet no known algorithm can solve this ‘‘cocktail party

problem’’ in realistic settings, perhaps because we do not fully

understand the relevant computations performed in the brain

(Cherry, 1953; Sayers and Cherry, 1957; Ding and Simon,

2012; McDermott, 2009). Other social animals such as birds

and rodents demonstrate a similar ability (Bee and Micheyl,

2008); for instance, mother mice respond to distinct pup calls

when several are calling at once (Geissler and Ehret, 2002).

Humans use selective attention, the cognitive process of select-

ing and responding to a single target stimulus among simulta-

neous distractors (Desimone and Duncan, 1995), to solve the

cocktail party problem (Ahveninen et al., 2011). Experiments in
visual selective attention have revealed that the prefrontal cortex

(PFC) sends top-down ‘‘bias signals’’ to sensory cortex (Miller

and Cohen, 2001; Moore et al., 2003) to select the target stim-

ulus, enhancing its neural representation while suppressing the

representation of distractors. Similar mechanisms may be at

work in the auditory cortex: electrocorticographic (Mesgarani

and Chang, 2012; Zion Golumbic et al., 2013) andmagnetoence-

phalographic (Ding and Simon, 2012) recordings show that

brain activity is dominated by the attended voice. Ultimately,

recordings from single units (individual neurons) will be needed

to understand the circuit. In addition, many models of visual

selection are not obviously applicable to the auditory modal-

ity—for instance, the idea that visual attention co-opts the neural

mechanisms for shifting gaze (Moore et al., 2003). Establishing

an animal model of auditory selective attention could shed

more light on whether the knownmechanisms of visual selection

are universal or specific to one modality.

Nonhuman primates are the traditional model organism for

studying complex cognition (Gold and Shadlen, 2007) but

rodents are also capable of sophisticated decision-making

(Raposo et al., 2012; Brunton et al., 2013; Zariwala et al.,

2013). The behavioral flexibility of rodents is thought to be medi-

ated by the PFC (Karlsson et al., 2012; Kvitsiani et al., 2013), even

though this region is not necessary for simple sensory discrimi-

nations (Pai et al., 2011). The medial PFC (mPFC) in particular

is critical for task switching (Birrell and Brown, 2000; Floresco

et al., 2008; Durstewitz et al., 2010; Ragozzino et al., 1999),

such as switching the navigational strategy used to solve a

maze (Rich and Shapiro, 2009). Rodent mPFC thus appears to

maintain a representation of the current task rule, analogous to

the rule-encoding neurons observed in primate PFC (Wallis

et al., 2001; Asaad et al., 2000; Johnston et al., 2007), although

large parts of the monkey PFC appear to be functionally and

anatomically unique to primates (Wise, 2008).

Frontal areas have been shown to play a role in directing flex-

ible auditory processing in the primary auditory cortex (A1). For

example, training ferrets to detect tones at a specific target fre-

quency (Fritz et al., 2003) produces rapid tuning changes in A1

(i.e., the neurons responded more to the target frequency) and

modulates functional connectivity between A1 and frontal areas

(Fritz et al., 2010). Moreover, when these ferrets switch between

different auditory tasks, the observed tuning changes match the

demands of each task (Fritz et al., 2005). These experiments
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Figure 1. Behavioral Paradigm

(A) Left: a schematic of the behavioral arenawith left (L), center (C), and right (R)

ports (or nose-pokes), and left and right speakers. Right: timeline of each trial.

The rat initiates a trial by nose-poking the center port as shown. After a hold

period, an auditory stimulus is played. Following this, the rat may choose to go

to the left port (blue arrow), go to the right port (red arrow), or do neither of

those (a ‘‘nogo’’ response).

(B) Task stimuli (left, description; right, spectrogram of the auditory waveform).

On each trial, the rat hears one of four possible auditory stimulus pairs:

LEFT+HIGH, RIGHT+HIGH, LEFT+LOW, or RIGHT+LOW. Each is a simulta-

neous combination of a broadband noise burst played from either the left or

right speaker, and a low-pitched or high-pitched warble played with equal

intensity from both speakers.

(C) Task rules. The session consists of alternating localization and pitch

discrimination blocks. In localization blocks, the rat must go left for sounds

containing LEFT and it must nogo for sounds containing RIGHT; the low- or

high-pitched warble is an irrelevant distractor. In pitch discrimination blocks,

the rat must go right if the stimulus pair contains LOW and it must nogo if the

stimulus pair contains HIGH; the noise burst is an irrelevant distractor.
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revealed A1 to be surprisingly dynamic; however, subjects were

not required to select a target sound in the presence of simulta-

neous distractors, a critical aspect of the cocktail party problem

(McDermott, 2009; Ding and Simon, 2012).

In this study, we have taken advantage of the relative ease and

speed with which rodents can be trained on demanding tasks

(Carandini and Churchland, 2013) to develop a novel behavioral
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task in which rats hear two simultaneous sounds, but select and

respond only to one. This requires cognitive flexibility because,

depending on which sound the experimenter instructs the

subject to select, the same pair of sounds can elicit a different

behavioral response (‘‘same stimulus; different response’’). The

subjects must alternate which sound they select multiple times

within each session. We are aware of no purely auditory single-

unit studies in any animal with these properties. The analogous

ability in vision—to respond to a behaviorally relevant stimulus

in the presence of competing distractors—has been referred to

as stimulus ‘‘selection’’ (Knudsen, 2007; Reynolds and Chelazzi,

2004; Pestilli et al., 2011); following this, we refer to our task as

auditory stimulus selection.

Similar visual and cross-modal tasks have been termed set

shifting (Stoet and Snyder, 2004), task switching (Sasaki and

Uka, 2009), and selective attention (Moran and Desimone,

1985; Hocherman et al., 1976; Otazu et al., 2009). Other studies

have investigated ‘‘response selection’’: how decisions are

translated into appropriate motor actions, following stimulus

selection or even in the absence of an explicit stimulus (Young

and Shapiro, 2011; Turken and Swick, 1999). We also note a

similarity between our task and the Wisconsin Card Sorting

Task for diagnosing disorders of executive function (Monchi

et al., 2001).

We recorded from individual mPFC and A1 neurons in rats

performing our task. We found that the prestimulus, anticipatory

activity of our recorded neurons in mPFC encoded the selection

rule—which sound the subject should select. Surprisingly, we

also found this prestimulus effect in a sizable fraction of the

neurons we recorded in A1. Disruption of mPFC through electri-

cal microstimulation significantly impaired task performance.

Finally, although changes in prestimulus baseline correlated

with changes in stimulus-evoked activity in both brain regions,

this did not appear to alter tuning properties in a way that would

be obviously beneficial for responding to the selected sound.

RESULTS

A Novel Behavioral Task for Rodents: Auditory Stimulus
Selection
We developed an auditory stimulus selection task for rats, in

which the subject was trained to respond to either of two simul-

taneously presented sounds. The rat initiated each trial (Fig-

ure 1A) by holding its nose in the center port of a three-port

behavior box—the ‘‘hold period.’’ This triggered speakers on

the left and right to play one of the following four equally likely

stimulus pairs: LEFT+HIGH, RIGHT+HIGH, LEFT+LOW, or

RIGHT+LOW (Figure 1B). Each stimulus pair was a simultaneous

combination of (1) a broadband noise burst, played from either

the LEFT or RIGHT speaker; and (2) either a HIGH- or LOW-

pitched warble (frequency-modulated tone), played from both

speakers simultaneously. After the onset of stimulus presenta-

tion, the rat could then choose to ‘‘go left’’ (poke its nose in the

left port), ‘‘go right’’ (poke its nose in the right port), or ‘‘nogo’’

(not poke either side). Correct pokes into the side ports were

rewarded with water; incorrect pokes were penalized with a

2–6 s timeout (see Supplemental Experimental Procedures

available online).
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Figure 2. Trained Rats Select and Respond to the Target Sound,

Not the Distractor

(A) Behavior performance during recording sessions. Each hash mark is the

performance during localization (blue) or pitch discrimination (red) in a single

recording session. Performance is well above chance (black dotted line; see

Supplemental Experimental Procedures).

(B) Distribution of behavioral responses to an example stimulus pair

(RIGHT+LOW) over the course of an average session. We averaged all ses-

sions from a single rat (rat 5) and binned the trials into groups of ten. The x-axis

shows both trial number and block type. The correct response to this stimulus

pair is to go right during pitch discrimination and to nogo during localization.

Each trace shows the probability that the rat will go right (red), nogo (gray), or

go left (blue); black open squares mark the correct response for that block. The

rat responds correctly most of the time, even though the required action

changes abruptly at the block boundaries. This stimulus pair does not occur
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On each trial, one of the sounds in the stimulus pair (the

‘‘target’’) indicated the correct response; the other sound (the

‘‘distractor’’) was uninformative. The behavioral session alter-

nated between ‘‘localization’’ blocks of trials, during which the

noise burst was the target, and ‘‘pitch discrimination’’ blocks,

during which the warble was the target (Figure 1C). Each block

consisted of 80 trials, the first 20 trials of which were reserved

to indicate the block change. During these 20 ‘‘cue trials,’’ the

rat heard only target sounds without any distractor.

The entire training process required approximately 10 weeks.

Trained rats performed many trials per session (median, 698).

We verified that the rats were performing significantly above

50% in both blocks, which meant that their behavioral response

was driven by the target sound, rather than by the distractor or

by a combination of target and distractor (Figures S1B, S1C,

and Supplemental Experimental Procedures). Our best rats’

typical performance during recording sessions was approxi-

mately 85% in both blocks (Figure 2). After each block change,

rats rapidly and correctly switched to selecting the new target

sound. Performance was typically better on go trials than on

nogo trials (Figure S1A).

Anticipatory Neuronal Activity in mPFC and A1 Encodes
the Selection Rule
We next asked whether neuronal activity changed according to

which target the rats selected. We implanted tetrodes into the

brain, targeting A1 and/or the prelimbic region of mPFC, and

recorded single-unit action potentials (spikes) during behavior.

By analogy with the rule-encoding neurons in the primate PFC,

we hypothesized that the firing rates of single mPFC neurons

would differ significantly between localization and pitch discrim-

ination blocks. We first confined our analysis to the hold period,

the interval before stimulus onset when the rat is holding its nose

in the center port and presumably preparing to select the target

sound from the imminent stimulus pair.

We found that the hold period activity of a majority of mPFC

neurons robustly encoded the selection rule on ‘‘correct trials,’’

those trials on which the rat gave the correct response. An

example unit (Figure 3A) fired significantly more in the hold

period during localization trials than it did during pitch discrimi-

nation trials. A different but simultaneously recorded single unit

in mPFC (Figure 3B) fired significantly more during pitch discrim-

ination than during localization. In both cases, the effect per-

sisted across the entire session of over 1,300 trials, alternating

with each block just as the behavior did. Across our recorded

population of mPFC neurons, 63% (76/121) of the neurons indi-

vidually and significantly encoded the selection rule during the

hold period (Figure 3C). Of these, 36 neurons preferred (i.e., fired
during cue trials, which begin each block and are shaded in cyan and pink

throughout this figure.

(C) Similar to (B), but averaged over all sessions, rats, and stimuli. Most trials

are correct (black trace). Interference trials (orange; see text) are rare.

(D) Performance briefly dips during cue trials at the beginning of a block but

recovers within a few trials. All localization blocks from (C) are averaged

together, as are all pitch discrimination blocks. To emphasize block transi-

tions, the x axis repeats itself after trial 160; the cyan shaded areas are identical

because the block structure is cyclical.

Neuron 82, 1157–1170, June 4, 2014 ª2014 Elsevier Inc. 1159
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Figure 3. Prestimulus Activity in mPFC Encodes the Selection Rule

(A) Left: An example mPFC single unit that fires more during the hold period for

localization (blue bars throughout this figure) than for pitch discrimination (red

bars). For all figures, error bars represent SEM unless otherwise noted. Inset:

Extracellular waveforms (mean ± SD) with duration of 0.8 ms on each channel

of the tetrode. The waveforms are colored red and blue based on the block in

which they were recorded, but are almost entirely overlapping (purple). Right:

peristimulus time histogram (PSTH) of the same unit, averaged over all correct

trials from each block. During the hold period (gray), the firing rate is signifi-

cantly (p < 0.001, unpaired Mann-Whitney U-test) higher on localization (mean

12.1 Hz, n = 483) than on pitch discrimination (mean 7.2 Hz, n = 295) trials.

(B) Another example mPFC single unit, this one preferring pitch discrimination.

The hold period firing rate is significantly (p < 0.001) higher on pitch discrimi-

nation (mean 5.4 Hz) than on localization (mean 2.7 Hz) trials. Trial counts are

the same as the simultaneously recorded unit in (A). This neuron’s firing rate is

persistently elevated at all points plotted.

(C) Stacked histogram of the ratio of hold period firing rate (pitch discrimination

over localization) for all mPFC neurons. Red and blue bars represent signifi-

cantly modulated neurons. We used an unpaired Mann-Whitney U-test for all

neurons and controlled for multiple comparisons using the Benjamini-Hoch-

berg false discovery rate.

(D) Rule encoding is diminished on interference trials. We averaged together

the firing rates of each rule-encoding neuron during either correct (white) or

Neuron
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more during) localization and 40 preferred pitch discrimination;

neither preference was significantly more common (binomial

test, p > 0.05).

Surprisingly, we also found a similar effect in A1 (Figure 4).

Although encoding of selection rule was our hypothesized result

in mPFC, this was unexpected in A1, especially given the

absence of auditory stimulation during the hold period. Across

our recorded population, 36% (36/99) of A1 neurons encoded

selection rule. As with mPFC, neither population was signifi-

cantly larger (13 preferring localization, 23 preferring pitch

discrimination; binomial test, p > 0.05). Because A1 encodes

sounds sparsely (DeWeese et al., 2003; Hromádka et al., 2008;

Carlson et al., 2012), we were not surprised to observe that

only some (49/99) of our recorded neurons in A1 significantly re-

sponded to our task stimuli (Figures S5A–S5E). Rule encoding

was not significantly more widespread in either stimulus-respon-

sive (14/49) or nonresponsive (22/50) neurons (p > 0.05, Fisher’s

exact test). This finding is reminiscent of evidence from human

imaging that attention affects strongly stimulus-driven regions

of auditory cortex less than it affects other, more poorly tuned

regions (Petkov et al., 2004).

These effects were strong: among rule-encoding neurons, the

median increase in firing rate during the preferred block was

74.7% in mPFC and 99.7% in A1. These results are unlikely to

be due to firing rate drift over the course of the session or spike

sorting errors arising from small differences in spike waveform

shape between blocks (see Supplemental Experimental Proce-

dures). In sum, these results demonstrate widespread and

robust encoding of selection rule in the prestimulus activity of

both mPFC and A1 neurons.

Error Trial Analysis
In the previous section, we analyzed only correct trials. We next

considered ‘‘interference’’ trials, during which the rat appeared

to select the wrong sound. On such trials, the rat heard a ‘‘go’’

distractor (i.e., a sound that should have elicited a go response,

had it been presented during the other block) and incorrectly

went to the choice port associated with that distractor instead

of doing what the target sound indicated. If anticipatory encod-

ing of selection rule is important for successful stimulus selec-

tion, then this encoding should have been weaker or even

reversed when the rat selected the wrong sound.

Indeed, in mPFC, the encoding of selection rule was sig-

nificantly weakened on interference trials, as compared with

correct trials (Figure 3D). In A1, we observed a more extreme

effect (Figure 4D): the rule encoding was actually reversed

on interference trials (i.e., firing rates were greater during the

nonpreferred block on such trials). These observations are

consistent with the idea that anticipatory activity predicted

which sound the rat would select, even for trials on which the

rat appeared to respond to the distractor by going to the wrong

choice port.
interference (orange) trials in their preferred and nonpreferred blocks. Firing

rates are normalized by subtracting the firing rate on correct trials in the

nonpreferred block. The population response on interference trials is sig-

nificantly increased during the nonpreferred block and decreased during the

preferred block (n = 57 neurons, paired Mann-Whitney test).
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Figure 4. Prestimulus Activity in A1 also Encodes the Selection Rule

(A) An example A1 neuron that responds significantly more (p < 0.001) during

localization (8.0 Hz, n = 312 trials) than during pitch discrimination (4.8 Hz,

n = 253). Throughout, conventions and statistical procedures are as in Figure 3.

Note the peak following stimulus onset, which was used to analyze the evoked

response (Figure 6).

(B) Simultaneously recorded A1 neuron that significantly (p < 0.001) prefers

pitch discrimination (10.1 Hz, n = 312 trials) over localization (2.0 Hz, n = 253).

(C) Stacked histogram of the ratio of hold period firing rate (pitch discrimination

over localization) for all A1 neurons.

(D) Rule encoding during the hold period is inverted on interference trials. The

population response on interference trials (orange bars) is significantly greater

during the nonpreferred block than during the preferred block (p < 0.01, n = 16

neurons, paired Mann-Whitney U-test). In contrast, on correct trials (white

bars) the firing rate is higher during the preferred block than the nonpreferred

block, by definition.
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Potential Role of Posture
The mPFC regulates cognitive state, but it also encodes body

position and plays a role in motor planning (Erlich et al.,
2011; Euston and McNaughton, 2006). We analyzed video of

the rats and found evidence of preparatory head positioning

that differed between blocks (see Supplemental Experimental

Procedures), presumably a behavioral strategy that the rat

used to prepare for the differing motor actions required in

each block (i.e., go left in localization and go right in pitch

discrimination).

This raised the question of whether neurons were encoding

this postural difference, rather than selection rule. We found

that, in the vast majority of rule-encoding neurons in both brain

regions, the selection rule explained more of the variance in

firing rates than did head angle (Figures S2I–S2T and S3I–

S3Q). In addition, the rule encoding was largely maintained

on a subset of ‘‘posture-equalized’’ trials, selected so that the

mean head angle was the same in each block (Figures S2M–

S2O and S3M–S3O). Finally, as we discuss below, the long

duration of the neural effects we observed further argues

against the possibility that changes in posture were the under-

lying cause.

Within-Trial Timescale of the Encoding
of the Selection Rule
We next asked how soon before the stimulus the rule encoding

emerged, and for how long afterward it persisted. For each

rule-encoding neuron, we compared across blocks the

smoothed firing rates in every 50ms bin up to 3 s before and after

stimulus onset. We thereby determined the largest interval

around the hold period during which the neural activity signifi-

cantly encoded the selection rule. Across the data set, the me-

dian intertrial interval was 4.0 s (interquartile range, 2.7–5.3 s)

and so this range (± 3 s) overlapped with the previous and/or

next trial in many cases.

The temporal dynamics of the encoding varied widely across

neurons in both regions (Figures 5A and 5B). For some neurons,

rule encoding was strictly confined to the hold period. Other neu-

rons showed significant encoding during all time bins tested:

their firing rates were persistently elevated during the preferred

block. We found neurons spanning this range of timescales in

both brain areas. In A1, themedian rule-encoding unit first devel-

oped a significant block preference 0.55 s prestimulus; in PFC,

the median was 0.625 s prestimulus. Thus, the majority of rule-

encoding neurons developed this property well before the rat

initiated a trial by center-poking.

To examine the population dynamics of rule encoding, we

averaged the normalized activity of all rule-encoding neurons

during their preferred block. On average, the population activity

ramped up gradually before stimulus onset, over a timescale of

several seconds, and then fell relatively quickly afterward (Fig-

ure 5C; Figures S4B–S4E). The population activity in mPFC

was significantly elevated earlier than in A1, consistent with its

hypothesized role as the origin of top-down bias signals to sen-

sory cortex (Miller and Cohen, 2001). However, we note that the

wide range of timescales within both regions, and the fact that

only a small fraction of our data set consists of simultaneous

recordings from A1 and PFC, complicates a direct comparison

between brain regions.

Finally, we asked whether the rule encoding reflected an

increased firing rate in one block (as compared with the
Neuron 82, 1157–1170, June 4, 2014 ª2014 Elsevier Inc. 1161
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Figure 5. Within-Trial Timescale of the Encoding of Selection Rule

(A) PSTHs from example rule-encoding mPFC neurons in each block (blue,

localization; red, pitch discrimination). Note that the timescale is much longer

than that in previous figures. Firing rates are smoothed with a 50 ms Gaussian

kernel and normalized to equal variance across neurons. Gray shading rep-

resents the maximum time interval, containing the hold period, during which

the traces significantly diverge. Although these neurons were identified based

on a difference in firing rate during the hold period, the traces often diverge for

much longer.We observed awide variety of timescales and dynamics. The first

neuron effectively fires persistently more in one block. The third and fourth

neurons demonstrate that the firing rate can either decrease during the non-

preferred block or, more commonly, increase during the preferred block.

(B) Example neurons from A1, following the conventions of (A). Again, the

neurons exhibit a wide variety of dynamics, from essentially persistent block-

specific activation for over 3 s preceding the stimulus (first neuron), to very brief

activation well under 1 s (last neuron).

(C) Population time course: the traces represent the mean response, ± SEM,

during the preferred block inmPFC (purple, n = 76) and A1 (orange, n = 36). The
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spontaneous rate while the rats were not performing the task),

a decreased firing rate in the other block (versus spontaneous),

or something else (for instance, a low spontaneous rate, an

elevated rate for one block, and an even higher rate for the other

block, which might reflect an encoding of task difficulty). Individ-

ual neurons exhibited a diversity of effects and we observed sin-

gle units showing each of these possibilities (Figures 5A and 5B).

However, across the population of rule-encoding neurons, the

firing rate was significantly higher than spontaneous during the

preferred block and significantly lower than spontaneous during

the nonpreferred block (Figures S2F and S3F). These data argue

against a model in which neurons encode task difficulty and

instead suggest that each block actively engages two different

populations of neurons, increasing the firing rate in one popula-

tion and suppressing it in the other.

Encoding of Behavioral Choice
We found a prominent difference between the firing rates during

go and nogo trials (Figure 5D). During a typical rule-encoding

unit’s preferred block, its firing rate remained elevated on nogo

trials for several seconds after the center-poke, during which

time the rat was often beginning the next trial. In contrast, on

go trials, the typical unit’s firing rate rapidly fell as the rat left

the center port and remained suppressed for several seconds,

during which time the rat was typically moving to the reward

port and consuming reward.

One interpretation of this result is that rule encoding is partic-

ularly important for producing the nogo response, consistent

with previous reports of enhanced encoding of nogo stimuli

(David et al., 2012; Fritz et al., 2003). Another interpretation is

that rule encoding persisted on nogo trials simply because

the animal was already preparing to begin the next trial,

whereas on go trials the rat was moving to the reward port to

consume water and thus no longer needed to represent the

stimulus selection rule.
firing rates of all rule-encoding neurons were normalized (mean, 0; variance, 1)

and then averaged together. The bold mean trace represents time points

duringwhich the population response significantly (p < 0.05, one-sample t test)

exceeds zero, the mean firing rate. In both brain regions, the firing rate in the

preferred block gradually increases, peaking around the time of stimulus

onset, and then decreases more quickly back to baseline. The PFC population

increases its response earlier (first significantly activated 2.7 s before stimulus

onset) than the A1 population (first significantly activated 0.88 s before

stimulus onset), consistent with the hypothesized role of PFC as the source of

top-down modulation.

(D) Population time course plotted separately for go and nogo trials, from rule-

encoding mPFC (left) and A1 (right) neurons during their preferred block.

The peri-event time histograms (PETHs) are locked to the poststimulus exit

from the center-port. As in (C), PETHs are mean ± SEM, and were normalized

to unit variance and 0 mean before averaging across neurons. On nogo trials

(gray), the firing rate remained elevated above baseline for at least several

seconds, during which time the rat typically had already initiated the next trial.

On go trials, the firing rate was suppressed below baseline as the rat moved

to the choice port and consumed a reward, which always required at least

several seconds. Latency distributions of trial events are plotted along the

lower edge: stimulus onset (black), reward delivery (green, go trials only), and

center-poke beginning the next trial (gray, nogo trials only). The next trial after

a go trial would not be visible on this timescale due to the time required to

consume the reward.
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Figure 6. Limited Evidence for Modulation of Stimulus Tuning

(A) An example A1 neuron exhibiting a preference for some acoustic stimuli

(LEFT+HIGH, LEFT+LOW) over others (RIGHT+HIGH, RIGHT+LOW), but no

change in this tuning with block (localization, blue; pitch discrimination, red).

Black triangles represent stimulus onset; shaded areas represent the response

window for this neuron.

(B) An example auditory-responsive mPFC neuron. Evoked responses were

weaker for mPFC neurons than for A1 neurons (Figures S5A–S5E).

(C) For A1 neurons (n = 43), increased anticipatory firing during one block

significantly correlated (p < 0.001) with increased evoked responses during the

same block. Each circle shows the change in evoked response (y-axis) versus

the change in hold period firing rate (x-axis) for each neuron, quantified as

mean pitch discrimination firing rate minus localization firing rate. The slope of

the trend line is close to 1, suggesting that most of the evoked modulation

across neurons is due to anticipatory modulation.

(D) Following the conventions of (C), but for auditory-responsive mPFC neu-

rons (n = 17). Again, the change in anticipatory activity across neurons

correlated closely with the change in evoked response (p < 0.001).
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Changes in Baseline Activity Correlate with Changes in
Evoked Activity
Given that the prestimulus activity encoded the selection rule, we

next assessed whether the stimulus-driven activity in A1 differed

between blocks. We first defined the evoked response window

of each neuron as the period after stimulus onset during which

the firing rate was significantly elevated above the prestimulus

rate (Figures S5A–S5E). The evoked response on each trial

was then defined as the number of spikes emitted during this

window. We analyzed the mPFC neurons in the same way and

found a population of neurons showing auditory responses to

our task stimuli that were low-latency and tightly locked to stim-

ulus onset, similar to A1 (Figures 6A and 6B). Auditory-respon-

sive neurons in mPFC were significantly rarer (mPFC, 31/121;

A1, 49/99; p < 0.001, Fisher’s exact test) than in A1, and their

responses were weaker (Figures S5C and S5D). Their median

response latency was also significantly longer, though only

slightly (19.75 ms versus 16.75 ms in A1; Figure S5E).

Our results show that prestimulus activity is modulated by se-

lection rule, often persistently, consistent with a model in which

rule-encoding neurons receive a higher level of tonic excitatory

input during one block, for example. We expected that this

task-specific modulation of baseline activity might correspond

to an increased response during the stimulus-evoked response

as well. In both A1 and mPFC, this was indeed the case: across

the population, an increase in prestimulus firing rate during one

block correlated with a comparable increase in evoked firing

rate during the same block (Figures 6C and 6D; example cell:

Figure 4B). However, after accounting for changes in prestimulus

activity, we found very little evidence of any block-specific

change in evoked firing rate (see Supplemental Experimental

Procedures), which suggests that evoked activity is not strongly

altered beyond an additive effect of baseline.

We also asked whether selection rule modulated stimulus tun-

ing, for instance, to enhance the representation of the target

sound. Such an effect might have been obscured in our analyses

thus far, which averaged over stimuli in order to detect a change

in overall response strength. To ascertain directly whether the

target sound was better represented in the neural activity, we

used an ideal linear decoder analysis (see Supplemental Exper-

imental Procedures; Figure 6E) to quantify howwell the stimulus-

evoked activity in both brain regions encoded the identity of the

noise burst or warble. As expected, the identity of each sound

may be decodedmore accurately from the activity of A1 neurons

than from mPFC neurons, likely due to their stronger responses
(E) No evidence for tuning changes that increase the decodability of the target

sound. The identity of the noise burst (LEFT or RIGHT) or the warble (LOW or

HIGH) could be decoded from the trial-by-trial responses of simultaneously

recorded ensembles of auditory-responsive cells in either A1 or PFC. It could

be decoded significantly more accurately (p < 0.001 for the main effect of brain

region) using A1 responses (n = 21 ensembles of 49 neurons total) than using

mPFC responses (n = 17 ensembles of 31 neurons total). However, for both

sounds and both brain regions, the decoding was not significantly more

accurate during either pitch discrimination (red) or localization (blue) trials

(p > 0.05 for each pair of bars using a paired t test). The chance decoding level,

attainable by a neuron with no information about the stimulus, was 0.5. Error

bars represent SEM over ensembles. We used a three-way ANOVA on brain

region, target sound, and block.
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Figure 7. Disruption of mPFC Robustly Impairs Performance

(A) Electrical disruption of mPFC significantly impaired task performance (i.e.,

fraction of correct trials) during localization trials (left) and pitch discrimination

trials (right) in most sessions. Each point represents the performance within a

single session on disruption (y-axis) versus control (x-axis) trials. + represents

sessions during which the performance was significantly impaired (p < 0.05,

Fisher’s exact test). Throughout this figure, colors represent different rats (red,

Z1; yellow, Z2; and green, Z3).

(B) Example session from each rat. Performance is shown for each trial type

(go and nogo in each block) on control (solid bars) and disruption (open bars)

trials. Error bars represent 95% confidence intervals using Pearson-Klopper

binomial fit. Asterisks indicate trial types for which electrical disruption

significantly impairs performance (Fisher’s exact test, p < 0.001 for all signif-

icant comparisons shown). The effect is robust within each example session,

but varies between rats.

(C) Pattern of impairment (i.e., the difference in performance between control

and disruption trials) across sessions for each rat. Error bars represent SEM

across sessions. Asterisks show trial types that were significantly impaired

(p < 0.05, binomial test on number of impaired sessions) for each rat. All rats

were significantly impaired on nogo trials during one block or the other. One rat

(Z2) also showed a significant impairment on localization go trials.

See also Figure S6.
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and tighter stimulus selectivity. However, for both brain regions

and for both noise bursts and warbles, we cannot decode the

sound any more accurately from the responses on localization
1164 Neuron 82, 1157–1170, June 4, 2014 ª2014 Elsevier Inc.
trials than on pitch discrimination trials. Moreover, we did not

observe any correlation between each neuron’s change in antic-

ipatory activity and its tuning for the stimuli (Figures S5F and

S5G) or any indication that some stimulus pairs (e.g., those

requiring different responses in each block) elicited a greater

response or a stronger modulation of that response (Figures

S5H and S5I).

Thus, whereas neurons showing an increased prestimulus

firing rate in one block generally showed a corresponding in-

crease in the stimulus-evoked rate during the same block, these

changes in evoked rate did not enhance the representation of the

target sound, at least in anyway that our decoding analysis could

detect. However, as we discuss further below, it may be that in

this task the brain does not need to maximize the information

available about the target sound via tuning changes. (After all,

even the small ensembles of neurons we recorded provided use-

ful information about the identity of both sounds; given access

to ensembles on the scale of auditory cortex, the brain should

be able to decode the stimuli with virtual certainty.) Rather, the

challenge of stimulus selection in a task such as ours may be

to flexibly re-route the relevant stimulus information to the

appropriate motor neurons at every block change.

Disruption of mPFC Significantly Impairs Task
Performance
mPFC has been shown to be required for many task switching

paradigms, which prompted us to ask whether it is required for

our task. To answer this question, we developed an electrical

disruption technique, inspired by transcranial magnetic stimula-

tion (TMS) in humans (Dayan et al., 2013). We first implanted

mPFC of three trained animals with extracellular stimulating

electrodes. On 20% of trials (‘‘disruption’’ trials), we injected a

10 Hz train of current pulses (see Experimental Procedures)

throughout both the hold period and the auditory stimulus.

Such electrical stimulation drives an extremely rapid activation

of nearby neurons (Histed et al., 2009), followed by a slower sup-

pression of firing rates (Butovas and Schwarz, 2003; Logothetis

et al., 2010) for a few hundredmilliseconds. Thus, the primary ef-

fect of this approach is neither to silence nor activate the brain

region, but rather to disrupt the normal firing rates and patterns.

Moreover, because we did not observe any spatial clustering

of neurons preferring one task or the other, it is unlikely that

such microstimulation would preferentially activate neurons of

either preference, even if the stimulation protocol were purely

excitatory.

Across all three animals, electrical disruption tended to

impair performance (Figure 7) in both localization and pitch

discrimination. This impairment was significant across sessions

(p < 0.05, binomial test on the number of impaired sessions)

during pitch discrimination for all (three of three) rats and during

localization for most (two of three) rats. Electrical disruption

largely, although not exclusively, affected performance on

nogo trials. All rats were impaired on pitch discrimination

nogo trials in almost all sessions. Some rats were additionally

impaired on go or localization nogo trials. These effects were

generally quite strong within individual sessions even though

they varied between rats (Figures 7B and 7C). Taken together,

these data suggest that in the absence of normal mPFC
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Figure 8. A Simulated NetworkModel Using

Anticipatory Modulation Can Perform Stim-

ulus Selection

(A) Network connectivity. Simulated A1 consists of

N neurons, each with random tuning for the four

task stimuli and subject to additive Gaussian

noise. Red and blue populations are activated in

one or the other block by an excitatory ‘‘task

signal’’ projection. Each population connects to a

set of premotor command neurons encoding the

possible responses in that block. The projection

weights W1 and W2 are optimized independently

during an initial supervised training phase and

constrained to be excitatory. The most active

command neuron determines the network’s

choice.

(B) Performance of the model for N = 320 neurons

on task 1 (left) and task 2 (right). We tested a range

of values for the sensory signal-to-noise ratio

(SNR), defined as the ratio of the tuning for sensory

stimuli to the strength of the additive Gaussian

noise in each A1 neuron. At the highest SNR of

0.25 (darkest trace), the model produces 100%

correct responses for virtually any positive task

switch signal. (Negative task signals correspond to

activating the incorrect population for the current

task.) At low SNRs, as the task signal increases

in strength, the sensory input is eventually

drowned out and the model’s performance falls

to chance (50%).

See also Figure S7.
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activity, each rat resorts to its default strategy (typically ‘‘always

go’’) in one or both blocks. Normal activity in mPFC is therefore

important for good performance in our paradigm, but the strong

impairment on nogo trials in particular made it difficult to ascer-

tain whether the primary effect was on stimulus selection, as

opposed to impulse control or some other aspect of the task

(Figure S6).

A Simulated Network Model Demonstrates How
Modulation of Anticipatory Activity Could Solve the
Stimulus Selection Problem
Our data suggest a simple model of how the brain might perform

stimulus selection: the PFC sends tonic excitation, perhaps indi-

rectly, to a specific population of neurons for each task (e.g.,

populations for localization and pitch discrimination), which in-

creases both their anticipatory and stimulus-evoked activity

but does not affect their tuning. These populations connect to

downstream motor regions that produce the appropriate

response for that block; however, only the population with the

increased firing rates can control behavior. We produced a

quantitative simulation of this model to show that it can indeed

solve the problem of stimulus selection. The simulation: (1) re-

quires only random stimulus tuning in A1, (2) does not require

tuning changes or synaptic reweighting after the initial training

phase, and (3) uses only excitatory connections, consistent

with the observation that most long-range projections in the

brain are excitatory (Logothetis et al., 2010).
The model (Figure 8; see Supplemental Experimental Proce-

dures for details) consists of a population of N neurons in A1,

randomly tuned for each of our four stimulus pairs and subject

to Gaussian noise. Half of the neurons are arbitrarily assigned

to each task. Each population projects to two command neurons

encoding the two possible behavioral responses during that

block (e.g., go left and nogo during localization); this projection

is trained to activate the correct command neuron for each stim-

ulus pair. The actual behavioral choice is determined by which

command neuron is the most active (‘‘winner-take-all’’).

After the training phase, the synaptic weights are fixed and the

model is tested on its ability to produce the correct response in

each block. To simulate the rule encoding we observed in our

data set, a ‘‘task signal’’ is added to the activations of the neu-

rons in the appropriate population for the current block. Because

all feed-forward weights are positive, adding this task signal

translates into an excitatory boost to the premotor neurons

receiving input from that population. Thus, even without any syn-

aptic reweighting, the model tends to choose the response

appropriate for the current block and stimulus. With 320 neu-

rons, the network performs above 80% correct even with a

signal-to-noise ratio (SNR) as low as 0.0625 (i.e., very weak sen-

sory responses in each neuron relative to its internal noise).

Increasing the network size can lower this SNR limit even further

(Figure S7). Thus, our model demonstrates that a network can

perform stimulus selection by task-specific activation of neu-

rons, even without task-specific adaptation of their tuning.
Neuron 82, 1157–1170, June 4, 2014 ª2014 Elsevier Inc. 1165
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DISCUSSION

Auditory Stimulus Selection: Task Switching between
Conflicting Auditory Discriminations
When human listeners hear two simultaneous voices, they can

selectively attend and respond to either one. This is a complex

ability, and the rodent task we have developed models part of

it—selecting and responding to one of two simultaneous sounds.

Our subjects can voluntarily switch which sound they select, and

do so at each block change within a single recording session.

Although previous studies of task switching in rodents did

not require stimulus selection, they did require subjects to

switch the navigational strategy they use to solve a maze

(Rich and Shapiro, 2009) or between a sensory discrimination

and a fixed response (e.g., ‘‘follow the light’’ versus ‘‘always

go left’’; Floresco et al., 2008; Durstewitz et al., 2010). It has

been challenging to extend these results to task switching

between distinct sensory discriminations, perhaps because

this requires ignoring a previously trained stimulus. Even in

cross-modal tasks, in which the targets and distractors come

from entirely different modalities, strong cueing mechanisms

(violating our ‘‘same stimulus; different response’’ condition)

have been used to induce the switch: introducing novel stimuli

(Birrell and Brown, 2000), deleting distractors (Otazu et al.,

2009), or changing the behavioral arena completely (Haddon

and Killcross, 2007). Finally, most previous studies required

rats to shift no more than once per session, sometimes just

once per lifetime, whereas our study requires multiple switches

per session.

Despite its clinical and computational relevance (Ding and

Simon, 2012), the auditory cocktail party problem remains less

studied than comparable visual tasks. One multi-unit study (La-

katos et al., 2013) required primates to select a target stream of

tones; however, the subjects were unable to ignore any distrac-

tor stream within one octave of the target. Human voices typi-

cally overlap extensively in acoustic frequency (McDermott,

2009), which contributes to the difficulty of the cocktail party

problem, and we thus designed our stimuli to overlap in fre-

quency. In sum, we believe our task represents an important first

step toward understanding the cocktail party problem in rats,

paving the way toward future studies with the modern tools

available in rodent models (e.g., viral vectors for manipulating

genetically identified cell types).

Anticipatory Activity in both mPFC and A1 Encodes the
Selection Rule
We found that rodent mPFC robustly encodes the selection rule,

analogous to the rule-encoding role of the primate prefrontal

cortex (Asaad et al., 2000; Wallis et al., 2001; Johnston et al.,

2007). Rule encoding develops in the mPFC population over

2.5 s before the stimulus onset, as the rat is planning to initiate

a trial or even finishing the previous trial. Thus, we find that the

prefrontal cortex densely and persistently codes for cognitive

variables (cf. Rigotti et al., 2013), in contrast to the sparse coding

of stimuli typical of sensory cortex (Hromádka et al., 2008;

Olshausen and Field, 1996). This dense and widespread coding

of selection rule in our data are perhaps surprising because only

one bit of information needs to be encoded—pitch discrimina-
1166 Neuron 82, 1157–1170, June 4, 2014 ª2014 Elsevier Inc.
tion or localization—and this information is only necessary while

making a decision on each trial. This persistent activity may

represent a memory trace of the selection rule (Funahashi

et al., 1989) or it may represent a shift to a completely different

network state (Karlsson et al., 2012) depending on which stim-

ulus the rat plans to select.

We also observed rule encoding in A1, a surprising result

because this has traditionally been considered the domain of

prefrontal areas. However, attention is known to induce anticipa-

tory activity in sensory areas (Luck et al., 1997; Reynolds et al.,

2000; Chen and Seidemann, 2012; Kastner et al., 1999; Thut

et al., 2006). More generally, single neuron activity in primary

sensory cortex can predict a motor response (Niwa et al.,

2012) or an expected reward (Shuler and Bear, 2006), and antic-

ipation of a visual stimulus can trigger a hemodynamic response

in V1, although without a corresponding change in spiking (Siro-

tin and Das, 2009). Therefore, perhaps it is not surprising that

primary sensory cortex could also encode selection rule. In this

way, both the stimulus and the information about how that stim-

ulus should be interpreted are encoded in the same neurons,

providing a potential locus for the behavioral decision to be

made.

Finally, we observed a surprising amount of similarity between

A1 and mPFC, both of which showed robust encoding of the

selection rule and of behavioral choice (Figure 5D). In monkeys,

attention effects become more prominent higher in the visual

hierarchy (Reynolds and Heeger, 2009). In contrast, our results

show that rat A1 already encodes a nonsensory variable. This

could be a difference between rats and monkeys, or between

auditory and visual cortex, or both.

Comparison with Studies of Selective Attention
and Task-Relevant Plasticity
In this study, we found limited evidence for any modulation of

sensory-evoked responses in A1 beyond an additive effect of

increased baseline. In particular, the neurons did not appear to

change their tuning to encode the target stimulus with greater

fidelity. This is consistent with some, but not all, previous studies

of auditory task switching. For instance, switching between

temporal and spatial auditory discriminations does not signifi-

cantly change spatial tuning in A1 at the population level (Lee

and Middlebrooks, 2011), although switching between passive

and engaged states robustly modulates neuronal sensitivity

(Otazu et al., 2009; Lee and Middlebrooks, 2011).

However, a series of pioneering experiments did demonstrate

task-relevant tuning changes in A1 of ferrets trained to detect

a target frequency (Fritz et al., 2003, 2010). One important

methodological difference is that their study, unlike ours,

made use of a large battery of probe stimuli and was therefore

better optimized to detect receptive field changes. This plas-

ticity was nuanced: it could induce both facilitation and, intrigu-

ingly, suppression at the task-relevant frequency; whether

facilitation or suppression was more prevalent depended on

whether positive or negative reinforcement was used (David

et al., 2012). Further studies of complex auditory behaviors

will be necessary to better understand the factors that deter-

mine whether a given behavioral paradigm produces tuning

changes in auditory cortex.
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Visual selective attention has been shown to enhance target

representations and suppress distractors in V4 and other visual

areas (Cohen and Maunsell, 2011; David et al., 2008; Mitchell

et al., 2007; Reynolds and Heeger, 2009). However, selective

attention consists of two component processes with separate

behavioral measures: stimulus selection and perceptual

enhancement (cf. Knudsen, 2007; Reynolds and Chelazzi,

2004; Pestilli et al., 2011). Perceptual enhancement is typically

measured using faint stimuli to probe psychophysical thresholds

(Cohen and Maunsell, 2009). In contrast, studies such as ours

that use easily detectable stimuli far above threshold (Hocher-

man et al., 1976; Stoet and Snyder, 2004) often report limited

evidence for enhanced representations of target stimuli in sen-

sory cortex (Sasaki and Uka, 2009; Mante et al., 2013; Pestilli

et al., 2011). In such tasks, the dominant challenge is not detect-

ing the stimuli, but rather selecting the relevant target, whichmay

rely on changes of baseline (Pestilli et al., 2011) perhaps due to

anticipatory modulation (Chen and Seidemann, 2012). Similarly,

the cocktail party problem is often difficult because all voices are

of competing intensity, not because the target voice is barely

audible. Thus, the nature of the task may determine whether

stimulus representations are modulated or remain relatively

fixed.

Some models of visual selection (Gilbert and Shallice, 2002;

Mante et al., 2013) propose that stimulus selection occurs in

frontal areas, not sensory cortex. Our data are similar in the

sense that we do not observe tuning changes in sensory cortex

(Mante et al., 2013) but different in that we do not observe strong

representations of the stimuli in PFC, similar to a recent obser-

vation in primate PFC (Lara and Wallis, 2014). Our results are

more consistent with a distributed processing model in which

contextual information from PFC modulates activity in A1 to

increase the fidelity with which the appropriate motor action

can be read out (Fritz et al., 2010; David et al., 2012; Blake

et al., 2002).

The Potential Roles of Motor Planning and Posture
We considered the potential roles of both posture—the angle of

the rat’s head relative to the behavior box in particular—and

motor planning in driving the observed task-specific modulation

of neuronal activity. Because each block is associated with a

different choice port, it is plausible that the rats adopted a

different default motor plan for the two blocks: go left for one

task and go right for the other. Moreover, we observed a differ-

ence in head angle between blocks, presumably a behavioral

strategy that rats used to prepare for the differing motor actions

required. We note a similarity with some blocked visual spatial

attention tasks, in which 80% of the trials require a saccade in

the same direction (Cohen andMaunsell, 2009). In all such tasks,

it can be difficult to disambiguate response selection and stim-

ulus selection (Erlich et al., 2011; Sato and Schall, 2003; Stein-

metz and Moore, 2012).

We found that some rule-encoding neurons, especially in

mPFC, also encoded head angle to some extent (Figures S2K

and S3K). This is consistent with previous mPFC data (Euston

and McNaughton, 2006) and the idea that single prefrontal

neurons simultaneously encode disparate sensorimotor and

cognitive signals (Rigotti et al., 2013). However, we found that
the firing rate of most neurons was better explained by block

than by head angle and that rule encoding persisted even

when we controlled for head angle by trial selection (Figures

S2I–S2T, S3I–S3Q). These results suggest that cognitive context

(i.e., task rule) drives both the observed neuronal activity and

the adaptive posture, rather than posture directly driving the

neuronal activity.

Even if the rule-encoding activity we observed does not sim-

ply reflect postural differences, it is possible that it represents

an internal motor plan (which could be covertly present even

in the absence of a measurable behavioral parameter like

head angle). It is difficult to disambiguate motor planning from

rule encoding because the task itself requires different sensori-

motor mappings in each block. However, the time course of the

rule encoding was quite protracted in many neurons, in some

cases even persistent throughout the block (Figure 5), during

which time the rat was engaged in various motor actions such

as moving to or from the center port and harvesting reward

(see example neurons in Figures S2P and S3P). It seems un-

likely that neurons would continue to represent the specific

action of moving from the center port to the choice port on

such a long timescale. In addition, in our paradigm any default

motor plan is subject to cancellation on nogo trials (sometimes

called ‘‘countermanding,’’ cf. Schall et al., 2000; Eagle and Rob-

bins, 2003; Eagle et al., 2008), because the animal does not

know during the anticipatory period whether it will be signaled

to perform a go response or not. Finally, we did not observe

any correlation between the anticipatory firing rate and the

reaction or movement time (Figures S2G, S2H, S3G, and

S3H). To summarize, our task requires remapping sensory

stimuli to motor responses, and it is reasonable to expect rule

encoding to incorporate both the sensory and motor planning

aspects of this remapping. Anticipatory modulation may encode

both the selection rule and, therefore, the motor plan required to

implement that rule.

Stimulus Selection via Activation of Latent Circuits
for Each Target
In light of our results, we propose a model for stimulus selec-

tion based on activation of separate, task-specific circuits. In

this model, there are two neuronal populations in both A1

and mPFC—one activated during the localization block, the

other during the pitch discrimination block. These populations

show increased prestimulus and stimulus-evoked activity dur-

ing their preferred block but do not change their tuning for

specific stimuli. We hypothesize that the difference between

these populations is their downstream connectivity: each may

project to separate targets in a downstream effector region

such as the striatum (Znamenskiy and Zador, 2013), forming

distinct circuits for each task. In this model, only one circuit

is activated at a time, via feed-forward excitation perhaps

originating in mPFC, and only this circuit has sufficient baseline

activity to drive behavior. In some ways, this model is more

parsimonious than the traditional tuning change model, which

requires that prefrontal (or other) brain regions be able to

modulate the tuning of many A1 neurons as quickly as the

subject shifts the focus of attention. Although attention does

produce tuning changes (David et al., 2008; Fritz et al., 2003)
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over minutes (which is typically the fastest that they can be

estimated), it is unclear how known synaptic plasticity mecha-

nisms could mediate task-specific tuning changes on a sub-

second timescale.

Our model makes several testable predictions. First, there

should exist ‘‘premotor’’ neurons (possibly in the striatum)

receiving input from A1 that also show a block-dependent antic-

ipatory modulation. In addition, specific activation of one of the

subpopulations in mPFC, A1, or striatum should bias behavior

toward the block preferred by that subpopulation. Such amanip-

ulation would require targeting specific neurons based on their

anticipatory firing rate, a challenging experiment that might

nonetheless be feasible using activity-dependent promoters to

drive light-gated ion channels, for example.

In conclusion, these results establish the rat as amodel organ-

ism for auditory stimulus selection, paving the way for future

investigations of the cocktail party problem with emerging opti-

cal and genetic tools amenable to rodents. We found wide-

spread and robust rule encoding in mPFC and A1, although

we observed little change in the stimulus tuning of evoked re-

sponses. We propose a simple model to explain these results:

task-specific activation of latent circuits, rather than task-spe-

cific adaptation of a single circuit.

EXPERIMENTAL PROCEDURES

All procedures were approved by the Animal Care and Use Committee at

the University of California, Berkeley. We used male Long-Evans rats

(Harlan), housed in pairs. Training began when their body mass reached

150–225 g, at approximately 45–60 days old. Rats were given restricted

access to water in the day before the training session so that they would

be motivated to obtain a water reward. After each session, they were given

ad lib access to water for 1 hour. We monitored body weight and other

markers to ensure they remained healthy. We used standard behavioral

shaping and surgical implantation techniques (see Supplemental Experi-

mental Procedures).

Electrical Disruption Protocol

We began with a very low current, �10 uA per electrode, which was typically

too low to produce any behavioral effect. We wanted to use a minimal pertur-

bation to ensure that the effects were as localized as possible in both time

and space, and so we used pilot sessions to increase the amount of current

until performance on the task became moderately impaired. During the

testing sessions that we report in the main text, the mean currents used

were 37 uA, 41 uA, and 23 uA per electrode for Z1, Z2, and Z3 respectively.

See Supplemental Experimental Procedures for further details and compari-

sons with other studies.

Data Analysis

We preprocessed the data using the open-source OpenElectrophy software

suite (Garcia and Fourcaud-Trocmé, 2009) built on the Neo object model

(Garcia et al., 2014). We used KlustaKwik (Kadir et al., 2013) and Klusters

(Hazan et al., 2006), while blind to the experimental variables, to identify single

units.

We analyzed the data with Pythonwithin the IPython environment (Pérez and

Granger, 2007) and the modules numpy, scipy, matplotlib, scikits-learn, stats-

models, and pandas. We also conducted some statistical analyses in R using

the rpy2 module. Except where otherwise noted in the text, we observed

consistent results across all subjects and therefore pooled the data (Figures

S2D, S2E, S3D, and S3E). All of the data and code necessary to recapitulate

the analyses presented here are available online at https://github.com/

cxrodgers/Rodgers2014 and at the data-sharing website CRCNS.org through

link http://dx.doi.org/10.6080/K0W66HPJ.
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