Hamiltonian Monte Carlo Without Detailed Balance

Jascha Sohl-Dickstein
Stanford University, Palo Alto. Khan Academy, Mountain View

Mayur Mudigonda
Redwood Institute for Theoretical Neuroscience, University of California at Berkeley

Michael R. DeWeese
Redwood Institute for Theoretical Neuroscience, University of California at Berkeley

Abstract

We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached that can be accepted. This is achieved using Markov chain transitions that satisfy the fixed point equation, but do not satisfy detailed balance. The resulting algorithm significantly suppresses the random walk behavior and wasted function evaluations that are typically the consequence of update rejection. We demonstrate at least a factor of two improvement in mixing time on two test problems.

1. Introduction

High dimensional and otherwise computationally expensive probabilistic models are of increasing importance for such diverse tasks as modeling the folding of proteins (Schütte & Fischer, 1999), the structure of natural images (Culpepper et al., 2011), or the activity of networks of neurons (Cadieu & Koepsell, 2010).

Sampling from the described distribution is typically the bottleneck when working with these probabilistic models. Sampling is commonly required when training a probabilistic model, when evaluating the model’s performance, when performing inference, and when taking expectations (MacKay, 2003). Therefore, work that improves sampling is fundamentally important.

The most common way to guarantee that a sampling algorithm converges to the correct distribution is via a concept known as detailed balance. Sampling algorithms based on detailed balance are extremely powerful because they allow samples from any target distribution to be generated from almost any proposal distribution, using for instance Metropolis-Hastings acceptance criteria (Hastings, 1970). However, detailed balance also suffers from a critical flaw. Precisely because the forward and reverse transitions occur with equal probability, detailed balance driven samplers go backwards exactly as often as they go forwards. The state space is thus explored via a random walk over distances longer than those traversed by a single draw from the proposal distribution. A random walk only travels a distance $LN^{1/2}$ in N steps, where L is the characteristic step length.

The current state-of-the-art sampling algorithm for probability distributions with continuous state spaces is Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 2010). By extending the state space to include auxiliary momentum variables, and then using Hamiltonian dynamics to traverse long iso-probability contours in this extended state space, HMC is able to move long distances in state space in a single update step. However, HMC still relies on detailed balance to accept or reject steps, and as a result still behaves like a random walk – just a random walk with a longer step length. Previous attempts to address this have combined multiple Markov steps that individually satisfy detailed balance into a composite step that does not (Horowitz, 1991), with limited success (Kennedy & Pendleton, 1991).

Here we present a novel representation of the HMC state space and transitions. Using this representation, we derive a method for performing HMC while abandoning detailed balance altogether, by directly satisfying the fixed point equation. As a result, random walk behavior in the sampling algorithm is greatly reduced, and the mixing rate of the sampler is greatly improved.
2. Sampling

We begin by briefly reviewing some key concepts related to sampling. The goal of a sampling algorithm is to draw characteristic samples \(x \in \mathcal{R}^N \) from a target probability distribution \(p(x) \). Without loss of generality, we will assume that \(p(x) \) is determined by an energy function \(E(x) \),

\[
p(x) = \frac{1}{Z} \exp(-E(x)). \tag{1}
\]

2.1. Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) (Neal, 1993) is commonly used to sample from probabilistic models. In MCMC a chain of samples is generated by repeatedly drawing new samples \(x' \) from a conditional probability distribution \(T(x'|x) \), where \(x \) is the previous sample. Since \(T(x'|x) \) is a probability density over \(x' \), \(\int T(x'|x) \, dx' = 1 \) and \(T(x'|x) \geq 0 \).

2.2. Fixed Point Equation

An MCMC algorithm must satisfy two conditions in order to generate samples from the target distribution \(p(x) \). The first is mixing, which requires that repeated application of \(T(x'|x) \) must eventually explore the full state space of \(p(x) \). The second condition is that the target distribution \(p(x) \) must be a fixed point of \(T(x'|x) \). This second condition can be expressed by the fixed point equation,

\[
\int p(x) \, T(x'|x) \, dx = p(x'), \tag{2}
\]

which requires that when \(T(x'|x) \) acts on \(p(x) \), the resulting distribution is unchanged.

2.3. Detailed Balance

Detailed balance is the most common way of guaranteeing that the Markov transition distribution \(T(x'|x) \) satisfies the fixed point equation (Equation 2). Detailed balance guarantees that if samples are drawn from the equilibrium distribution \(p(x) \), then for every pair of states \(x \) and \(x' \) the probability of transitioning from state \(x \) to state \(x' \) is identical to that of transitioning from state \(x' \) to \(x \),

\[
p(x) \, T(x'|x) = p(x') \, T(x|x'). \tag{3}
\]

By substitution for \(T(x'|x) \) in Equation 2, it can be seen that if Equation 3 is satisfied, then the fixed point equation is also satisfied.

An appealing aspect of detailed balance is that a transition distribution satisfying it can be easily constructed from nearly any proposal distribution, using Metropolis-Hastings acceptance/rejection rules (Hastings, 1970). A primary drawback of detailed balance, and of Metropolis-Hastings, is that the resulting Markov chains always engage in random walk behavior, since by definition detailed balance depends on forward and reverse transitions happening with equal probability.

The primary advance in this paper is demonstrating how HMC sampling can be performed without resorting to detailed balance.

3. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) (Neal, 2010) can traverse long distances in state space with single Markov transitions. It does this by extending the state space to include auxiliary momentum variables, and then simulating Hamiltonian dynamics to move long distances along iso-probability contours in the expanded state space.

3.1. Extended state space

The state space is extended by the addition of momentum variables \(v \in \mathcal{R}^N \), with identity-covariance Gaussian distribution,

\[
p(v) = (2\pi)^{-N} \exp\left(-\frac{1}{2}v^Tv\right). \tag{4}
\]

We refer to the combined state space of \(x \) and \(v \) as \(\zeta \), such that \(\zeta = \{x, v\} \). The corresponding joint distribution is

\[
p(\zeta) = p(x, v) = p(x) \, p(v) = \frac{(2\pi)^{-N}}{Z} \exp\left(-H(\zeta)\right), \tag{5}
\]

\[
H(\zeta) = H(x, v) = E(x) + \frac{1}{2}v^Tv. \tag{6}
\]

\(H(\zeta) \) has the same form as total energy in a physical system, where \(E(x) \) is the potential energy for position \(x \) and \(\frac{1}{2}v^Tv \) is the kinetic energy for momentum \(v \) (mass is set to one).

In HMC samples from \(p(x) \) are generated by drawing samples from the joint distribution \(p(x, v) \), and retaining only the \(x \) variables.

3.2. Hamiltonian dynamics

Hamiltonian dynamics govern how physical systems evolve with time. It might be useful to imagine the trajectory of a skateboarder rolling in an empty swimming pool. As she rolls downwards she exchanges potential energy for kinetic energy, and the magnitude of her velocity increases. As she rolls up again she exchanges kinetic energy back for potential energy. In this fashion she is able to traverse long distances across the swimming pool, while at the same time maintaining constant total energy over her entire trajectory.
Hamiltonian Monte Carlo Without Detailed Balance

3.3. Operators

The Markov transitions from which HMC is constructed can be understood in terms of several operators acting on \(\zeta \). These operators are illustrated in Figure 1a. This representation of the actions performed in HMC, and the corresponding state space, is unique to this paper and diverges from the typical presentation of HMC.

![Figure 1.](image)

(a) The action of operators involved in Hamiltonian Monte Carlo (HMC). The base of each red or green arrow represents the position \(x \), and the length and direction of each of these arrows represents the momentum \(v \). The flip operator \(F \) reverses the momentum. The leapfrog operator \(L \) approximately integrates Hamiltonian dynamics. The trajectory taken by \(L \) is indicated by the dotted line. The randomization operator \(R(\beta) \) corrupts the momentum with an amount of noise that depends on \(\beta \).

(b) The ladder of discrete states that are accessible by applying \(F \) and \(L \) starting at state \(\zeta \). Horizontal movement on the ladder occurs by flipping the momentum, whereas vertical movement occurs by integrating Hamiltonian dynamics.

In HMC, we treat \(H(\zeta) \) as the total energy of a physical system, with spatial coordinate \(x \), velocity \(v \), potential energy \(E(x) \), and kinetic energy \(\frac{1}{2}v^Tv \). In an identical fashion to the case of the skateboarder in the swimming pool, running Hamiltonian dynamics on this system traverses long distances in \(x \) while maintaining constant total energy \(H(\zeta) \). By Equation 5, moving along a trajectory with constant energy is identical to moving along a trajectory with constant probability.

Hamiltonian dynamics can be run exactly in reverse by reversing the velocity vector. They also preserve volume in \(\zeta \). As we will see, all these properties together mean that Hamiltonian dynamics can be used to propose update steps that move long distances in state space while retaining high acceptance probability.

3.3.1. Momentum Flip

The momentum flip operator \(F \) reverses the direction of the momentum. It is its own inverse, leaves the total energy unchanged, and preserves volume in state space:

\[
F\zeta = F\{x,v\} = \{x,-v\},
\]

\[
F^{-1}\zeta = F\zeta, \tag{7}
\]

\[
H(F\zeta) = H(\zeta), \tag{8}
\]

\[
\left| \det \left(\frac{\partial F\zeta}{\partial \zeta^T} \right) \right| = 1. \tag{9}
\]

The momentum flip operator \(F \) causes movement between the left and right sides of the state ladder in Figure 1b.

3.3.2. Leapfrog Integrator

Leapfrog, or Störmer-Verlet, integration provides a discrete time approximation to Hamiltonian dynamics (Hairer et al., 2003). The operator \(L(\epsilon,M) \) performs leapfrog integration for \(M \) leapfrog steps with step length \(\epsilon \). For conciseness, \(L(\epsilon,M) \) will be written only as \(L \).

\[
L\zeta = \text{The state resulting from } M \text{ steps of leapfrog integration of Hamiltonian dynamics with step length } \epsilon. \tag{10}
\]

Like exact Hamiltonian dynamics, leapfrog dynamics are exactly reversible by reversing the velocity vector, and they also exactly preserve volume in state space. \(L \) can be inverted by reversing the sign of the momentum, tracing out the reverse trajectory, and then reversing the sign of the momentum again so that it points in the original direction;

\[
L^{-1}\zeta = FLF\zeta, \tag{11}
\]

\[
\left| \det \left(\frac{\partial L\zeta}{\partial \zeta^T} \right) \right| = 1. \tag{12}
\]

Unlike for exact dynamics, the total energy \(H(\zeta) \) is only approximately conserved by leapfrog integration, and the energy accumulates errors due to discretization. This discretization error in the energy is the source of all rejections of proposed updates in HMC.

The leapfrog operator \(L \) causes movement up the right right side of the state ladder in Figure 1b, and down the left side of the ladder.

3.3.3. Momentum Randomization

The momentum randomization operator \(R(\beta) \) mixes an amount of Gaussian noise determined by \(\beta \in [0,1] \) into the velocity vector,

\[
R(\beta)\zeta = R(\beta)\{x,v\} = \{x,v'\}, \tag{13}
\]

\[
v' = v\sqrt{1-\beta} + n\sqrt{\beta}, \tag{14}
\]

\[
n \sim N(0,I). \tag{15}
\]
Unlike the previous three operators, the momentum randomization operator is not deterministic. \(R(\beta) \) is however a valid Markov transition operator for \(p(\zeta) \) on its own, in that it satisfies both Equation 2 and Equation 3.

The momentum randomization operator \(R(\beta) \) causes movement off of the current state ladder and on to a new state ladder.

3.4. Discrete State Space

As illustrated in Figure 1b, the operators \(L \) and \(F \) generate a discrete state space ladder, with transitions only occurring between \(\zeta \) and three other states. Standard HMC can be viewed in terms of transitions on this ladder. Additionally, we will see that this discrete state space view allows Equation 2 to be solved directly by replacing the integral over all states with a short sum. We believe we are the first to present HMC in terms of operators acting on the illustrated discrete state “ladder” group.

3.5. Standard HMC

HMC as typically implemented consists of the following steps. Here, \(\zeta^{(t,s)} \) represents the state at sampling step \(t \), and sampling substep \(s \). Each numbered item below corresponds to a valid Markov transition for \(p(\zeta) \), satisfying detailed balance. A full sampling step consists of the composition of all three Markov transitions.

1. (a) Generate a proposed update,

\[
\zeta' = FL\zeta^{(t,0)}.
\]

(17)

On the state ladder in Figure 1b, this corresponds to moving up one rung (\(L \)), and then moving from the right to the left side (\(F \)).

(b) Accept or reject the proposed update using Metropolis-Hastings rules,

\[
\pi_{\text{accept}} = \min \left(1, \frac{p(\zeta')}{p(\zeta)} \right),
\]

(18)

\[
\zeta^{(t,1)} = \begin{cases}
\zeta' & \text{with probability } \pi_{\text{accept}} \\
\zeta^{(t,0)} & \text{with probability } 1 - \pi_{\text{accept}}
\end{cases}
\]

(19)

Note that since the transition \(FL \) is its own inverse, the forward and reverse proposal distributions cancel in the Metropolis-Hastings rule in Equation 18.

On rejection, the computations performed in Equation 17 are discarded. In our new technique, this will no longer be true.

2. Flip the momentum,

\[
\zeta^{(t,2)} = F\zeta^{(t,1)}.
\]

(20)

If the proposed update from Step 1 was accepted, then this moves \(\zeta^{(t,1)} \) from the left back to the right side of the state ladder in Figure 1b, and prevents the trajectory from doubling back on itself. If the update was rejected however, and \(\zeta^{(t,1)} \) is already on the right side of the ladder, then this causes it to move to the left side of the ladder, and the trajectory to double back on itself.

Doubling back on an already computed trajectory is wasteful in HMC, both because it involves recomputing nearly redundant trajectories, and because the distance traveled before the sampler doubles back is the characteristic length scale beyond which HMC explores the state space by diffusion.

3. Corrupt the momentum with noise,

\[
\zeta^{(t+1,0)} = R(\beta)\zeta^{(t,2)}.
\]

(21)

It is common to set \(\beta = 1 \), in which case the momentum is fully randomized every sampling step. In our experiments (Section 5) however, we found that smaller values of \(\beta \) produced large improvements in mixing time. This is therefore a hyperparameter that is probably worth adjusting.\(^1\)

4. Look Ahead HMC

Here we introduce an HMC algorithm that relies on Markov transitions that do not obey detailed balance, but still satisfy the fixed point equation. This algorithm eliminates much of the momentum flipping that occurs on rejection in HMC, and as a result greatly reduces random walk behavior. It also prevents the trajectory computations that would typically be discarded on proposal rejection from being wasted. We call our algorithm Look Ahead Hamiltonian Monte Carlo (LAHMC).

4.1. Intuition

In LAHMC, in situations that would correspond to a rejection in Step 1 of Section 3.5, we will instead attempt to travel even farther by applying the leapfrog operator \(L \) additional times. This section provides intuition for how this update rule was discovered, and how it can be seen to connect to standard HMC. A more mathematically precise description will follow in the next several sections.

\(^1\)One method for choosing \(\beta \) (Culpepper et al., 2011) which we have found to be effective is to set \(\beta \) such that it randomizes a fixed fraction \(\alpha \) of the momentum per unit simulation time,

\[
\beta = \alpha \frac{\epsilon_M}{\tau}.
\]

(22)
LAHMC can be understood in terms of a series of modifications of standard HMC. The net effect of Steps 1 and 2 in Section 3.5 is to transition from state ζ_t into either state $L^a\zeta_t$ or state $F\zeta_t$, depending on whether the update in Section 3.5 Step 1 was accepted or rejected.

We wish to minimize the transitions into state $F\zeta$. In LAHMC we do this by replacing as many transitions from ζ to $F\zeta$ as possible with transitions that instead go from ζ to $L^a\zeta$. This would seem to change the number of transitions into both state $F\zeta$ and state $L^a\zeta$, violating the fixed point equation. However, the changes in incoming transitions from ζ are exactly counteracted because the state $FL^a\zeta$ is similarly modified, so that it makes fewer transitions into the state $L^a\zeta = F(FL^a\zeta)$, and more transitions into the state $F\zeta = L^a(FL^a\zeta)$.

For some states, after this modification there will still be transitions between the states ζ and $F\zeta$. In order to further minimize these transitions, the process in the preceding paragraph is repeated for these remaining transitions and the state $L^3\zeta$. This process is then repeated again for states $L^2\zeta$, $L^5\zeta$, etc, up to some maximum number of leapfrog applications K.

4.2. Algorithm

LAHMC consists of the following two steps,

1. Transition to a new state by applying the leapfrog operator L between 1 and $K \in \mathbb{Z}^+$ times, or by applying the momentum flip operator F,

\[
\zeta_{t+1} = \begin{cases}
L^a\zeta_t & \text{with probability } \pi_{L^a} (\zeta_t) \\
L^2\zeta_t & \text{with probability } \pi_{L^2} (\zeta_t) \\
\ldots & \text{with probability } \pi_{L^K} (\zeta_t) \\
F\zeta_t & \text{with probability } \pi_F (\zeta_t)
\end{cases}
\]

2. Corrupt the momentum with noise.

\[
\zeta_{t+1,0} = R (\beta) \zeta_{t+1}.
\]

4.3. Transition Probabilities

We choose the probabilities $\pi_{L^a} (\zeta)$ for the leapfrog transitions from state ζ to state $L^a\zeta$ to be

\[
\pi_{L^a} (\zeta) = \min \left[1 - \sum_{b \neq a} \pi_{L^b} (\zeta), \right]
\]

\[
p \left(FL^a\zeta \right) \left(1 - \sum_{b \neq a} \pi_{L^b} (FL^a\zeta) \right).
\]

Equation 25 greedily sets the transition probability $\pi_{L^a} (\zeta)$ as large as possible, subject to the restrictions that the total

![Figure 2. Autocovariance vs. number of function evaluations for standard HMC (no momentum randomization, $\beta = 1$), LAHMC with $\beta = 1$, persistent HMC ($\beta = 0.1$), and persistent LAHMC ($\beta = 0.1$) for (a) a two dimensional, and (b) a one hundred dimensional ill-conditioned Gaussian distribution. In both Gaussians, the eigenvalues of the covariance matrix are log-linearly distributed between 1 and 10^6. In all cases the LAHMC sampler demonstrates faster mixing.](image)
transition probability out of state ζ not exceed 1, and that
the transition rate in the forward direction ($\zeta \to L^a \zeta$) not
exceed the transition rate in the reverse direction ($FL^a \zeta \to
F \zeta$). Some algebra shows that under these transition prob-
abilities

$$p(\zeta) \pi_{L^a} (\zeta) = p(FL^a \zeta) \pi_{L^a} (FL^a \zeta). \quad (26)$$

Any remaining unassigned probability is assigned to the
momentum flip transition,

$$\pi_F (\zeta) = 1 - \sum_a \pi_{L^a} (\zeta). \quad (27)$$

Note that transitions will be performed in a greedy fashion. It is only
necessary to compute the state $L^a \zeta$ and the transition
probability $\pi_{L^a} (\zeta)$ if none of the transitions to states
$L^b \zeta$, for $b < a$, have been taken.

4.4. Fixed Point Equation

We can substitute the transition rates from Section 4.3 into
Equation 2, and verify that they satisfy the fixed point equa-
tion. Note that the integral over all states is transformed
into a sum over all source states from which transitions into
state ζ might be initiated. Equation 2 becomes

$$p(\zeta) = \int d\zeta' p(\zeta') T(\zeta|\zeta'), \quad (28)$$

$$= \int d\zeta' p(\zeta') \left(\sum_a \pi_{L^a} (\zeta') \delta (\zeta - L^a \zeta') + \pi_F (\zeta') \delta (\zeta - F \zeta') \right), \quad (29)$$

$$= \sum_a p(L^{-a} \zeta) \pi_{L^a} (L^{-a} \zeta) + p(F^{-1} \zeta) \pi_F (F^{-1} \zeta), \quad (30)$$

$$= \sum_a p(F \zeta) \pi_{L^a} (F \zeta) + p(F \zeta) \pi_F (F \zeta), \quad (31)$$

$$= p(F \zeta) \left[\sum_a \pi_{L^a} (F \zeta) + \pi_F (F \zeta) \right], \quad (32)$$

$$= p(\zeta). \quad (33)$$

5. Experimental Results

As illustrated in Figure 2, we compare the mixing time for
our technique and standard HMC on two ill conditioned
Gaussian distributions. The samplers used all had step
length and number of leapfrog steps set to $\epsilon = 1$, and
$M = 10$. Values of β were set to 1 or 0.1 as stated in the legend. For LAHMC the maximum number of leapfrog
applications was set to $K = 4$. In all cases, LAHMC out-
performed standard HMC by a factor of 2 or more for the
same setting of hyperparameters.

The fraction of the sampling steps resulting in each possible
update for the samplers and energy functions in Figure 2 is
illustrated in Table 1. The majority of momentum flips in
standard HMC were eliminated by LAHMC.

Figure 3 shows several grid searches over hyperparameters,
and demonstrates that our technique outperforms standard
HMC for all explored hyperparameter settings.

We additionally verified that our implementation of the
LAHMC algorithm generated samples with the correct co-
variance for the target distributions.

The code used to generate Figure 2 is included in the Sup-
plemental Material. A (better commented) version of it will
be released with the final paper.

6. Future Directions

It should be possible to further reduce random walk behav-
ior by exploring new topologies and allowed state transi-
tions. For instance, it is also possible to construct a state
space with two sets of auxiliary momentum variables, and choose transition probabilities for this state space so as to satisfy the fixed point equation but not detailed balance. In this scenario, in situations that would typically lead to momentum flipping, with high probability the two sets of momenta can instead be exchanged with each other. This leads to momentum randomization on rejection, rather than momentum reversal. Unfortunately, though this slightly improves mixing time, it still amounts to a random walk on a similar length scale. However, the exploration of other topologies and allowed transitions would likely prove fruitful.

Any deterministic, reversible, discrete stepped trajectory through a state space can be mapped onto the ladder structure in Figure 1. The Markov transition rules presented in this paper could therefore be applied to a wide range of problems. All that is required in addition to the mapping is an auxiliary variable indicating direction along that trajectory. In HMC, the momentum variable doubles as a direction indicator, but there could just as easily be an additional variable \(d \in \{-1, 1\} \), \(p(d = 1) = \frac{1}{2} \), which indicates whether transitions are occurring up or down the ladder. The efficiency of the exploration then depends only on choosing a sensible, approximately energy conserving, trajectory.

References

Culpepper, Benjamin J, Sohl-Dickstein, Jascha, and Olshausen, Bruno A. Building a better probabilistic model of images by factorization. *International Conference on Computer Vision*, 2011.

Schütte, C and Fischer, A. A direct approach to conformational dynamics based on hybrid Monte
Hamiltonian Monte Carlo Without Detailed Balance