HOME MISSION AND RESEARCH PUBLICATIONS HISTORY PEOPLE SEMINARS COURSES VIDEO ARCHIVE CONTACT

Difference between revisions of "VS265: Reading"

From RedwoodCenter

(4 Sept: Linear neuron/Perceptron)
Line 18: Line 18:
 
* Carandini M, Heeger D (1994) [http://redwood.berkeley.edu/vs265/carandini-heeger.pdf Summation and division by neurons in primate visual cortex.]  Science, 264: 1333-1336.
 
* Carandini M, Heeger D (1994) [http://redwood.berkeley.edu/vs265/carandini-heeger.pdf Summation and division by neurons in primate visual cortex.]  Science, 264: 1333-1336.
  
==== 4 Sept: Linear neuron/Perceptron ====
+
==== 4 Sept: Linear neuron, Perceptron ====
 
* '''HKP''' chapter 6, '''DJCM''' chapters 38-40, 44, '''DA''' chapter 8 (sec. 4-6)
 
* '''HKP''' chapter 6, '''DJCM''' chapters 38-40, 44, '''DA''' chapter 8 (sec. 4-6)
* Jordan, M.I. [http://redwood.berkeley.edu/vs265/PDP.pdf An Introduction to Linear Algebra in Parallel Distributed Processing] in McClelland and Rumelhart, ''Parallel Distributed Processing'', MIT Press, 1985.
+
* [http://redwood.berkeley.edu/vs265/superlearn_handout1.pdf Handout] on supervised learning in single-stage feedforward networks
 
* [http://redwood.berkeley.edu/vs265/linear-neuron/linear-neuron-models.html Linear neuron models]
 
* [http://redwood.berkeley.edu/vs265/linear-neuron/linear-neuron-models.html Linear neuron models]
 
* [http://redwood.berkeley.edu/vs265/linear-algebra/linear-algebra.html Linear algebra primer]
 
* [http://redwood.berkeley.edu/vs265/linear-algebra/linear-algebra.html Linear algebra primer]
* [http://redwood.berkeley.edu/vs265/superlearn_handout1.pdf Handout] on supervised learning in single-stage feedforward networks
+
* Jordan, M.I. [http://redwood.berkeley.edu/vs265/PDP.pdf An Introduction to Linear Algebra in Parallel Distributed Processing] in McClelland and Rumelhart, ''Parallel Distributed Processing'', MIT Press, 1985.
  
 
<!-- unsupervised learning:   
 
<!-- unsupervised learning:   

Revision as of 04:41, 1 September 2014

28 Aug: Introduction

Optional:

2 Sept: Neuron models

Optional

4 Sept: Linear neuron, Perceptron




Personal tools