
Matrix Theory and Applications, Day 1: Fundamentals

Sarah Marzen

February 20, 2013

Linear algebra essentially consists of the following setup

ai1x1 + ai2x2 + ...+ ainxn = bi, i = 1, ..., n (1)

Now we want to solve for x = (x1, ..., xn). Can be re-expressed in the following form:

Ax = b (2)

where A = [aij ]
n
i,j=1, b = (b1, ..., bn).

Note: why don’t we have nonlinear equations, with squares, instead of just linear ones? Just one step
above linear, you get a quadratic problem, for instance. Hilbert thought we could solve those easily, but
Matiyasevich proved that in general, there is no computer that can take as input a nonlinear problem and
output a solution. However, you can use the framework of linear algebra to study nonlinear systems. For
instance, if you want to minimize the quadratic x>Ax, you can use gradient descent to get a linear system
of equations, even though your initial problem is nonlinear (quadratic).

1 A sampling of problems that can be solved using matrix theory
and linear algebra

What problems might you want to solve using linear algebra? This is just a sampling of the problems covered
in this course.

1.1 Interpolation/Data fitting

What is the next number in this sequence: 1, 1, 2, 3, 5, ? The question mark can be anything!! You can find
a polynomial that will give you any value for the next number in the series.

More precisely, suppose you are given data x1, x2, ..., xn the independent variable and y1, ..., yn the de-
pendent variable. Generally you want to find a polynomial p(x) such that p(xi) = yi ∀i = 1, ..., n. It turns
out that p(xn+1) is completely unconstrained.

For instance, suppose that you have p(x) = c3x
3 + c2x

2 + c1x+ c0; this is a “model” for our “data”. We
want to find c0, c1, c2, c3, the parameters of our model, such that the polynomial gives a best fit to our data:
y1 = p(x1), y2 = p(x2), y3 = p(x3) and y4 = p(x4). Let’s write down what this actually looks like:

x31 x21 x1 1
x32 x22 x2 1
x33 x23 x3 1
x34 x24 x4 1



c3
c2
c1
c0

 =


y1
y2
y3
y4

 (3)

So in matrix form, this is
Xc = y (4)

1



where we are trying to find c. So let’s multiply both sides of this equation by X−1 to find c:

c = X−1y (5)

You might ask, hey, sometimes X−1 does not actually exist! In fact, X−1 exists if and only if detX 6= 0.
So can we actually invert this X? This determinant, called the Vandermonde determinant, satisfies:

detX = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x4)(x2 − x3)(x3 − x4) (6)

and this is generalizable to larger degree polynomials. So in general if you have Xij = xj−1i , then

detX =
∏
i<j

(xi − xj) (7)

Proof: left to the reader as an exercise. Try induction, row/column reductions! So as long as you don’t have
two different y’s for the same x, you’re good to go.

1.2 Fibonacci numbers

This famous sequence was originally invented to describe the number of rabbits in a population of breeding
rabbits. Suppose that the number of offspring at time n+ 2, fn+2, is given by

fn+2 = fn+1 + fn (8)

with f1 = 1 and f2 = 1. This completely determines the sequence {f1, f2, f3, ..., fn, ..}. So what does this
sequence look like? Recursive sequences are generally hard to understand. So we’re going to turn this into
linear algebra.

Claim: This sequence f can be generated as follows.(
fn+2

fn+1

)
=

(
1 1
1 0

)n(
f2
f1

)
=

(
1 1
1 0

)n(
1
1

)
. (9)

Why is this true? Try an exercise with n = 1, but the general proof is possible by induction. Proof: left to
the reader as an exercise. Try induction!

We still don’t understand the system, though we now have it in the form(
fn+2

fn+1

)
= An

(
1
1

)
. (10)

where we can write A in a very useful form:

A =

(
1 1
1 0

)
= SDS−1 (11)

Here

D =

(
λ1 0
0 λ2

)
(12)

is a diagonal matrix of eigenvalues and S is a matrix of eigenvectors. Now

An = (SDS−1)n = SDnS−1 = S

(
λn1 0
0 λn2

)
S−1. (13)

With these ingredients, you can show that for some α, β, we have for all n:

fn+2 = αλn1 + βλn2 , (14)

and the proof of this is left as an exercise to those readers that already know what eigenvalues are.

2



1.3 Principal Components Analysis

Here is one way to interpret PCA. Given a random vector

x1...
xn

 (with mean 0, say) find a linear transfor-

mation T such that a transformed vector y

y =

y1...
yn

 = Tx (15)

has that the elements of y are uncorrelated. This is sometimes called whitening. More precisely,

Cov(y) = E(yy>) (16)

should be a diagonal matrix, i.e. should have nonzero elements only on its diagonal. E refers to the
expectation value, as x and thus y is a random variable. To be very clear, Cov(y) is the covariance matrix
of size n by n. By the way, yy> is called an outer product.

So how do we do this?

E(yy>) = E((Tx)(Tx)>) = E(Txx>T>) = TE(xx>)T>. (17)

If C is the covariance of x, then we are looking for a matrix T such that

I = TCT>. (18)

This ends up meaning that you want to diagonalize C. In fact, a common solution is to take T = C−1/2

when C is invertible, which requires computing a special diagonalization (or SVD) of C.

1.4 Data analysis (e.g., Netflix challenge)

Given some big data matrix A that has some underlying low-rank structure, for instance A = yx>+η where
x, y are some vectors and η is some noise, how do you recover the low-rank structure of A? For instance, if
A is movie preferences, x could be the identity of people and y the identity of movies.

Suppose that we think that the rank of the underlying data is r. Then we want to find the rank r
matrix X that minimizes the Froebenius (or some other norm) between your data A and X, i.e. find
X = arg minrank(X)=r ||A −X||2. Singular value decomposition solves this: just take the r largest singular
values in the singular value decomposition of A and set the rest to 0.

1.5 Machine learning: Image segmentation

Check out reference (Shi, Malik 2000), but basically, how do you segment an image? We’re going to turn
the problem into a combinatorial optimization and then relax the combinatorial optimization to finding
eigenvectors of a matrix. This method, in general, of relaxing a combinatorial optimization is a spectral
method. Here is a sketch of how this works for image segmentation:

• Take your image, turn it into a vector with elements that are the pixel intensities.

• Compute a “similarity matrix” A which has size number of pixels in image by number of pixels in
image such that Axy = e−|I(x)−I(y)|e−dist(x,y), where dist(x, y) is the distance between the pixels x and
y in the image and I(x) − I(y) is the difference between the intensities of pixels x and y. Sometimes
you subtract off the identity (for some reason that I didn’t catch)

3



• You can view this similarity matrix as a weighted graph in which the vertices aka nodes are pixels
and the weights on the edges between the nodes are given by the elements of the similarity matrix.
So “similar” pixels will have stronger connections than less similar pixels. In this view, segments are
equivalent to large highly connected subgraphs, meaning that pixels from the same image are more
similar.

• By magic, you can turn the problem of finding highly connected subgraphs into a combinatorial opti-
mization problem, which involves minimizing a quadratic form, arg minx∈{−1,1}n x

>M(A)x. More on
that later in the course. M(A) is just some matrix function of A which happens to be the Laplacian
of A. Unfortunately this problem is NP-hard; the possible solutions are solutions on an n dimen-
sional hypercube, and to actually solve this problem, you’d need to test all the possible vertices of the
hypercube. If you can solve this faster than exponential, you win a million dollars, literally.

• So we can pretend that x’s elements are real numbers between [−1, 1], and this is not an NP-hard
problem; the solution is that we want the eigenvector of M(A) corresponding to the smallest eigenvalue
of M(A).

This is how Google got famous, somehow, since if you only need a certain eigenvector or eigenvalue you can
sidestep a lot of computational difficulties. Why on earth would this work? An eigenvector is sort of a global
computation of a matrix that you need to see the entire matrix for.

2 Review of the fundamentals of linear algebra

Loosely a vector space has the following properties:

• You can scale objects.

• You can add them.

This excludes some properties: you cannot multiply objects and stay inside the vector space (think the
cross-product of two vectors that takes you from R3 to R3×3), at least not necessarily. The mathematical
version of this is as follows– we do it for vector spaces over R but you can easily extend this to other fields
like C.

——
Def’n of a vector space: A vector space over R is a set V equipped with a scalar multiplication,

denoted as ·, and a vector addition, denoted as +. The vector multiplication · maps R × V to V , and we
write that as · : R × V → V , written element wise as · : (r, v) → r · v. Multiplication has the following
properties:

• distributive?, a · (u+ v) = a · u+ a · v

• distributive again?, (a+ b) · u = a · u+ b · u

• associative?, a · (bu) = (ab) · u

• identity, 1 · u = u.

Addition “forms an abelian group”, explicitly meaning that it is an operation that takes elements of V × V
to V , written elementwise as + : (u, v)→ u+ v. Addition has the following properties:

• commutative, u+ v = v + u

• associative, u+ (v + w) = (u+ v) + w

• identity 0 exists, u+ 0 = u

• inverse exists −u, u+ (−u) = (−u) + u = 0

4



—–
Examples of vector spaces– proofs are left as exercises to the reader:

• Elements of Rn, which are the vectors that we usually deal with

• Polynomials of degree n, with an element a0 + a1t+ a2t
2 + ...+ ant

n with coefficients ai ∈ R

• Continuous functions f : [0, 1]→ R. Prove that discontinuous functions are NOT a vector space.

• Matrices.

What are examples of NOT a vector space? Look at the upper right quadrant of the normal R2 vector space,
the Cartesian coordinate plane. This has all of the properties of a vector space except that it does not have
an inverse.

Def’n of linear transformation: Linear transformation L takes elements of a vector space V to
elements of V , with the property that L(au+bv) = aL(u)+bL(v) where a, b ∈ R and u, v ∈ V . For instance,
L could be a matrix applied to a vector when V is Rn or a Fourier transform if V is the vector space of
continuous functions.

Def’n of subspace: Subspace W in a vector space V is contained in V and is also a vector space. This
is equivalent to the statement that aw1 + bw2 ∈ W for any w1, w2 ∈ W and any a, b ∈ R. Proof left to the
reader; it follows from the definition of vector space. For instance, all even degree polynomials is a subspace
of polynomials and the vectors (x1, ..., xn) in Rn with x1 + x2 + ...+ xn = 0 is a subspace of Rn.

Def’n of linearly dependent: u1, ..., un ∈ V are linearly dependent if there exists numbers c1, ..., cn ∈ R
with at least one of ci 6= 0 such that c1u1 + ... + cnun = 0 (i.e., we can write one of these vectors as linear
combinations of the others).

Def’n of linearly independent: u1, ..., un ∈ V are linearly independent if they are not linearly de-
pendent, i.e. that c1u1 + ... + cnun = 0 ⇔ ci = 0 ∀ i = 1, ..., n. Example: the set {1, t, ..., tn} are linearly
independent.

Def’n of span: The span of u1, ..., un is the set of all the linear combinations of those vectors,

span{u1, ..., un} = {
n∑

i=1

ciui : ci ∈ R} (19)

Def’n of bases: a basis B for a vector space V is a set of elements B = {b1, ..., bn} such that two
properties hold–

• span(B) = V , so you get everything in V from B.

• b1, ..., bn are linearly independent, so there’s no redundancy.

Theorem: (a) Every vector space V has a basis and (b) the cardinality1 of every basis of V is the same
and this size is called the “dimension” of V , dim(V ). Exercise: Prove this theorem for V = Rn.

Examples: dim(Rn) = n.
Homework: let W = {(x1, ..., xn) :

∑n
i=1 xi = 0}; what is dim(W )? Give a basis for W .

1If finite, the cardinality is just the number of elements in the set; things get complicated with infinities

5


