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Abstract

Primates use binocular disparity, the slight differences between the images received by their right and
left eyes, to reconstruct their 3-D environment. As a result, binocular disparity statistics of a natural
environment will influence how the visual cortex processes the images received by the right and left eyes. In
particular, it has been proposed that natural binocular disparity statistics influence the tuning of binocular
neurons, the orientation of ocular dominance stripes, and the size of stereoscopic search zones. Here, we
calculate binocular disparity statistics in a computer-generated three-dimensional visual environment that
has two-point statistics and an observer-object distance distribution similar to that of natural images.
Studying binocular disparity statistics using a simulation allows us to ask an additional question— how
would a primate primary visual cortex process binocular disparity statistics from an unnatural visual
environment (i.e., white noise) using various oculomotor strategies? Our results suggest that the tuning
of binocular neurons should be sensitive to the two-point statistics of the visual environment, whereas
the orientation of ocular dominance stripes in V1 and stereoscopic search zones are sensitive to the
observer-object distance distribution and oculomotor strategy.

Introduction

Researchers are still trying to figure out how the brain can efficiently combine images from the left
and right retina into a single three-dimensional model of the visual environment. The problem itself is
deceptively simple: a single point in visual space is imaged onto slightly different locations on our two
eyes, and the difference between these two images is referred to as binocular disparity. From the location
of these images and knowledge of the distance between the two retina, it is theoretically possible to ray-
trace to the position of the original point in visual space and hence construct a three-dimensional model
of our visual environment. However, it is not so easy to efficiently find the point in the right retinal image
that corresponds to the a given point in the left retinal image, and vice versa. Computational modeling
and detailed electrophysiology results are beginning to provide some clues as to how processing in the
primary visual cortex allows our brains solve the so-called “correspondence problem” so efficiently and
robustly [1].

The primary visual cortex (V1) is the first region to interweave signals from the left and right visual
fields, and also appears to be the first stage of concerted neural processing for the correspondence problem
[2]. Perhaps unsurprisingly, binocular disparity statistics appear to affect the layout and properties of V1
neurons, in the same way that the receptive fields of V1 neurons seem to shape to optimally encode natural
images [3-5]. Previous computational studies have noted that V1 binocular neurons should optimally
be tuned to binocular disparities experienced in the natural environment in order to optimally solve the
correspondence problem [6,7]. Another computational study noted that the retinotopic layout of ocular
dominance (OD) columns [8-10] was consistent with a minimum wiring length layout [11] of V1 premised
on connections between monocular neurons with similar receptive fields in visual space [12]. Similarly, the
sensitivity and size of stereoscopic search zones [13,14] is likely affected by binocular disparity statistics,



though this last area has not yet been explored either computationally or experimentally. Underlying each
of these applications is the idea that monocular neurons in V1 that are likely to have similar receptive
fields in visual space should somehow be connected, either directly or by sending signals to the same
binocular neuron in another layer.

The aforementioned studies that connected binocular disparity statistics to properties of V1 neurons
made simplifying assumptions about our visual environment and the way we interact with our visual
environment. Reference [6] assumed that all objects were at eye level and used self-reported fixation
points. Reference [15] generated a visual environment from spheres with uniformly distributed radii
and. Reference [12] simulated binocular disparity statistics using a visual environment composed of point
objects and using an eye rotation strategy that only holds for fixation on distant objects. Yet, natural
visual scenes have characteristic two-point statistics [16, 17] and observer-object distance distributions
[18,19], and primate eyes rotate according to well-defined mathematical rules [20,21] when fixating on
objects [22-24].

We simulated binocular disparity statistics using a visual environment and eye rotation strategy in
ways designed to better match what is known about natural scenes [16-19], eye rotation strategy [20,21],
and eye fixation strategy [22]. From these statistics, we could infer how the tuning and layout of V1
neurons might depend on the structure of visual environments, eye rotation strategy, fixation strategy, and
the mapping of retinal ganglion cells to V1. These results have direct bearing on visuomotor optimization
theory [25], which quantitatively explains eye rotation strategy as a balance between minimizing the
work done by eye muscles and the ease of stereo-matching [13]; the latter variable, in particular, depends
strongly on binocular disparity statistics.

Results

We begin by calculating binocular disparities for a subject in our model world who takes one of three
strategies for choosing her fixation points:

e the subject fixates on randomly chosen points on object surfaces;
e the subject fixates on randomly chosen object edges;
e the subject fixates on randomly chosen object centers.

For each fixation strategy, two different visual environments are generated in silico: SphereWorld, in
which model 3D scenes are generated by placing intersecting, opaque spheres randomly and uniformly
over the 3D space surrounding the subject; and PointWorld, in which fixation points and image points
are scattered randomly with the constraint that PointWorld must have SphereWorld’s observer-object
distance distributions. SphereWorld’s scenes are designed to exhibit naturalistic two-point statistics
[16,17] and naturalistic distance distributions of source points [18,19]. The model subject then chooses
fixation points and rotates her eyes in accordance with the oculomotor strategy known as the binocular
extension of Listing’s Law [21], sometimes called L2. Explicitly, this law is as follows: each eye is known
to rotate such that its rotation axes are contained in a plane, but during binocular viewing, these planes
swing outward by £ + pa for which « is the vergence angle, u is the L2 coefficient, and § is the half the
exorotation angle of the primary Listing’s planes according to the half-angle rule [21]. See Figure 1. L2
is typically described as having p = 0.15 — 0.25 [21,25], and we will use g = 0.25 in our simulations of L2
viewing strategy unless otherwise indicated. We take § = 2.15° based on the results of Reference [26].
This set-up is described schematically in Fig. 1 and described in the Methods section in detail.

Some of these calculations involve calculating stereopsis-related cortical wiring length in V1 as a
function of 8 and g using the following simplistic approximation for stereopsis-related wiring in V1,
inspired by the assumptions made in Reference [12] and by the algorithm proposed in Reference [1]. In our
simplistic approximation of stereopsis-related neuronal wiring in V1, the probability that two monocular



neurons in V1 are connected to one another (perhaps through an intermediate binocular neuron in another
layer) is proportional to the probability that those two monocular neurons have identical receptive fields
in visual space. Mechanistically, this is consistent with Hebbian learning [|] and requires a high degree of
synaptic plasticity in the primary visual cortex []. As shown in the Supplementary Information, if the
monocular neurons are directly connected, then the relevant quantity is the average cortical wire length;
if the monocular neurons are both connected to binocular neurons in another layer, then the relevant
quantity is the average square of cortical wire length.

Retinal disparity histograms are insensitive to all but observer-object distance
distribution and primarily Listing’s plane exorotation

Previous authors have investigated retinal disparity statistics [6,7,15] and some debate has centered
around an appropriate definition of retinal disparity [27]. When the eyes are fixating on points that are
at eye-level elevation, the various definitions tend to coincide' to the definition illustrated in Figure ?7?.
However, it is not necessarily clear how to extend the definition of retinal disparity to the case when the
eyes fixate on oblique objects that are not at eye-level elevations. The disparity is now a vector with
two components, but the axes with which disparity should be defined relative to is unclear. In addition,
one could reasonably choose a definition of retinal disparity that projects the spherical coordinates of
the retina forwards onto a plane tangent to the eyeball or backwards onto a plane perpendicular to the
primary gaze direction, as illustrated in Figure 1. Here, we use a simple definition of retinal disparity
that accounts for the rotation of the retinal coordinate system as we fixate on different points in a
visual scene. Retinal coordinates are defined relative to the rotated primary position axes such that
zy = rycos B, and y, = r,sinf,. Retinal disparity is the difference Az, = r, pcosb, r —ry  cos6, . and
Ay, = rppcost. gp — rpsinf, . A definition based on a rotated coordinate system, as opposed to a
definition that does not rotate with the eyeball’s rotation for a fixation point [7], is useful in two ways.
First, since retinal ganglion cells rotate with the eyeball, the binocular disparities actually experienced
by retinal ganglion cells and the V1 binocular cells that they eventually synapse onto are based on the
disparities experienced in a coordinate system that rotates with each eyeball. Second, a definition based
on a rotated coordinate system allows one to see more directly how eye rotation strategy affects the
binocular disparities experienced by retinal ganglion cells and the V1 binocular cells that they eventually
synapse onto. This definition for retinal disparity sidesteps an ambiguity that arises in the definition of
retinal disparity [27] by choosing a coordinate system in which the right and left retinae are apparently
mapped onto one another using the identity matrix. Fortunately, these different definitions of retinal
disparity give rise to very similar retinal disparity statistics and predictions for physiology.

As shown in Figure 2(A) and Figure 2(B), retinal disparity histograms are essentially insensitive to
the visual environment, fixation strategy, and eye rotation strategy within the range of natural visual
environment statistics and physiological eye rotation strategies. The main difference between our results
and previously reported retinal disparity histograms [6,7,15], then, is in our definition of horizontal reti-
nal disparity and in our method of calculation. The asymmetric horizontal retinal disparity histogram is
unlike the symmetric retinal disparity histogram in Reference [15] largely because we choose a definition
of retinal horizontal disparity that depends on the rotation of the eye during fixation, which then pre-
serves the natural asymmetry in binocular disparity statistics seen in the histograms of optic disparity
in Reference [15] and commented upon in Reference [7]. Negative horizontal retinal disparities are rare
when using naturalistic observer-object fixation distances [19] and limiting the maximal rotation of the
eye during fixation to 45° as in Reference [12], though observers often do not view objects at eccentricities
that large. These results are elaborated upon in Supplementary Information.

Reference [6] also postulated that binocular disparity statistics should be reflected directly in the

1Except that in Reference [6], the formula used to calculate retinal horizontal disparities is valid only in the limit that
the fixation point lies at eye-level elevation on the midsagittal plane.



frequency of tuned excitatory (TE), tuned inhibitory (TI), near excitatory (NE), and near inhibitory
(NI) binocular neurons in V1. It is less clear to us that these disparity histograms should directly
relate to frequencies of TE, TI, NE, and NI binocular neurons, since TI and NI neurons are better
described as phase disparity sensitive binocular neurons which are thought to act as “lie detectors” of false
stereomatches [1]. Rather, the tuning of V1 binocular neurons with zero phase disparity should be tuned
to the distribution of natural binocular disparities shown in Figure 2C, and the tuning of V1 binocular
neurons with nonzero phase disparities should be sensitive to large vertical disparities as described in
Reference [7]. Figure 2C and Figure 2D plot the joint probability distribution of observing a particular
vertical disparity and a particular horizontal disparity for SphereWorld and PointWorld, respectively,
averaged over all fixation points. Plan is to also discard all disparities that are not Panum-fusable. In
these two plots, the simulated user had § = 2.15°, = 0.25, and an edge-based fixation strategy. The
constraint on Panum fusability is implemented here by discarding those data points with disparity greater
than 0.13 multiplied by the points eccentricity, as in Reference [12]. Similarly to Figure 4 in Reference [7],
Figure 2C here shows that we are far more likely to see large horizontal retinal disparities than large
vertical retinal disparities. The joint probability distribution between horizontal and vertical disparities
is markedly different for SphereWorld and PointWorld. The presence of bands in the PointWorld plot is
analyzed in the Supplemental Information.

Inferred ocular dominance maps are insensitive to all but observer-object dis-
tance distribution and primary Listing’s plane orientation

In retinotopic coordinates, the physiologically observed OD maps within and between species show two
general trends. Ocular dominance stripes tend to lie in concentric circles parafoveally. For smaller
eccentricities, closer to the fovea, ocular dominance stripes tend to lie horizontally [8-10]. The “switching
eccentricity” from concentric circles to horizontal stripes appears to occur somewhere near 15° for humans
as in Figure 3C, but this eccentricity varies from animal to animal idiosyncratically. Near the fovea, the
ocular dominance stripes seem to break up into blobs, which might have more to do with the types of
connections than with binocular disparity directionality [28].

The minimal wiring hypothesis demands that ocular dominance stripes orient so that the total neu-
ronal wiring length in V1 is minimized. Applying this principle quantitatively, however, requires assuming
something concrete about V1 wiring. Following Reference [12], we assume that OD stripe direction is
primarily determined by stereoscopic-related wiring, i.e. connections between two monocular neurons
that are likely to map the same point in visual space. These connections could be intermediated by a
neuron in another layer of V1, such as a position disparity sensitive binocular neuron [2]. Other types of
wiring circuits in V1 are more likely to be symmetric directionally, and hence would have little effect on
the direction of the ocular dominance stripe [12].

Our simulations generated a list of points in V1 that corresponded to the same points in visual space
for various environments. We calculated the ocular dominance stripe orientation that explicitly minimizes
wiring length in each small circular region of a flattened V1 by minimizing an expression for the wiring
length L(6) as a function of binocular disparities and ocular dominance stripe angle, as described in
Methods. The retinotopic OD maps inferred from binocular disparities are insensitive to the two-point
statistics of the world and to fixation strategy. See Figure 3A. The inferred OD maps in Figure 3A for
B = 2.15° has circular OD stripes only at eccentricities of ~ 90°, and almost immediately “switches” to
horizontal OD stripes. By comparison, physiological OD maps have circular OD stripes parafoveally and
switches to horizontal OD stripes far closer to the fovea, near 15°, as shown in Figure 3C.

One might ask whether such a low “switching eccentricity” is possible for our inferred OD maps with
realistic simulation parameters. Rather than computing OD maps for a large part of the parameter
space, we can derive how this “switching eccentricity” should vary as a function of primary Listing’s
plane exorotation angle 3, L2 coefficient pu, interocular distance d, and distance at which the probability



of hitting an object surface is maximized D,,q., by extending the arguments given by Chklovskii in
Reference [12]. In particular, he noted that these OD maps could be conceptualized as a balance between
translational disparity and cyclotorsional disparity. Translational disparity is the component of binocular
disparity that resulted only from the lateral separation of the two eyes and biases OD stripes towards
forming horizontal stripes. Cyclotorsional disparity is the component of binocular disparity that results
only from the torsional difference |Ty, — Tr| between the two eyes and biases OD stripes towards forming
concentric circles. The magnitude of translational disparity is essentially constant close to and far from
the fovea, but the magnitude of cyclotorsional disparity increases linearly with eccentricity, which explains
why OD stripes are horizontal near the fovea and circular at higher eccentricities. As described in the
Supplementary Information, the switching eccentricity €5 is roughly given by
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where (...)7, 7, indicates an average over all fixation points and all imaged points. The numerator depends
only on the ratio between the two distance scales, ﬁ, while the denominator depends strongly on eye

rotation parameters 8 and weakly on y and As shown in Supplementary Information,
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which implies the following: that an increase in $ decreases the switching eccentricity; that an increase in
L2 coefficient p also decreases the switching eccentricity, but with less effect than 8; and that an increase
in interocular distance d will increase the switching eccentricity.

Based on eqn. 2, an environment with a larger D,,.., a person with a smaller interocular ocular
distance d, and a person with a larger primary Listing’s plane exorotation angle g will produce a map
that is more physiologically realistic. Reference [19] has reported D4, as large as 3 m, and 8 could be
as large as 2.6° [26]. However, even these values of parameters do not yield a physiologically realistic OD
map; the predicted switching eccentricity is near 60°. See Figure 3(B).

(2)

Visuomotor theory

Binocular disparity statistics are also thought to affect the optimal eye rotation strategy. In order to
fuse the images from both eyes, our eyes must fixate on the same point. In theory, they can do this in
infinitely many ways, as shown in Figure 1B, but in reality, our eyes choose just one of these rotations
in a way that is well-described by a mathematical rule called Listing’s Law. This rule states that the
position eventually adopted by the eye is the same as the position that would have been adopted if
the eye had started from a “primary position” and rotated about an axis in the corresponding Listing’s
plane, as depicted in Figure 1B. Equivalent definitions in terms of Helmholtz coordinates are given in the
Supplementary Information section.

Since Listing’s Law was first discovered experimentally by Helmholtz in the eighteenth century, vision
scientists have tried to explain why our eyes appear to so consistently choose one of the infinitely many
other rotation matrices that would allow us to fixate on the same fixation point. Initially, Fick postulated
that Listing’s Law was an attempt to decrease the total energy used for eye rotation. This explanation
proved insufficient when vision researchers discovered that Listing’s planes exorotated slightly when
fixating on nearby objects. In 1997, Tweed’s pioneering visuomotor optimization theory explained the
binocular extension of Listing’s Law by postulating that our eyes’ rotation strategy is a compromise
between the visual system and the motor system [25]. Minimizing the total eye rotation implies the
existence of Listing’s planes that lie orthogonal to the midsagittal plane and the interocular line, and
Tweed further postulated that the ease of stereomatching was directly correlated with the difference in
alignment of the horizontal meridians of the two eyes. Later investigators showed that p = 0.25 decreased



the area of stereoscopic search zones [13] and increased the surface area of Panum-fusable points in the
visual environment [27].

Stereoscopic search zones are the regions over which a stereoscopic match could exist, and sensitivity
profiles within these stereoscopic search zones should indicate which areas within this search zone are
most likely to match the point of origin [14]. Sensitivity profiles of stereoscopic search zones are likely
to reflect the probability of observing a wire in V1 between V1 neurons with those receptive fields [14].
We computed sensitivity profiles for a PointWorld environment, as shown in Figure 4. When 8 = 0°,
increasing p from 0 to 0.25 visibly decreases stereoscopic search zones, but when § = 2.15°, increasing pu
actually increases stereoscopic search zones. See Figure 4. The shape of the sensitivity profiles of these
stereoscopic search zones mimics the OD maps shown in Figure 3; when the zones look square rather
than elongated and circular, the corresponding optimal ocular dominance stripe is horizontal rather than
circular.

The benefit to minimizing the stereoscopic search zone area could be that it takes less time or that
it takes less energy to perform stereoscopic processing in the primary visual cortex. In either case, an
“optimal” eye rotation strategy should minimize the total cortical wiring length required to connect the
stereoscopic search zones. We calculated the stereopsis-related cortical wiring length in V1 as a function
of 8 and p using the following simplistic approximation for stereopsis-related wiring in V1 described
earlier. Though the absolute value of mean cortical wiring length value was highly dependent on the
exact assumptions made about stereopsis-related wiring, the dependence of mean cortical wiring length
on 5 and p is essentially independent of these assumptions. For instance, one could imagine excluding
wires that connect across hemispheres or that connect beyond Panum’s fusional area. For simplicity, we
show the results in which no additional assumptions are made about interhemispherical connections or
connections outside of Panum’s fusional area. Results of a PointWorld calculation of average cortical
wirelength is shown in Figure 5. These calculations reveal a quadratic surface for cortical wiring length
with a very shallow well along one axis and a very steep well along another, which indicates that there
are large number of pairs of § and u that appear to give similarly small values for total cortical wiring
length. When 8 = 0°, the optimal y appears to be near 0.25 as shown in Figure 5(C), which is the value
of u that minimizes cyclotorsional disparity [25]. However, for 8 = 2.15°, the optimal y is negative, as
shown in Figure 5(D).

Discussion

We started by postulating an intimate connection between binocular disparity statistics, V1, and ocu-
lomotor theory, but many researchers study each of these topics without referencing any of the others.
The connection between these three topics arises from three optimization principles: the efficient cod-
ing hypothesis, the cortical wiring hypothesis, and visuomotor optimization theory. The efficient coding
hypothesis states that our brain has evolved to optimally process information from our environment, as
opposed to some other environment [29]. The cortical wiring hypothesis states that the layout of our
brain should shift so as to minimize total cortical wiring, typically because large heads are associated with
high infant mortality or because the additional cortical wiring leads to energetic inefficiency and time
delays [11]. Finally, visuomotor optimization theory is part of a larger class of sensorimotor optimization
theories that attempt to derive “optimal” motor behavior [30]. In order to calculate anything using
these principles, we must introduce a simplistic model of stereopsis-related wiring in V1. We therefore
assume monocular neurons that are likely to have similar receptive fields in visual space are connected
to binocular neurons (or at least, those that look for “true matches” [1]). The final word on stereoscopic
match-related neuronal circuitry in V1 may come from undertakings similar to EyeWire, a tour de force
artificial intelligence attempt to explicitly make the connectome of retinal ganglion cells []. Otherwise,
psychophysical experiments and computations such as the ones shown here may provide some guesses as
to how to interpret the resulting connectome.



The three optimization principles listed above naturally lead to several conclusions when applied
to stereopsis-related wiring in V1. First, the efficient coding hypothesis suggests that the V1 binocular
neurons primed to find “true” stereomatches [1] should be tuned to sense the range of disparities present in
the natural environment seen in Figure 2. Second, the cortical wiring hypothesis suggests that the layout
of V1 should be arranged so as to connect monocular neurons with similar receptive fields with minimal
wiring. Third, a variant of visuomotor optimization theory suggests that Listing’s Law coefficients should
yield small stereoscopic search zones [13]. If these three optimization principles hold and if our simplistic
conception of V1 wiring is at all reasonable, then a comprehensive model of binocular disparity statistics
should allow one to predict or explain the tuning of V1 neurons, the orientation of ocular dominance
stripes, and optimal eye rotation strategy.

To our knowledge, SphereWorld (described in detail in the Model section) represents the most compre-
hensive computational model for calculating binocular disparities to date. The visual environment takes
into account both two-point statistics and observer-object distance distribution, as shown in Figure 6; the
simulated eye rotations act according to the binocular version of Listing’s Law; and retinal disparities are
mapped to V1 using a Schwarz conformal map with parameters fit to physiological data. Each of these
ideas has been present in part in other computational studies, but never have these ideas been combined
into one single computational model with which to study binocular vision. These types of computational
models are incredibly powerful tools in that we can study the effect of slight variations of physiological
and environmental parameters on binocular disparity statistics in ways that are nearly impossible to
study empirically. For instance, by comparing binocular disparity statistics between SphereWorld and
PointWorld, a visual environment composed of point objects with the same observer-object distance
distributions as SphereWorld, we can examine the effect of two-point statistics on binocular disparity
statistics.

A number of previous studies have made similar models and calculated similar properties of binocular
disparity statistics [6,7,15], but combining parts of each of these previous models and adding additional
details to the simulations allowed us to refine and sometimes extend the conclusions of our predecessors.
Here, we highlight three such refinements.

First, the retinal disparity statistics plotted in Figure 2 indicate that rough disparity histograms
(Figures 2A and 2B) are insensitive to the details of the visual environment. However, the joint probability
distributions between vertical and horizontal disparities are extremely sensitive to the type of two-point
statistics in the environment, as shown by the difference in Figure 2C and 2D. The ellipses of equal
probability are far more elongated in the SphereWorld environment than in the PointWorld environment,
which suggests that searching for stereomatches with large vertical disparities is far less fruitful in a
natural environment than in a world composed of point objects.

Second, the ocular dominance maps inferred from binocular disparity statistics are not clearly similar
to physiological ocular dominance maps, in opposition to the conclusions of Reference [12]. Perhaps this
is because one of our simulation assumptions is incorrect. For instance, if our stereopsis is optimized for
long-distance viewing cues [14], then the switching eccentricity will decrease greatly according to eqn. 2.
Alternatively, the cortical wiring hypothesis might not apply to ocular dominance columns in the way
postulated in Reference [12]; perhaps ocular dominance column width should correspond roughly to the
range of natural binocular disparities. The relationship between ocular dominance stripe orientations
and binocular disparity maps can be tested empirically by constructing retinotopic ocular dominance
maps for animals, who will naturally have different interocular distances and primary Listing’s plane
exorotation angle. If the ocular dominance map follows the binocular disparity map, then animals with
smaller interocular distances (e.g. squirrel monkeys) and larger primary Listing’s plane exorotation angles
will have larger switching eccentricities.

Third, the simulated sensitivity profiles of stereoscopic search zones shown in Figure 4 indicate that
only a small part of the stereoscopic search zones shown in Reference [13] are likely to be used. The total
wiring length is quantified as a function of 5 and p in Figure 5, and those plots indicate a long, shallow



well for visual term in visuomotor theory. In the context of visuomotor theory, the degeneracy between
equivalent 8, u pairs is broken by the motor term, which prefers 8 close to the natural resting position
of the eyeballs and = 0. However, for 5 ~ 2°, the optimal p is not close to the physiologically observed
value of 0.25. This is identically true even for other proxies for visual benefit that one might use in
visuomotor optimization theory, as shown in Supplementary Information. This suggests that visuomotor
optimization theory needs further refinement.

Overall, our simulations showed that only two simulation parameters had a significant effect on binoc-
ular disparity statistics. These null results are, in our minds, good news for the stereovision research
community. Other investigators looking to compute binocular disparities in silico will only need to make
sure that their simulation has a realistic observer-object distance distribution, a realistic value of interoc-
ular distance, a realistic value of the primary Listing’s plane exorotation angle, and a realistic value of
the Listing’s Law coefficient. Future simulations of binocular disparity might benefit from using a visual
environment with more interesting features, a time-dependent fixation strategy, sensorimotor feedback
loops, and a more complex model of stereopsis-related wiring in V1. Eye tracking experiments, such
as those currently being undertaken at the Redwood Center for Theoretical Neuroscience, will have the
final word on actual binocular disparity histograms. Any significant differences between the binocular
disparity histograms generated from eye tracking data and those shown here will signal that sensorimotor
feedback loops are key to understanding the binocular disparity statistics received by our brain.

Models

The in silico visual environment was generated using Matlab, and all subsequent computations were done
in Matlab as well.

Generating a in stlico visual environment

There are two elements of visual environments that have proved key to understanding visual processing
in the brain: two-point statistics and the observer-object distance distribution. We generated a visual
world in silico that had two-point statistics and an observer-object distance distribution representative
of two-point statistics and observer-object distance distributions in visual environments.

Tmages of natural scenes all have similar two-point statistics [17]. Pair-wise statistics describe the
fall-off of the correlation function, (I(Zo)I(Zo + x0)) 700 ~ C1— % between two pixels in an image as
a function of distance between the pixels, x, where I(Zy) denotes the pixel intensity at point Zy. The
constants C; Co and 7 vary from image to image, and |7] is typically small. These pair-wise statistics can
also be described by the Fourier transform of the correlation function, also called the power spectrum; this
falls off as ~ W%n, where k is the spatial frequency. In general, images of a random grouping of objects
will have a correlation function that decreases as a function of distance; pixels that are close together
are more likely to represent the same object, and therefore are more likely to have similar pixel values.
However, not all images of groupings of objects will have a correlation function that decreases as ~ x%
For instance, when the objects are spheres with radii drawn from a power law probability distribution,

Py =@ (5)_(1 5 2 50 (3)
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then images of the resulting visual environment will have a correlation function that falls off as — [16].
Hence, randomly placed spheres with radii drawn from the P(s) given in eqn. 3 with @ ~ 3 will have a
correlation function and thus power spectrum similar to that of natural images.

To our knowledge, no previous computational studies of binocular disparity statistics studied worlds

with realistic two-point statistics. In Reference [15] a visual environment was generated as a collage of



spheres with radii drawn from a uniform distribution [15]. This is mathematically equivalent to using
a = 0 for P(s) in equ. 3 and adding an upper cutoff on the radius. The analysis of Reference [16]
suggests that such an environment would yield a correlation function (I(Zo)I(Zy + xé)&mé ~ C1 + Cya®,
where C; and Cs are constants. In Reference [12], the visual environment consisted of point objects.
This is mathematically equivalent to using a@ — oo for P(s) in eqn. 3, which would yield a correlation
function (I(Zo)I(Zy + xé))ioﬁ = (1, where C is some constant. Neither of these correlation functions is
representative of the correlation functions found in natural scenes.

Any computer-generated visual environment that is used to calculate binocular disparity statistics
should also have a naturalistic distance distribution of object surfaces. In natural environments, the
probability of observing an object surface at a distance r from a cyclopean eye increases until some
distance Diqz, after which point the probability appears to decrease exponentially [19]. This probability
distribution seems to determine how we infer distances of objects [18]. In a SphereWorld with object
density p,

P(?“) N ,],,Qefp(f SQP(s)ds)'r’ (4)

as shown in Supplemental Information. In short, the r? term comes from the increase in surface area,

and the exponential term e=P(J PO)ds)r 4o o result of object occlusion. From eqn. 4, we see that any
computer-generated visual environment with randomly placed occluding objects, e.g. as in Reference [15],
will have a naturalistic P(r) with D4, ~ m.

In this study, we generated a visual environment composed of occluding, randomly placed spheres
with radii drawn from the distribution P(s) given in eqn. 3 using parameters s = 15 cm, a = 3.2,
and the number of spheres generated was chosen so that D,,q, = 1.3 m. Smaller sg would have been
more desirable, but as long as s is small enough, then a simulated viewer will be unable to “see” the
environment’s graininess. For ease, we call this environment “SphereWorld”. As was done in Reference
[12], we assumed that all object centers were at least L,;; = 30 cm away, and chose a finite world
size of L = 60m. The finite world size has no significant effect on P(s) or P(r), as shown analytically
in Supplemental Information. SphereWorld’s correlation function, power law distribution, and distance
distribution of object surfaces in this study are shown in the Supplemental Information.

Simulating head-fixed visual sampling of this model world

There are two aspects to simulating interaction with the visual environment: first, choosing fixation
points that might be chosen by a primate; and second, simulating how a primate would rotate its eyes
to fixate on those points.

Fixation strategy is most correctly modeled as a function of time, but we are interested only in the
time-averaged difference between the images received by the right and left retina. Hence, we only need to
determine which features in the visual world of occluding gray spheres are “informative” or “salient” [].
For simplicity, we consider three fixation strategies: one in which the informative features are randomly
chosen, unoccluded edges of objects; one in which no points in visual space are more informative than
any other; and one in which the unoccluded centers of objects are the most informative features. The
first simulated fixation strategy is the closest of the three to a realistic fixation strategy [22]. The
other two simulated fixation strategies are control fixation strategies, designed to elucidate the effects
of fixation strategy on binocular disparity statistics. The distance distribution of fixation points varies
slightly between these three strategies, since centers of objects are closer than the edges of objects. This
difference depends on the average radii of the spheres in the environment, as shown in the Supplemental
Information section. Furthermore, as was done in Reference [12], we assume that we rotate our eyes to
fixate only on objects that have an eccentricity of less than 0,,,, = 45° []. Simulation results did not
depend on 6,,,,., whether it was 30°, 45°, 60°, or 90°.

To fixate on these various points, primates move both their heads and eyes. At the risk of oversim-
plification, we assumed that the head was fixed, and that imaged points could be ray-traced onto the eye
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according to the pinhole eye approximation [31]. Head-fixed eye rotation strategy has been well-studied
and is well-described by an explicit mathematical rule called Listing’s Law [21,32-35]. There are different
ways of stating Listing’s Law and many ways of explaining why Listing’s Law is the optimal eye rotation
strategy [20,21,25,32]. For our purposes, it is easiest to state Listing’s Law in terms of the orientation
of the Listing’s plane, which is the plane in which all rotation axes of every eye rotation lies. Even when
fixating on distant objects, the Listing’s plane is exorotated from a perfectly flat orientation by some
angle §. In humans, 8 ~ 2.15° [26]. When fixating on nearby objects, Listing’s planes are additionally
rotated by pa, where p is the so-called “L2 coefficient” and « is the vergence angle. For humans, the
L2 coefficient p lies somewhere between 0.15 and 0.25 [21]. The meaning of 3, u, and « are illustrated
in Figure 1. Eye rotations can be described by the rotation axis and rotation angle, but they can also
be described by Helmholtz coordinates [32]. In the Supplemental Information, we derive the Helmholtz
coordinates for the left and right eye as a function of the fixation point location, 8, and u. These closed-
form expressions for the Helmholtz coordinates appear in Reference [7] and speed up our simulations by
orders of magnitude as compared to solving for the rotation axis direction and rotation angle using a
numerical solver.

Mapping retinal images to V1

Retinal coordinates were projected back to a flattened representation of V'1 using the Schwartz conformal
map [36], matched to the experimental areal cortical magnification factor M = a(r, + b)~2 of squirrel
monkeys [9]. The experimental data do not perfectly fit an areal magnification factor formula of M =
a(r, + b)° for any a, b, or ¢, and the experimental data used here are subject to small systematic errors,
depending on the measurement [37]. However, the results presented here do not depend very strongly
on the values of a, b, or ¢. The Schwartz conformal mapping takes the form w = alog(z + b), wherein
w =1y, 2z = rge’® and r is the radial /eccentricity coordinate, 6 is a polar coordinate.

As described in Results, we calculate the ocular dominance stripe orientation that explicitly minimizes
wiring length in each small circular region of a flattened V1. Ocular dominance stripes theoretically affect
V1 wiring length by stretching a disparity vector/neuronal wire by a factor of a ~ 2 in the direction
perpendicular to the ocular dominance stripe [12], as illustrated in Figure 1. Let an ocular dominance
stripe in a particular region of V1 made an angle 6 with the horizontal axis, and that a disparity vector
in that region connected the points (0,0) and (x,y). Calculations in the Supplemental Information show
the length of the disparity vector [ ranges from +/x2 + y2 to av/x2 + y? as a function of # according to
the following equation:

1(6) = \/(z cos 6 + ysin#)2 + a2(zsinf — y cos h)2 (5)

When there are multiple disparity vectors in a particular region of V1, the total wiring length is a sum
of the individual wiring lengths,

L) = Z 1;(0) = Z V/(z; cos f + y; sin )2 + a2(x; sin 6 — y; cos H)2. (6)

Results are not affected by restricting consideration to only the disparity vectors that are within Panum’s
fusional area and intra-hemisphere were considered, as in Reference [12], as shown in Supplementary
Information. The # that minimizes the total wiring length of that region in Equation 6 is presumed to
determine the optimal ocular dominance stripe direction.
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Figure Legends

Figure 1. Images from a model world are mapped to each retina and then mapped back to
a flattened V1. At the top is an artistic representation of the model world generated using Equation
3. Point F denotes the fixation point, and point P is projected onto each of the two retina using the
pinhole eye approximation [31], in which rays from a source point pass straight through the nodal point
of the spherical eye. As shown, the generalized Listing’s planes are rotated by pa from a head-fixed
Listing’s plane, which we assume is perpendicular to the midsagittal plane, though it varies
experimentally from person to person [33-35]. The images of point P on each retina project to V1
neurons whose positions are determined by the retinotopic mapping, which we model using the Schwartz
conformal mapping [36], as discussed in the text. The black arrow in the flattened representation of the
primary visual cortex represents a connection between the two neurons that are sensitive to the same
part of the visual space. This process is repeated for multiple fixation points F and imaged points P.
The grey circle where the dotted lines join represents the optic chasm. The diagram is not to scale.
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Figure 2. Distributions of observed disparities depends on fixation strategy. Figures 2A
and 2B plot vertical and horizontal retinal disparity histograms, respectively, when 5 = 2.15°. All
y-axes are on a log scale. The different line colors, line types, and markers stand for different fixation
strategies, eye rotation strategies, and world types, described in detail in the legend at the top right.
Figures 2C and 2D plot a normalized histogram of observing a particular horizontal disparity and
vertical disparity pair in SphereWorld and PointWorld, respectively, for a simulated user with

6 =2.15° u = 0.25, and an edge-based fixation strategy. Darker regions are more likely than lighter
regions, as indicated by the colorbar at bottom right.
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those in physiological OD maps. Figure 3 shows the inferred OD maps for various combinations of

simulation parameters. Rows of the table correspond to two different values of the primary Listing’s

planes exorotation angle, 5 = 0° and 5 = 2.15°; columns of the table of the table correspond to
binocular disparities in SphereWorld with parameters shown in Figure 6 and disparities in PointWorld
with the equivalent observer-object distance distribution. Each map includes the three fixation
strategies (edges, random, centers) and two eye rotation strategies (L1 and L2) as shown in the legend

at top right. Figure 3B shows an inferred PointWorld OD map using simulation parameters that are

designed to minimize switching eccentricity within bounds for what values of simulation parameters are

realistic, using Dynq: = 3 m, 5 = 2.65°, and p = 0.25. Figure 3C shows a physiological OD map of a

human, generously supplied by Horton and Adams [8]. All inferred OD maps show OD stripes starting
at 90° eccentricity and at eccentricities decreasing successively by 20°.
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Figure 4. L2 does not reduce stereoscopic search zone area when primary Listing’s planes

are exorotated. Figure 4A shows stereoscopic search zones for various combinations of § and p in a
PointWorld environment when D,,,,, = 1 m. Figure 4B shows stereoscopic search zones when
8 =12.65° pu=0.25 and Dy, = 3 m, as in Figure 3B. The blue points denote the point on the retina

for which we calculated the stereoscopic search zone, and the darkness is proportional to the density of

wires that fall in that region of the stereoscopic search zone.
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Figure 5. Exorotated primary Listing’s planes alter the optimal eye rotation strategy,
according to Tweed’s visuomotor optimization theory. Tweed’s visuomotor optimization theory
includes two terms, one motor ({2 + €%)) and one visual ({((Tr — T1)?)), as described in the text. In
Figure 5A and Figure 5B, (2 + ¢%) and ((Tr — T1)?), respectively, are plotted as a function of 3 and u,
with contour lines below the three-dimensional plot. Figure 5C and Figure 5D show how (€2 + €%) and
((Tr — T1)?) vary as a function of L2 coefficient y for two values of 8: 8 = 0° and 3 = 2.15°, the latter
of which corresponds to the physiologically observed primary Listing’s plane exorotation angle. The
value of p which minimizes each curve is marked with a red pentagon and a red line to the y-axis on
each plot for each value of 5. Note that when 8 = 0°, the optimal p from a motor perspective is =0
and the optimal p from a visual perspective is the physiologically observed p =~ 0.25, as noted by Tweed
in Reference [25].
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Figure 6. SphereWorld statistics. At top, an image of SphereWorld. At bottom left, the power
spectrum of the image above, with a best fit line of S(k) ~ k2—%5, which agrees well enough with the
predicted scaling of S(k) ~ . At bottom right, P(r) for the edges, random, and centers, showing
that D,,q. >~ 1 m for all three fixation strategies.



