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Neural Oscillations and Synchrony as Mechanisms for Coding, 

Communication, and Computation in the Visual System 

Friedrich T. Sommer 

Early Investigations of the Visual System 

Oscillatory structure in the mass activity of neurons is prevalent throughout the nervous system 

and across a wide variety of species. The phenomenon was already discovered in the nineteenth 

century by neurophysiologists who recorded from the exposed brain with mirror galvanometers. 

The recorded rhythms were unrelated to structure in the stimuli, as well as to heart or breathing 

rhythms, and thus correctly identified as an intrinsic feature of brain activity (Caton, 1875). Beck 

(1890) investigated the visual system by recording in occipital areas of rabbits and dogs during 

visual stimulation. He reported visually evoked potentials as well as ongoing oscillatory signals 

that could be suppressed by the arrival of stimuli, a phenomenon that is now referred to as 

stimulus-dependent desynchronization (Zayachkivska, Gzegotsky, & Coenen, 2011). While the 

functional interpretation was straightforward for the stimulus-evoked potentials, it remained 

elusive for the oscillatory signals. 

In the 1950s and 1960s, single-cell physiology in visual areas provided a more detailed 

picture of stimulus-evoked and rhythmic activity. Stimulus-dependent spike rate changes 
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revealed the specific responses to localized visual stimuli (Hubel & Wiesel, 1962; Kuffler, 1953) 

in retina, lateral geniculate nucleus, and primary visual cortex. The experimental findings in 

primary visual cortex led to a powerful conceptual model of the two main types of excitatory 

cells involved in visual coding, simple and complex cells. In this model, a simple cell receives 

direct thalamic input and responds selectively to a conjunction of active inputs, thereby detecting 

specific features, such as localized, oriented edges. In contrast, a complex cell pools over several 

simple cells that coincide in certain features, such as a specific orientation, but differ in other 

features, such as location. The response of a complex cell is a disjunctive combination of its 

inputs. Specifically, the cell fires if any of the simple cells it is connected to is active, thereby 

signaling a specific orientation, somewhat independent of its exact location (or spatial phase) 

(Hubel & Wiesel, 1962). This conceptual model of consecutive layers of simple and complex 

cells within a cortical area has led to a canonical hierarchical model of visual processing 

(Fukushima, 1980; Riesenhuber & Poggio, 1999b; Serre, Oliva, & Poggio, 2007a) that will be 

important in what follows. The model describes the visual system as a feedforward cascade of 

processing modules, each consisting of simple-cell-like units that feed into complex-cell-like 

units. The idea is that cascading conjunctive and disjunctive feature combinations could produce 

specific yet invariant visual representations suited for object recognition and other functions 

performed by biological visual systems. 

Single-cell physiology in early stages of the visual system also revealed that spike trains 

often exhibit peaks in the autocorrelation function, in the interspike-interval histogram, or in the 

Fourier transform, even without stimulation. These peaks reflect a dominant periodicity in the 

spiking—a hallmark of neural oscillations. For example, in ganglion cells, oscillatory activity is 

found in both anesthetized (Laufer & Verzeano, 1967; Ogawa, Bishop, & Levick, 1966; 
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Rodieck, 1967) and unanesthetized preparations (Heiss & Bornschein, 1966; Steinberg, 1966). 

While anesthesia can increase neural oscillations, the presence of oscillations in the awake brain 

suggests that they could serve a function in vision. This intrinsic organization discovered in 

neural activity raised the question of its purpose and function. However, it was not until the mid 

seventies that concrete hypotheses about the function of intrinsically paced periodic firing of 

neurons were proposed. 

Correlation Theory of Brain Function 

Based on earlier ideas of Milner (1974) and Grossberg (1976), Christoph von der Malsburg 

(1981) published a technical report entitled “Correlation Theory of Brain Function,” possibly one 

of the highest impact technical reports in scientific history. The report started by identifying 

potential problems with the canonical hierarchical model of visual processing. Two problems 

were highlighted that hamper the model to reproduce the capabilities of biological visual 

systems. First, it cannot explain how the brain solves the problem of identifying objects in 

images. If one stage in the canonical model extracts some set of features, the next higher stage 

loses access to the relative spatial relationships or context between features that would be critical 

to identify objects. For example, if the lower stage extracts local edge and color features in a 

picture of a red triangle and a green square, the higher stage cannot access the information that 

the triangle was red and not the square. This problem of visual feature binding is one instance of 

the more general neural binding problem (Feldman, 2013).  

A second problem of the canonical hierarchical model lies in supporting invariant object 

recognition; that is, the inability to produce representations unique to an object but independent 

of incidental variables, such as position, pose, or scale. As a consequence of the pooling in 
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complex cells, their response is somewhat independent from the exact position of the edge 

structure. For instance, if the stimulus is the character L, its representation, produced by complex 

cells with vertical and horizontal orientation, is invariant under small shifts of the L. However, 

the set of complex cells that represent L’s will also be activated by other shapes with vertical and 

horizontal edges, such as a letter T and other combinations of a vertical and a horizontal edge. 

Thus, representations in the canonical model are invariant but not unique because, like above, 

context is discarded, in this case the exact relative positions of the edge features. 

Von der Malsburg’s report proceeded by sketching how the correlation theory offers a 

solution to these problems. The pivotal proposition of the theory is that the intrinsic structure of 

neural signals is not noise but essential for capturing the otherwise lost contextual information 

between features. This theory, like the canonical model, is only conceptual, not a full-fledged 

computational model. By proposing a set of coherent hypotheses, it became a manifesto about 

potential roles of intrinsic rhythmic activity in the visual system and the brain, spurring, guiding, 

and sometimes also biasing varied experimental and modeling work over the ensuing decades. 

For this reason, I will use four essential elements in the correlation theory as a scaffold to 

structure the material in the remainder of this chapter. 

Is Feature Binding a Problem in Vision? 

The first hypothesis of the correlation theory is that there is a binding problem in vision. It is 

conjectured that in addition to visual features the (contextual) relationships between the features 

have to be encoded for modeling the functions of the visual stream of humans and animals, such 

as producing invariant object recognition or actions. It is further conjectured that it is practically 
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impossible to capture context by just adding contextual features in the canonical hierarchical 

model because of the combinatorial explosion of such features. 

Some researchers argue that there is no binding problem in vision. Barlow (1985) has 

postulated that the visual system might be able to operate if it contained a manageable number of 

“cardinal cells” that represent context between visual features. Since this claim is hard to address 

directly in vision, it has first been investigated in another domain, the representation of text 

documents. It would be quite ambiguous to encode words just by the sets of their characters 

without representing feature context, in this case, the order of letters. For example, word pairs 

like “stare” and “tears” could not be distinguished. However, the use of features that represent 

some limited order information, such as n-tuples of subsequent characters, can decrease the 

ambiguity of the representations drastically and still result in a manageable number of features 

(Wickelgren, 1969). The representation of the above example words by letter pairs is ‘st,’ ‘ta,’ 

‘ar,’ ‘re,’ and ‘te,’ ‘ea,’ ‘ar,’ ‘rs,’ respectively. This representation is already easy to 

disambiguate since there is only one common feature. This result has been used to propose that 

the binding problem of vision could be fully solved by adding a manageable number of 

disambiguating midlevel features in the canonical model (Mel & Fiser, 2000). 

Another argument in support of this view comes from modeling studies. Riesenhuber and 

Poggio (1999a) demonstrated that a simulation of the canonical standard model for vision 

combined with state-of-the-art classifiers can reach high performance in a classification task 

even if the images contain background clutter (i.e., paperclip stimuli, similar to those used in 

Missal, Vogels, and Orban, 1997). Some recent studies further amplified this view by 

demonstrating that the canonical model of vision can reach human-level performance in image 

classification, for example, the task of determining whether or not there is an animal in the scene 
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(Serre et al., 2007b). Criticism has been raised against these demonstrations. For example, a 

method was developed that can trace back which features in an individual image were strongly 

indicative for the presence of animals. In some instances, these features were located in the 

background and not part of the animal (Landecker et al., 2010). Furthermore, it has been argued 

that although classification might be solvable without the full contextual information, other 

behaviorally relevant tasks of the visual system, such as interacting with objects in arbitrary 

poses or producing actions, may not. 

From the perspective of perceptual psychology, Treisman (1999) and Wolfe and Cave 

(1999) argue that a hard binding problem exists in human vision. Illusory conjunctions are 

exquisite examples of this. When subjects must report on the identity of items in briefly 

presented arrays of colored shapes, they often report seeing a stimulus made up of the color from 

one array element and the shape from a different array element (e.g., Prinzmetal, 1981; Treisman 

& Schmidt, 1982). These experiments demonstrate that perceptual features can become unbound 

from their original objects and can be spuriously recombined to form a new object 

representation. 

Is There Feature Binding by Synchrony in the Brain? 

The second hypothesis in the correlation theory proposes a specific neural coding scheme 

whereby the information about feature binding is represented in the brain. It is postulated that the 

synchronous structure of intrinsic fluctuations in neural signals encodes the relationship between 

features. This statement of the correlation theory, often referred to as binding by synchrony, was 

the first to gain strong traction in the field. Starting in the late eighties and continuing for about a 

decade, numerous studies tested this hypothesis in primary visual cortex. Some of the different 
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positions in the field about the validity and usefulness of the binding-by-synchrony hypothesis 

were captured in a series of review articles appearing in a special issue of Neuron (Roskies, 

1999). 

A first wave of experiments reported evidence for the binding hypothesis in primary 

visual cortex of anesthetized cats (Eckhorn et al., 1988; Engel et al., 1991; Gray et al., 1989). 

During visual stimulation these studies reported prominent gamma-band activity (30–60 Hz). 

The coherence of these oscillations in simultaneously measured cells was larger if the cells 

represented features that were part of a common object than if the cells represented features of 

two independent objects. A second wave of experiments investigated the existence of stimulus-

evoked gamma-band oscillations in visual areas of monkeys, with somewhat mixed results (for 

reviews see Gray, 1999; Shadlen and Movshon, 1999). Oscillatory activity was not evident either 

in inferotemporal cortex in alert monkeys (Tovee & Rolls, 1992) or in striate cortex or middle 

temporal visual cortex of anesthetized monkey (Young, Tanaka, & Yamane, 1992). On the other 

hand, it was demonstrated that gamma-band activity is a robust property of neural responses in 

V1 and V2 of alert and also anesthetized monkey (Eckhorn et al., 1993; Friedman-Hill, 

Robertson, & Treisman, 1995; Frien et al., 1994). 

Another line of experiments argued against the idea that binding takes place specifically 

in the cortex because high gamma-band activity is often not stimulus dependent and can be 

driven by gamma-band activity in the lateral geniculate nucleus (LGN) (Ghose & Freeman, 

1992, 1997). 

Reynolds and Desimone (1999) acknowledge that the binding problem exists for illusory 

conjunctions. However, they argue that most experimental evidence suggests that the problem is 
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solved by top-down mechanisms of attention rather than by a bottom-up binding-by-synchrony 

mechanism. 

A number of theoretical studies have proposed alternative memory-based models of how 

the binding problem in vision could be solved without resorting to neuronal synchrony. One is 

the shifter circuit or routing circuit model (Anderson & Van Essen, 1987; Olshausen, Anderson, 

& Van Essen, 1993); another related model is the map-seeking circuit (Arathorn, 2002). The 

map-seeking circuit is able to solve challenging invariant recognition tasks in real images. 

However, there has been no direct experimental evidence for either of these models. 

Do Neural Oscillations Enable Signal Communication? 

The correlation theory makes an important statement about signal communication between 

different sets of neurons. It suggests that fast intrinsic signal fluctuations carry contextual 

information in a frequency band that is separated from the frequency band corresponding to 

feature changes in stimuli which occur at a slower, behaviorally relevant time scale. It also 

describes how correlations of signal fluctuations can route the contextual information 

specifically to downstream targets that receive convergent input from features grouped within the 

same context. Von der Malsburg hypothesized different signal propagation paths that could 

benefit from such multiplexing of information: bottom-up, conveying sensory information from 

lower to higher visual areas, and top-down, such as in visual attention. In the last 15 years, this 

communication aspect of the correlation theory has probably received the most attention from 

neuroscience. 
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Multiplexing 

Various multiplexing schemes have been developed in engineering to communicate multiple 

messages separately in a single information channel. They fall under two broad classes. In time 

division multiplexing, the time axis is divided into interleaved nonoverlapping time windows, 

each exclusively reserved for one of the messages. This scheme works if the sampling rate of the 

time window is above the Nyquist limits of the signals to be communicated. In frequency 

division multiplexing, the frequency domain is divided into nonoverlapping frequency bands, 

each carrying one of the messages. If the transmitted signals occupy overlapping frequency 

bands, frequency-division multiplexing relies on methods for shifting signals to nonoverlapping 

bands in the frequency domain. 

It is instructive to apply these definitions from engineering to the communication with 

spike trains in the brain. Clearly, the correlation theory proposes a form of frequency-division 

multiplexing, as it assumes that the intrinsic fluctuations used for coding context are in a higher-

frequency regime than the signal changes directly reflecting sensory inputs. At the same time, the 

mechanisms postulated for synchronizing periodic fluctuations between neurons introduce a 

scheme of time-division multiplexing within the high-frequency band. If a group of neurons 

represents features with a common context, their rhythmic activity synchronizes and confines the 

neurons’ firing to narrow time windows within the oscillation cycle. If the integration window of 

downstream neurons is small enough, this temporal patterning allows neurons with a common 

context to recruit downstream neurons preferentially. This selection effect has been called 

feedforward coincidence detection (Fries, 2009) and has been observed experimentally in 

cortical neurons (Bruno & Sakmann, 2006). Furthermore, it has been revealed that the activity of 
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inhibitory interneurons in cortical areas can exhibit strong power in the gamma range. Thus, the 

alignment or de-alignment of the phases of inhibition with the time windows of synchronized 

excitatory input provides a mechanism for how neurons can actively select which inputs they are 

sensitive to (Fries, Nikolic, & Singer, 2007). For simulation experiments exploring feedforward 

coincidence detection and input selection by inhibition, see Tiesinga, Fellous, and Sejnowski 

(2008). 

There is evidence in various sensory systems that the meaning of a spike can depend on 

the phase of a reference signal (Friedrich, Habermann, & Laurent, 2004). For a theoretical model 

showing how the relative phase of a reference oscillation can be used to multiplex multiple 

visual signals in one spike train, see Nadasdy (2009). 

Gamma Enhancement during Visual Attention 

Strong evidence has been presented supporting the idea that coherence in neuronal fluctuations 

might be crucial in mediating top-down effects of attention (Engel, Fries, & Singer, 2001). For 

example, in a study where alert monkeys attended to behaviorally relevant stimuli while ignoring 

distractors, it was shown that V4 neurons activated by attended stimuli exhibited increased 

gamma activity compared to neurons nearby in V4 that were activated by distractors (Fries et al., 

2001). Another study reported a direct correlation between gamma-band synchrony and visually 

triggered behavior. The response time to a stimulus change can be predicted by the degree of 

gamma-band synchronization among those neurons in monkey visual area V4 that are activated 

by the behaviorally relevant stimulus (Womelsdorf et al., 2006). 
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Bottom-Up Communication in the Visual System 

In addition to endogenous rhythms, the cortex also seems to inherit oscillations that emerge in 

retina and LGN (Castelo-Branco, Neuenschwander, & Singer, 1998; Ghose & Freeman, 1992, 

1997; Neuenschwander & Singer, 1996) and which are present both with and without anesthesia 

(Heiss & Bornschein, 1965, 1966). In spike trains from retina and LGN, the gamma oscillations 

and the stimulus-evoked changes are well separated in the frequency domain. The visual 

information encoded by spike rate occupies only the lower 25 Hz of the frequency spectrum, 

reflecting the fact that the spectral power of natural visual signals decays as the inverse of the 

frequency (Dong & Atick, 1995). 

A recent study investigated how oscillations in the retina might be used by the thalamus 

to transmit information downstream (Koepsell et al., 2009). It was shown that the spike trains of 

a single thalamic relay cell can transmit two separate streams of information, one encoded by 

firing rate and the other in gamma oscillations (Koepsell et al., 2009). The study combined 

computational methods (Koepsell & Sommer, 2008) with the technique of whole-cell recording 

in vivo (Wang et al., 2007), which allowed the detection of both retinothalamic synaptic 

potentials and the action potentials they evoke from single relay cells. In other words, it was 

possible to reconstruct the spike trains of the inputs and outputs of single relay cells. In many 

cells, it was found that both spike trains had an oscillatory component. To explore whether or not 

these oscillations were transmitted by the thalamic cell, the phase of the oscillation of the retinal 

inputs was used to dejitter the timing of thalamic spikes across repeated trials of the stimulus. 

The result of the realignment was dramatic, as illustrated in figure 89.1A. Although the 
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oscillation was not visible in the raw peristimulus histogram (PSTH), it generated a pronounced 

modulation in the amplitude of the PSTH made from the dejittered signal (see figure 89.1B). 

 

 

 

 

 

 

 

 

 

 

Figure 89 

By estimating the amount of information conveyed by the dejittered spike train, it was 

shown that most relay cells receiving periodic synaptic inputs transmitted a significant amount of 

information in the gamma frequency band. For some cells, the amount of information in the 

oscillation-based (high-frequency) channel was several fold higher than that conveyed by the 

rate-coded channel (1.2 vs. 0.4 bits/spike in the example shown in figures 89.1C and 89.1D). 
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Thus, gamma oscillations in retina and thalamus provide a channel for conveying information 

through LGN to the cortex. 

There are various possibilities for how this channel could contribute to visual function. 

One is the case in which the retinal oscillations do not contain information about the visual 

stimulus. Even if the oscillations are an uninformative carrier, they might increase the amount of 

information about local retinal features transmitted by the thalamic rate code. They would do so 

by a process akin to amplitude modulation, in which information about the retinal feature is 

reproduced in the frequency band of the oscillations. This redundant information could be read 

out and decoded in the cortex by mechanisms such as feedforward coincidence detection. A 

specific role for the oscillation-based channel could be denoising. Further, the modulation of the 

afferent spike train with a carrier might enable cortical oscillations to route the incoming sensory 

information or to direct attention to a particular feature. 

A second possibility is that retinal oscillations are influenced by the stimulus, 

specifically, by displacements of the retinal image caused by eye movements. Thus, periodic 

activity in the retina might encode spatial information in the temporal domain, similar to the 

whisker system (Ahissar & Arieli, 2001; Rucci, 2008). This idea is motivated by the similarity 

between the dominant frequency bands in the local field potential recorded from primary visual 

cortex and fixational eye movements (note also that oscillatory eye movements are found in 

species ranging from turtle to humans; Greschner et al., 2002; Martinez-Conde, Macknik, & 

Hubel, 2004). 

A third potential role for retinal oscillations involves computational analysis of visual 

stimuli. Since retinal oscillations are formed by distributed networks, they might be sensitive to 

spatially extensive features and/or context. In fact, there are many models of oscillatory neural 
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networks that are able to transform spatial structure from visual input into temporal structure in 

neural activity. These models, which were originally developed to simulate cortical 

computations, are built with phase-coupled oscillatory neurons, for example, Baldi and Meir 

(1990), Schillen and Koenig (1994), Sompolinsky, Golomb, and Kleinfeld (1991), Sporns, 

Tonioni, and Edelman (1991), Ursino et al. (2006), von der Malsburg and Buhmann (1992), and 

Wang and Terman (1997). It would be worthwhile to further develop such models for describing 

and exploring possible roles of oscillations in retinal and thalamic function. What needs to be 

tested experimentally is whether the oscillation-based channel might transmit large-scale 

information such as segments in the retinal image, conveying the gist of a scene (Navon, 1977). 

Through feedforward coincidence detection the oscillations could preferentially activate cells in 

V1 whose features are most consistent with the image segments. Thus, retinal and thalamic 

oscillations could help select cortical visual representations that not only carry fine-grained 

image information but are also helpful for guiding behaviors like object recognition or the 

interaction with objects (Koepsell et al., 2010). 

A behavioral role for retinal gamma oscillations along those lines has been clearly 

established in the frog. Specifically, looming stimuli designed to simulate shadows cast by 

predators evoke synchronous oscillatory discharges in neural “dimming detectors.” By contrast, 

small dark spots that mimic prey fail to induce such activity (Ishikane, Kawana, & Tachibana, 

1999). The consequence of the synchronous oscillations among retinal dimming detectors is 

important for an animal’s survival since it triggers escape behavior (Arai et al., 2004). Further 

strengthening the link between synchronous retinal activity and behavior, it was shown that 

pharmacological suppression of gamma oscillations abolishes escape responses but spares the 

slower modulation of spike rate evoked by small objects (Ishikane, 2005). Thus, in the frog, 
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information about different types of visual signals seems to be multiplexed in different frequency 

bands of neural spike trains. 

Cross-Frequency Coupling 

Studies in a variety of sensory systems have shown that the power of gamma oscillations is 

modulated by the phase of lower-frequency intrinsic brain rhythms, such as theta waves (Canolty 

et al., 2006; Lakatos et al., 2005) and alpha waves. It is believed that this modulation of the 

gamma power could shape the brain activity into cycles for selection and processing of a 

particular aspect of sensory input (Fries, 2009; Schroeder & Lakatos, 2009) (see also Freeman, 

2000). 

Biological Mechanisms Supporting Visual Processing with Neural Oscillations 

The correlation theory makes a very specific hypothesis about the basic computational 

mechanism involved in visual processing. It postulates that a fast form of synaptic plasticity (or 

learning) is crucial for encoding of context information and for forming invariant visual 

representations (Bienenstock & von der Malsburg, 1987; Wiskott & von der Malsburg, 1996). 

Such fast synaptic plasticity could easily interact with neuronal oscillations to introduce 

correlations between neurons for representing related items. Interestingly, this postulate predated 

the discovery of fast types of synaptic plasticity such as spike-timing dependent plasticity 

(STDP) (Bi & Poo, 1998; Markram et al., 1997). However, although some studies have reported 

response changes of visual neurons induced by STDP during vision (Yao & Dan, 2001), 

currently there seems to be little evidence that the interaction between oscillations and STDP is a 

crucial mechanism for visual perception. 
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There is a large body of literature studying the mechanisms for the production and 

synchronization of oscillations in cortical circuits (Bartos, Vida, & Jonas, 2007; Tiesinga & 

Sejnowski, 2009). Specifically, three mechanisms have been proposed for producing synchrony 

in a cortical region (Tiesinga & Sejnowski, 2009). First, by inheritance of synchrony from 

upstream areas via their feedforward projections (Ghose & Freeman, 1997; Koepsell et al., 2009; 

Neuenschwander & Singer, 1996; Tiesinga, Fellous, & Sejnowski, 2008); second, by activation 

of inhibitory networks via the interneuron gamma (ING) mechanism (Whittington, Traub, & 

Jeffreys, 1995); and third, by activation of reciprocally connected networks of excitatory and 

inhibitory neurons via the pyramidal-interneuron gamma (PING) mechanism (Börgers & Kopell, 

2005) as reviewed in Whittington et al. (2000). In the ING mechanism, only small effects are 

expected from activating the excitatory cells whereas activating inhibitory cells will increase the 

inhibitory cell firing rate and synchrony. Recent optogenetic methods allow for testing these 

proposed mechanisms quite directly. Studies that selectively modulated the activity in 

interneurons with optogenetic methods favored the PING mechanism (Cardin et al., 2009; Sohal 

et al., 2009). However, there is also experimental support for ING (Whittington, Traub, & 

Jeffreys, 1995), and the current evidence for PING is not strong enough to rule out ING entirely 

(Tiesinga & Sejnowski, 2009). 

Conclusions: The Rise and Fall, and Rise Again, of Oscillations 

More than a generation after the appearance of von der Malsburg’s technical report, opinions and 

viewpoints regarding the significance of oscillatory activity for visual processing in the brain 

have undergone several fundamental shifts. In the late nineties, the discussion was quite 

narrowly focused on two aspects of gamma oscillations, evidence for the binding-by-synchrony 
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hypothesis and assessments of how reliably stimulus-evoked gamma oscillations occur during 

visual perception. Following this first wave of experiments and modeling, it appeared that the 

evidence for binding by synchrony, though existent, was not conclusive. Likewise, stimulus-

evoked gamma oscillations were reported in some experimental configurations but not in others. 

In the face of these quite inconclusive results, it might appear surprising that studies of 

oscillatory neural activity would increase throughout the 2000s rather than die out. These newer 

studies differ from those of the first generation by a shift in perspective and also by taking a 

broader outlook. For example, Pascal Fries and colleagues (see chapter 71) have studied how the 

coherence of gamma oscillations in higher visual areas is correlated with focused attention 

necessary to solve a visual task in the presence of distractors (Fries et al., 2001). Rather than 

considering attention as a competitor to oscillation-based computations, the question here is how 

oscillatory mechanisms might be involved in creating attention-dependent biased competition 

between different sensory inputs. The involvement of oscillatory activity in focused attention and 

its impact on behavior has now become well established in the field. 

Renewed interest in gamma oscillations has also come about as the result of new methods 

and findings in neuroscience. First, new optogenetic techniques allow for dissecting the 

mechanisms for how pyramidal cells and interneurons are involved in the generation of gamma 

oscillations and their synchronization (Sohal et al., 2009). Second, the coupling of gamma 

oscillations to other, slower and more global brain waves has become an active field of research 

(Canolty et al., 2006). Third, there is now increased awareness that gamma oscillations in 

primary visual cortex have multiple origins, and so there is probably not a unique functional 

interpretation, such as binding by synchrony. To disentangle the puzzle, the reexamination of 
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oscillations in the early visual pathway (Ghose & Freeman, 1997; Neuenschwander & Singer, 

1996) may be crucial. 

The strong impact of correlation theory in driving the investigation of oscillatory 

neuronal activity in vision is a striking example of the lasting power that a computational theory 

can have. However, since its inception, many new experimental methodologies and observations 

have emerged, and our appreciation of the challenges of visual processing has matured. Thus we 

may seek to extend the original theory to address the current incarnations of some fundamental 

open questions: How can oscillatory structure as observed in brain activity contribute to the 

powerful parallel and recurrent computations that neural circuits seem to perform? Can 

oscillation-driven schemes close the performance gap between brains and computer algorithms? 

To approach these questions, theorists should design models of how oscillations, as observed in 

brain activity, can produce, organize, and drive distributed computation. Such models can be 

tested on technical benchmark problems, for example in image recognition. In tasks that 

biological visual systems can solve, these models should favorably compare to state-of-the-art 

computer algorithms and clearly outperform the canonical feedforward model of vision. In 

addition to influencing technology, such computational models might motivate and guide future 

experiments to yield a deeper understanding of the periodic structure of brain activity. 
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Figure 89.1 

Multiplexed information (Inf.) in the lateral geniculate nucleus. (A) Event times aligned to 

stimulus onset displayed as averaged spike rate (red curve) and rasters for spikes (red) and 

excitatory postsynaptic potentials (EPSPs) (blue) for 20 trials of a movie clip; spike rasters were 

smoothed with a Gaussian window (2 ms) before averaging. (B) Responses corrected for small 

variation in latency (< 10 ms) by aligning the phase of the periodicity in the ongoing (retinal) 

activity that preceded stimulus onset; conventions as in A. (C) Top, power spectrum of thalamic 

spike trains decomposed into signal (solid line) and noise (dashed line). Bottom, estimate for 

spectral information rate, taken from the area under the curve, is 12.7 bit/s; the mean spike rate 

of 29 spikes/s yields a value of 0.4 bit/spike. (D) Power spectrum (top) of dejittered spike train 

decomposed into signal (solid line) and noise (dashed line); spectral information rate (bottom). 

Dejittering increased the total information from 0.4 bit/spike (C) to 1.2 bit/spike (Koepsell et al., 

2009). The movie stimulus was presented with 19–50 frames/s on a monitor with a high refresh 

rate (140 Hz). The neural response did not lock to the frame update or monitor refresh. Reprinted 

from Koepsell et al. (2010). 


