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Abstract. We classify all functions on a locally compact, abelian, compactly gen-
erated group giving equality in an entropy inequality generalizing the Heisenberg
Uncertainty Principle.

0. Introduction and Background.

The Heisenberg inequality essentially states that a function (of a real variable) and its

Fourier transform cannot both be arbitrarily concentrated. However there is no straight-

forward analog of the Heisenberg inequality even for functions de¯ned on a ¯nite cyclic

group (one problem is that the \position operator" does not make sense in this case). One

way around this problem is to consider the Lp norms of a function, for 1 < p < 1 (see

[B1], [B2], [L] and their references for a sample of the extensive literature in this direc-

tion). More to the point is via information theory, where the de¯nitive measure of the

concentration of a (probability density) function is entropy [S].

The entropy approach in the continuous case goes back to Hirschman, who in 1957

proved that the sum of entropies of a function f of a real variable, with k f k2= 1, and

its Fourier transform is nonnegative [Hi]. He also observed that Weyl's formulation of the

Heisenberg Uncertainty Principle is a consequence of a stronger version of this inequality,

namely

(0.1) ¡
Z

R
jf(x)j2log(jf(x)j2)dx¡

Z

R
jf̂(»)j2log(jf̂(»)j2) d» ¸ log(

e
2
);

where the log stands for the natural logarithm with base e, f 2 S(R), the Schwartz space

(see [H1]) and k f k2= 1. This was proven by Beckner in 1975, [B1].
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In [Hi], Hirschman also conjectured that the minimizers for the sharp inequality (0.1)

were Gaussians, as is the case for the Heisenberg Uncertainty Principle. The special case

of our main theorem (1.5) below, where the group A is chosen to be the additive group of

real numbers, veri¯es this conjecture. The related problem of ¯nding all the maximizers

realizing the norm of the Fourier transform viewed as an operator from Lp(Rn) to Lq(Rn)

was solved by Lieb (see [L] and the references there).

There is an analog of (0.1) for functions f de¯ned on a ¯nite cyclic group, proved

in [D-C-T], with applications in Signal Processing. The minimizers for this ¯nite case

were determined in [P-D-O] (verifying the conjecture in [D-O-P]). This corresponds to

choosing a ¯nite cyclic group as A in our main theorem (1.5). These minimizers depend

on the factorization of the order of the ¯nite cyclic group and are not "Gaussians" or

discretized Gaussians. This discrepancy between the ¯nite and the continuous case seems

to be unexpected in the Signal Processing community. In fact the main motivation for our

result was to certify this fundamental di®erence.

Another Uncertainty Principle in the ¯nite case, due to Donoho and Stark, [D-S], states

that the product of the cardinalities of the support of a function (de¯ned on a ¯nite cyclic

group) and the support of its Fourier transform is no less than the order of the group.

This inequality follows from the Heisenberg - Weyl (entropy) version, [D-C-T]. It turns out

that the minimizers for both versions are exactly the same functions, [P-D-O]. The main

theorem below classi¯es the minimizers of the entropy inequality in the multidimensional

case where the ¯nite cyclic group may be replaced by an arbitrary ¯nite abelian group.

We shall provide an elementary proof of the Donoho-Stark inequality and of the fact that

the minimizers are the same as for the entropy inequality (for an arbitrary ¯nite abelian

group), in [M-ÄO-P].

We believe that working with an arbitrary locally compact, abelian, compactly gener-

ated group A, which includes the continuous case A = Rn and the multidimensional ¯nite

case as well as many other cases (e.g. p-adic numbers, adeles [W], etc.), is not super-

°uous generality. This generality not only led to a simpli¯cation and clari¯cation of our

arguments but we feel it will be relevant even for future applications in Signal Processing.

We would like to thank Waldemar Hebisch for the reference [B1], and William Beckner

for the reference [L].
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1. The Main Theorem.

Let A be a locally compact abelian group. As was explained to the second author by

Michael Cowling, a result of Ahern and Jeweet [A-J], together with [H-R, 9.8], imply that

A is isomorphic to the direct product of a ¯nite number of copies of R (the reals) and an

abelian locally compact group B which contains an open compact subgroup:

(1.1) A = Rn £B:

Let Â be the Pontriagin dual of A. Then Â = Rn £ B̂, where B̂ also contains an open

compact subgroup. Let ® be a Haar measure on A and let ®̂ be the Haar measure on Â,

dual to ®, so that the Fourier transform and the inverse Fourier transform are given by

the following formulas

(1.2)
f̂(â) =

Z

A
f(a) â(¡a) d®(a) (â 2 Â);

f(a) =
Z

A
f̂(â) â(a) d®̂(â) (a 2 A);

whenever both integrals make sense.

Let G µ U(L2(A; ®)) be the (Heisenberg) group generated by the translations and the

modulations:

(1.3) Ta0f(a) = f(a+ a0); Mâ0f(a) = â0(a)f(a);

(f 2 L2(A;®); a0; a 2 A; â0 2 Â);

and by multiplications by complex numbers of absolute value 1. Recall the notion of

entropy of a probability density Á on a measure space (M;¹):

(1.4) H(Á) = ¡
Z

M
Á(m)log(Á(m)) d¹(m);

which is well de¯ned whenever the integral (1.4) is absolutely convergent, (see [S]). Here

the log stands for the (natural) logarithm with base e.
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Theorem 1.5. For any function f 2 L2(A;®), with k f k2= 1, satisfying

(¤) f 2 L1(A;®) and f̂ 2 L1(Â; ®̂)

the following inequality holds

(a) H(jf j2) +H(jf̂ j2) ¸ n log(e
2
);

where `n' is de¯ned in (1.1). The set of minimizers for (a) coincides with the union of

orbits

(b) G ¢ f;

where, according to the decomposition (1.1), f = g h, g is a normalized Gaussian on Rn

and h is the normalized indicator function of a subgroup of B.

Here by a Gaussian on Rn we understand a function of the form g(x) = const e¡Q(x),

x 2 Rn, where Q is a positive de¯nite quadratic form on Rn.

We proof the Theorem (1.5.b) in the next three sections. The ¯rst assertion of the

theorem (1.5.a), is essentially known. When A = Rn it is due to Beckner, [B1]. When

A is a ¯nite abelian group it can be found in [D-C-T, p1513]. The general case can be

obtained by taking the left derivative of both sides of the inequality (4.1) below, at p = 2

(since (4.1) is an equality for p = 2). The assumption (1.5.¤) assures that all the integrals

we are going to consider converge, and that, in an appropriate context, we shall be able to

reverse the order of di®erentiation and integration. These details are left to the reader.

2. The case A = B.

Let f be a minimizer for (1.5.b). Consider the following function

(2.1) F (z) =
Z

Â
(jf j2z fjf j )̂(â) jf̂(â)j

2z f̂(â)
jf̂(â)j

d®̂(â) (z 2 C; 1
2
· Re(z) · 1);

where f
jf j = 0 outside the support of f , and similarly for f̂

jf̂j . The integral (2.1) is absolutely

convergent. Indeed, a straightforward application of HÄolder's inequality and the Riesz-

Thorin Theorem shows that for 1
2 · x · 1, y 2 R, p = 1

x and q de¯ned by the equation
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1
p + 1

q = 1 (with q =1 if p = 1), we have

(2.2) jF (x+ iy)j ·k (jf j2x+i2y fjf j )̂ kq ¢ k jf̂ j
2x+i2y kp·k jf j2x+i2y kp ¢ k jf̂ j2x+i2y kp

=k f k2 ¢ k f̂ k2= 1:

The function F is analytic in the open strip (2.1) and continuous in the closed strip. A

straightforward calculation shows that

F 0(z) =
Z

Â
(jf j2z fjf j log(jf j

2))̂(â) jf̂(â)j2z f̂(â)
jf̂(â)j

d®̂(â)

+
Z

Â
(jf j2z fjf j )̂(â) jf̂(â)j2z f̂(â)

jf̂(â)j
log(jf̂(â)j2)d®̂(â):

Hence, by the Plancherel formula,

(2.3) F 0(
1
2
) = ¡H(jf j2)¡H(jf̂ j2):

Since f is a minimizer, the right hand side of the equation (2.3) is zero. In particular

ReF (z) is a real valued harmonic function, on the interior of the disc of radius 1
4 centered

at z = 3
4 , which achieves the maximum at z = 1

2 and has derivative equal to zero at

this point. Hence the Hopf's Maximum Principle, [H2, Theorem 3.1.6'], implies that

ReF (z) = 1 on the disc. Hence, F (z) = 1 on the disc. In particular,

(2.4) 1 = F (1) =
Z

Â
(jf jf )̂(â)jf̂(â)jf(â) d®̂(â):

The formula (2.4) may be rewritten as

(2.5) 1 =
Z

Â

Z

A
jf(a)j2jf̂(â)j2â(¡a) f(a)

jf(a)j
f̂(â)
jf̂(â)j

d®(a) d®̂(â):

Since,

1 =
Z

Â

Z

A
jf(a)j2jf̂(â)j2 d®(a)d®̂(â)

the equation (2.5) implies that (almost everywhere, with respect to the measure ® £ ®̂),

we have

(2.6) 1 = â(¡a) f(a)
jf(a)j

f̂(â)
jf̂(â)j

(a 2 supp f; â 2 supp f̂):



6

Hence,

â(¡a) =
f(a)
jf(a)j

f̂(â)
jf̂(â)j

Thus for â 2 supp f̂

f̂(â) =
Z

A
f(a)â(¡a) d®(a) =

Z

A
f(a)

f(a)
jf(a)j d®(a)

f̂(â)
jf̂(â)j

=k f k1
f̂(â)
jf̂(â)j

:

Therefore

(2.7) jf̂(â)j =k f k1 (â 2 supp f̂);

and similarly

(2.8) jf(a)j =k f̂ k1 (a 2 supp f):

The statement (2.7) implies that the function jf̂ j is constant on its support. Since k f̂ k2=
1, the constant is equal to ®̂(supp f̂)¡1=2. Hence,

H(jf̂ j2) = log(®̂(supp f̂)):

Similarly

H(jf j2) = log(®(supp f)):

Since f is a minimizer,

log(®(supp f) ¢ ®̂(supp f̂)) = 2
³
H(jf j2) +H(jf̂ j2)

´
= 0:

Therefore

(2.9) ®(supp f) ¢ ®̂(supp f̂) = 1:

We may assume that 0 2 supp f̂ and 0 2 supp f . Then (2.7) implies
¯̄
¯̄
Z

A
f(a) d®(a)

¯̄
¯̄ =

Z

A
jf(a)j d®(a):

Therefore there is ¸ 2 C such that f = ¸jf j. Hence (2.7) may be rewritten as

(2.10)
¯̄
¯̄
Z

A
¸jf(a)jâ(¡a) d®(a)

¯̄
¯̄ =

Z

A
jf(a)j d®(a) (â 2 supp f̂):
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Therefore

(2.11) supp f̂ µ (¡supp f)?;

where for a subset S µ A, S? = fâ 2 Â; âjS = 1g. Similarly (2.8) implies

(2.12) supp f µ (supp f̂)?:

By dualizing (2.11) and (2.12) we deduce

(2.13)
¡ supp f µ (¡supp f)?? µ (supp f̂)?; and

supp f̂ µ (supp f̂)?? µ (supp f)?

But, as is well known (see (1.2)),

(2.14) ®̂((supp f̂)?) ¢ ®((supp f̂)??) = 1:

By combining (2.9), (2.13) and (2.14) we see that the inclusions (2.13) are equalities

(almost everywhere). In particular supp f is a subgroup of A and f is invariant under the

translations by this subgroup. Thus f is a constant multiple of the indicator function of a

subgroup of A, as claimed.

3. The case A = Rn.

In this section we consider A = Rn and we identify Â with A via the formula

â(b) = e2¼ia¢b (a; b 2 Rn);

where a ¢ b = a1b1 + a2b2 + :::+ anbn is the usual dot product in Rn. Then the Lebesgue

measure dx serves as the Haar measure d®(x) and as the dual Haar measure d®̂(x).

Our proof follows closely some arguments of Lieb, [L]. Let F 2 L1(Rn £Rn)\L2(Rn£
Rn), and let

F (»̂; y) =
Z

Rn
e¡2¼i»¢xF (x; y)dx (x; y 2 Rn)

denote the partial Fourier transform with respect to the ¯rst variable. Also, for conve-

nience, let

F (»̂; ^́) =
Z

Rn

Z

Rn
e¡2¼i(»¢x+´¢y)F (x; y) dx dy (»; ´ 2 Rn)
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denote the Fourier transform of F . From now on we assume that k F k2= 1. For 1 < p < 2

and for q, de¯ned by the equation 1
p + 1

q = 1, we deduce the following inequalities from

[B1], as in [L, page 193]:

(3.1)

Z

Rn

Z

Rn
jF (»̂; ^́)jq d» d´

· (Ap)nq
Z

Rn

µZ

Rn
jF (»̂; yjp dy

¶ q
p

d»

· (Ap)nq
ÃZ

Rn

µZ

Rn
jF (»̂; yjq d»

¶p
q

dy

! q
p

· (Ap)2nq
µZ

Rn

Z

Rn
jF (x; y)jp dxdy

¶ q
p

;

where Ap =
³
p

1
p =q

1
q

´ 1
2

is the Babenko - Beckner constant, see [Ba] and [B1, page 162]. If

p = 2, all the inequalities in (3.1) are equalities. Hence, by taking the left derivative with

respect to p, at p = 2, we deduce the following inequalities:

(3.2)

¡
Z

Rn

Z

Rn
jF (»̂; ^́)j2log(jF (»̂; ^́)j)d» d´

¸ n
2
log(

e
2
)¡
Z

Rn

µZ

Rn
jF (»̂; y)j2 dy

¶
log
µZ

Rn
jF (»̂; y)j2 dy

¶
d»

+
Z

Rn

Z

Rn
jF (»̂; y)j2log(jF (»̂; y)j) dy d»

¸ n
2
log(

e
2
)+
Z

Rn

µZ

Rn
jF (»̂; y)j2 d»

¶
log
µZ

Rn
jF (»̂; y)j2 d»

¶
dy

¡
Z

Rn

Z

Rn
jF (»̂; y)j2log(jF (»̂; y)j) dy d»

¸ n log( e
2
)+
Z

Rn

Z

Rn
jF (x; y)j2log(jF (x; y)j)dx dy:

Suppose the function F is a minimizer for R2n = Rn £ Rn. Then (3.2) implies that the

following equation holds

(3.3)

¡
Z

Rn

Z

Rn
jF (»̂; y)j2log(jF (»̂; y)j2) d» d´

= ¡
Z

Rn

µZ

Rn
jF (»̂; y)j2 dy

¶
log
µZ

Rn
jF (»̂; y)j2 dy

¶
d»

¡
Z

Rn

µZ

Rn
jF (»̂; y)j2 d»

¶
log
µZ

Rn
jF (»̂; y)j2 d»

¶
dy:



9

Hence, by Shannon, [S], the following equation holds almost everywhere on R2n:

(3.4) jF (»̂; y)j2 =
Z

Rn
jF (»̂; s)j2ds

Z

Rn
jF (t̂; y)j2dt:

The rest of the proof is straightforward. We reproduce an argument of Lieb in a concise

form [L, pp 202, 203], for readers convenience.

Let f be a minimizer for the inequality (1.5.a) for Rn, and let g(y) = 2n
4 e¡¼y¢y, y 2 Rn.

Then the tensor product, f(x)g(y) is a minimizer for R2n. Since the rotation

Rn £ Rn 3 (x; y)!
µ
x+ yp

2
;
x¡ yp

2

¶
2 Rn £ Rn

leaves the Lebesgue measure invariant and commutes with the Fourier transform, the

function

(3.5) F (x; y) = f
µ
x+ yp

2

¶
g
µ
x¡ yp

2

¶

is also a minimizer for R2n.

A straightforward calculation shows that

(3.6)
F (»̂; y) = 2

n
4 e¡¼(»¢»+y¢y)Q(¼(y ¡ i»)); where

Q(w) = e¡
1
¼w¢w

Z

Rn
e¡

¼
2 t¢t+2w¢tf

µ
tp
2

¶
dt (»; y; w 2 Rn):

The function Q extends to an analytic function on Cn. Clearly, there are ¯nite constants

c1 and c2 such that

(3.7) jQ(w)j · c1ec2jwj
2

(w 2 Cn):

Let M(»; y) = Q(¼(y ¡ i»)), and let M¤(»; y) = M(»; y), »; y 2 Cn. Then M and M¤ are

analytic functions on Cn £Cn and

M(»; y)M¤(»; y) = jF (»̂; y)j22¡n=2e2¼(»¢»+y¢y) (»; y 2 Rn):

Hence, by (3.4), there are functions M1, M2 such that

(3.8) M(»; y)M¤(»; y) = M1(»)M2(y) (»; y 2 Rn):
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It is easy to see that the functions M1 and M2 extend to analytic functions on Cn and

that the equation (3.8) holds for all »; y 2 Cn. The zero set of the left hand side of (3.8)

is the union of sets of the form

f(»; y) 2 Cn £ Cn; y ¡ i» = zg; f(»; y) 2 Cn £ Cn; y + i» = zg (z 2 Cn):

On the other hand, the zero set of the right hand side of (3.8) is the union of sets of the

form

f»g £ Cn; Cn £ fyg (»; y 2 Cn):

Since the function (3.8) is not identically equal to zero we see from the above, that it has

no zeros. Thus the function F (»̂; y) has no zeros. Therefore the function

Cn 3 » ! log(F (»̂; 0)) 2 C

is well de¯ned, analytic, and satis¯es the following estimate

jlog(F (»̂; 0))j · log(c1) + c2j»j2 (» 2 Cn):

Hence, by the Cauchy estimate, there is a symmetric matrix A with complex entries, a

vector B 2 Cn and a number C 2 C such that

log(F (»̂; 0)) = »tA» + B ¢ » + C (» 2 Cn):

Therefore

F (»̂; 0) = e»
tA»+B¢»+C (» 2 Rn):

Since the above function is integrable, the matrix A is real and positive de¯nite. Hence,

by Fourier inversion, the function F (x; 0) is a translation and a modulation of a Gaussian.

Since F (x; 0) = f( xp
2
)g( xp

2
), we see that f is also a translation and a modulation of a

Gaussian.

4. The general case.

In this section A = Rn £ B, where B contains an open compact subgroup. Let ¯ be

a Haar measure on the group B, and let ^̄ be the dual Haar measure on the dual group
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B̂. Then dxd¯(b) is a Haar measure on A and dxd ^̄(b̂) is the dual Haar measure on

Â = Rn £ B̂.

Notice that by Riesz-Thorin, Beckner and Minkowski we have for a suitable function f

(with 1 < p · 2 and q de¯ned by 1
p + 1

q = 1),

Z

Rn

Z

B̂
jf̂(b̂; »)jqd ^̄(b̂)d» ·

Z

Rn

µZ

B
jf(b; »̂)jpd¯(b)

¶q=p
d»

·
ÃZ

B

µZ

Rn
jf(b; »̂)jqd»

¶p=q
d¯(b)

!q=p
· (Ap)nq

µZ

B

Z

Rn
jf(b; x)jpdxd¯(b)

¶q=p
:

Therefore,

(4.1)
Z

Rn

Z

B̂
jf̂(b̂; »)jqd ^̄(b̂)d» · (Ap)nq

µZ

B

Z

Rn
jf(b; x)jpdxd¯(b)

¶q=p
:

Hence, the argument used to prove (3.4) shows that if F is a minimizer for Rn £ Rn £B
then

(4.2) jF (»̂; y; b)j2 =
µZ

Rn

Z

B
jF (»̂; y1; b1)j2d¯(b1)dy1

¶µZ

Rn
jF (»̂1; y; b)j2d»1

¶

(b 2 B; »; y 2 Rn);

and if f is a minimizer for A, then for x 2 Rn; b 2 B and b̂ 2 B̂,

(4.3)
jf(»̂; b)j2 =

µZ

Rn
jf(»̂1; b)j2d»1

¶µZ

B
jf(»̂; b1)j2d¯(b1)

¶

jf(x; b̂)j2 =
µZ

Rn
jf(x1; b̂)j2dx1

¶µZ

B̂
jf(x; b̂1)j2d ^̄(b1)

¶
;

where f(x; b̂) stands for the Fourier transform of f with respect to the second variable. Let

f be a minimizer forA and let g(y) = 2n
4 e¡¼y¢y, y 2 Rn. Then F (x; y; b) = f(x+yp

2
; b)g(x¡yp

2
)

is a minimizer for A. As in section 3, we deduce from (4.2) that there are matrix valued

function A and B such that

(4.4) f(»̂; b) = e¡»
tA(b)»¡B(b)¢»h(b) (» 2 Rn; b 2 B)

But then (4.3) implies that the functions A and B are constant. Hence f is a tensor product

of a translation and a modulation of a Gaussian and a function h on B. By normalizing

the Gaussian we may assume that k h k2= 1. Then it is easy to see that h is a minimizer

for the group B, and therefore has the desired form, by the results of section 2.
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