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- Maximizing log-likelihood

- Approximation: 
- Iteratively solving two nested steps
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BACKGROUND
- Audio-visual interactions in the brain at many levels

• Perceptual evidence : McGurk effect, bounce-stream illusion,
sound-induced flashing... [1]

- Evidence for early fusion mechanisms
• ERP, MEG, BOLD dynamics studies in humans [2]
• Anatomical studies in monkeys [3]

SPARSE CODING PARADIGM
- Successful in describing auditory and visual coding

• A1 : Smith&Lewicki 2006  - V1 : Olshausen&Field 1996

OBSERVATION
- No computational model of early crossmodal interactions

GOAL
- Design a sparse, biologically plausible, audio-visual signal

model accounting for early fusion mechanisms in the brain
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Learning adaptive crossmodal projections

Learning sparse audiovisual codes [4]

Learning sparse codes
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• Learning done iteratively solving three nested steps
Code: greedy approximation, AV-Matching Pursuit [4]
Learn Dictionary: Gradient Descent on  
Learn Projections: Hebbian learning on w
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∼80% observers perceive
STREAMING [1]

∼70% observers perceive
BOUNCING [1]

Audio

Video

Audio

Video

cV1×

0 × + 0 ×

+ c V2×

cV1× + c V2×

cA1× + c A2×

=

=

=

=

Encoding using the learned audiovisual dictionary
with adaptive crossmodal projections

New model for early audio-visual fusion

Model based on joint sparse coding

New method to learn basis functions and 
cross-modal associations

Model “suffers” from bounce-stream illusion
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