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The Future
• Tapestry of Experts (spatially heterogeneous units)

Experts repeat in a regular pattern above the image, but do not
overlap with shifted versions of themselves.

E(x) =
Er({x1, x2})+Eg({x2, x3})+Er({x3, x4})+Eg({x4, x5})...
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(current work with a Tapestry of Experts approach produces
performance equivalent to the Field of Experts but requiresa
lower degree of overcompleteness)

• Functionally heterogeneous units,
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• Continuous, deterministic, energy based hierarchical models

– Derivatives of energies can be easily propagated up and
down the hierarchy via the chain rule

– In the case of experts consisting of linear transformations
followed by pointwise nonlinearities, the data and first deriva-
tive of the energy function can instead be transformed up-
wards together and chain rule propagation is unnecessary

(left) 5x5 receptive fields learned via Contrastive Divergence(center) 5x5 receptive fields
learned via Score Matching(right) Random sample of 100 receptive fields learned using
Score Matching and a 10x10 by 3x overcomplete Tapestry of Experts model (see below)

Application to Fields of Experts
• Product of Experts:E(x) = E1(x) + E2(x)

All of the experts occur above a single image patch
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• Field of Experts: E(x) = E1({x1, x2}) + E2({x1, x2}) +
E1({x2, x3}) + E2({x2, x3})...

All of the experts occur above every image patch
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• Field of Experts with student-t test experts, as in Roth and
Black [4]
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• Score Matching was used to learn the ML parameters for the
Field of Experts model. Field of Experts model parameters
have previously been learned via Contrastive Divergence

• Receptive fields learned by Score Matching are more biologi-
cally consistent (Gabor-like) than those learned via Contrastive
Divergence, and the Score Matching model performs marginally
better at denoising without inclusion of an ad-hoc adjustment
to the noise variance during reconstruction
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(left) Sample image provided by Roth and Black with their FOE demo code (center)
Sample image with additive gaussian noise (σnoise = 0.28σimage) (right) Learnedαi values
(sorted) for Contrastive Divergence learning (green) and Score Matching learning (blue)

(left) MAP denoising using Roth and Black model parameters(center) MAP denoising
using Roth and Black model parameters and a fudge factor ofσMAP = 5.25σnoise applied
to the noise during reconstruction(right) MAP denoising using Score Matching model
parameters

Intuition and Practicalities
• In the objective function above each data point is trying to

pull the model around itself such that it lies at the bottom ofa
well in the energy landscape (first derivative ofE as close to
0 as possible, second derivative as large as possible). The net
result of all the data points greedily doing this is to pull the
model distribution onto the data distribution.
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E(x) = − log p(x) for the(black) data and
(red) model distributions. The pull applied
to the model by each of the(black balls)
data points is indicated by the red arrows,
first derivative term above the line, second
derivative term below.

• This Score Matching derivation can be thought of as replacing
the model distribution with a distribution whose local struc-
ture comes from the model and whose global structure comes
from the data. This is a process nearly diametrically opposed
to mean field theory techniques.

• In general, Score Matching will take a time∝ [number of
model parameters]· [dimension of data]· [number of sam-
ples] per learning step.

• Learning is more effectively done via line searches than straight-
forward gradient ascent, as the 3rd derivatives in the objective
function’s gradient can vary wildly in magnitude over many
functions’ parameter spaces.

• Score Matching is equivalent to contrastive divergence with
infinitesimal steps and momentum-less Langevin dynamics
(as noted by Hyv̈arinen [2]). This correspondence occurs be-
cause, unlike in Metropolis-Hastings Monte Carlo, Langevin
dynamics constrain a system to evolve in time in an unbiased
fashion

• This can be done by first Taylor expanding the change in∂E(x;θ)
∂θ

around each of the data points
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and then approximating the average value of that Taylor ex-
pansion in a hypersphere around the data points using its di-
vergence
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• This approximate gradient can be integrated to produce an
alternative Maximum Likelihood objective function which is
guaranteed (subject to certain reasonable constraints) tobe at
a global minimum when model and world probability distri-
butions agree:

θ̂ = arg min
θ
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Derivation
• Finding the Maximum Likelihood parameter estimate of a prob-

abilistic model
q(x) =

e−E(x;θ)

Z(θ)
(1)

is in general intractable since it requires solving the partition
function integralZ(θ) =

∫

e−E(x;θ)dx

• Maximum Likelihood parameter estimation can be accom-
plished by performing gradient descent using the following
gradient
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where the second term stems from the partition function in
equation 1.

• Contrastive Divergence [1] suggests that the distributionq(x)
in the second term be replaced by the first step in a Markov
Chain Monte Carlo chain initiated atp(x).

• In a more precisely defined fashion, one might instead imag-
ine replacing the model distribution with a model distribution
built out of small patches of the model around each data point

In score matching, the
full model distribution
(left pane,green) is re-
placed (right pane) with
a model distribution con-
sisting of cutouts in hy-
perspheres around each
of the data points (red)

Main Points
• The neural representation of sensory input has in many cases

been shown to correspond to intrinsic statistical structure in
the world. Building probabilistic models of the world can thus
strongly inform our understanding of its representation inthe
brain.

• Many potentially powerful probabilistic models in neuroscience
and machine learning go unused because intractability of their
partition function makes learning impossible

• This problem can be sidestepped by replacing the full partition
function integral with an approximate integral over patches
around each of the observed data points.

• This approximation can be viewed as a formalization of the
philosophy espoused in Contrastive Divergence

• The objective function learned in this fashion is the Score
Matching objective function, recently proposed by Hyvärinen
[3]

• Score Matching allows fast learning in some previously highly
challenging cases

• Score Matching promises to allow simpler learning of hetero-
geneous and hierarchical models
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