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Abstract

Associative memory in cortical circuits has been held as a major mechanism for content-addressable memory. Hebbian synapses
implement associative memory efficiently when storing sparse binary activity patterns. However, in models of sensory processing,
representations are graded and not binary. Thus, it has been an unresolved question how sensory computation could exploit cortical
associative memory.

Here we propose a way how sensory processing could benefit from memory in cortical circuitry. We describe a new collabo-
rative method of rank coding for converting graded stimuli, such as natural images, into sequences of synchronous spike volleys.
Such sequences of sparse binary patterns can be efficiently processed in associative memory of the Willshaw type. We evaluate
storage capacity and noise tolerance of the proposed system and demonstrate its use in cleanup and fill-in for noisy or occluded visual

input.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Sensory coding; Attractor memory; Rank coding; Sequence memory; Data compression

1. Introduction

The microcircuitry of the cerebral cortex shows extensive
recurrent connectivity between pyramidal cells in layer 11/
II1. These connections are plastic and have been shown to
obey a temporally asymmetric Hebbian learning rule [2].
Associative memories are computational models that
describe how cortical circuits may exploit these plastic
connections to perform memory operations. Recently,
physiological experiments in slice have lent support to
these models by showing that activity organizes in
repeatable sequences of activity patterns [7]. Under certain
conditions, neural associative memories can efficiently
store and retrieve large numbers of patterns of neural
activity. These conditions are in particular that the patterns
are binary and sparse, i.c., that the stored patterns share a
low ratio of active cells [17,10,11]. At first glance these
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conditions seem ill-suited for sensory processing. Visual
input, for example, when represented by Gabor-type filters,
is graded and nonsparse. However, the recent discovery of
discrete so-called UP states in visual cortex provides at
least indirect evidence that binary and sparse information
processing could be relevant even in early sensory
processing [4]. To date, no biologically plausible memory
model has been proposed that can store large numbers of
chunks of analog raw sensory data, such as images. The
aim of this paper is to propose such a model.

It has been shown that principles of efficient coding [14]
and also faster but suboptimal techniques of signal
representation, such as matching pursuit can sparsify
sensory neural representations. These mechanisms can be
neuronally implemented by lateral inhibition. Matching
pursuit, in particular, has been suggested to convert
sensory input into temporal sequences of spikes [13]. For
efficient processing of sensory information we propose a
combination of a new model of sparse visual coding,
extending the model based on matching pursuit, and sparse
sequence associative memory [1,18].
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2. Image coding
2.1. Matching pursuit for the spike coding of visual input

Perrinet et al. [13] have proposed a model of the visual
cortex based on a method of signal representation known
as matching pursuit. In this model, neurons spike one at a
time, each spike being elicited from the neuron that is most
strongly excited by the sensory input. Neurons that spike
inhibit other cells with similar receptive fields (“‘explaining
away’’). The representation of visual input by matching
pursuit can be written as

m—1

x=3 0, ¥, + O
n=0
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where W is a set of basis functions, x is the visual input and
r, is the residual after the n:th spike. Eq. (2) indicates that
the neuron y,, to spike next will be the one corresponding to
the basis function most similar to the current residual r,,.
To determine how many spikes should be used in the
sequence, one can optimize the representation based on a
cost function. We use the function
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where the first term quantifies the quality of the repre-
sentation b, as generated by matching pursuit; b; =
>y, = (tns ¥3,). The second term quantifies the metabolic
cost of the representation. Assuming that each spike is
associated with a fixed metabolic energy cost, we just use

the spike count

S () = 01Ib]l 1. “4)
Depending on the choice of the sparseness parameter 6 this
coding scheme can produce sparse codes. The codes have
few nonzero elements but are not yet binary. They contain
either zeros or analog expansion coefficients b. It has been
demonstrated, however, that the exact analog values are
not needed for faithful reconstruction of visual input. They
may be replaced by mean values from a rank ordered
histogram of coefficients that is averaged over many visual
inputs [12]. Thus, an input pattern in a patch of the visual
field can be coded by a temporal sequence of spikes, where
only the spike order is significant.

2.2. Collaborative rank coding of image fragments

To use spike coding based on matching pursuit in
combination with efficient associative memory, the coding
strategy explained so far has to be extended. In our model
of collaborative rank coding, cortical regions processing
different patches of visual input collaborate to form spatio-
temporal patterns. In our model we assume that an image
is tiled by small nonoverlapping patches in the visual space

that are processed in parallel by sets of neurons in different
regions of primary visual cortex. For each patch, matching
pursuit is used to determine the next spiking neuron. But
spike timing in different patches is not independent as in
the Perrinet model. We include a global, synchronizing
influence which could be realized in the cortex by local
thresholds that are synchronously oscillating [3]. The effect
of this collaborative rank coding is that spikes in different
patches organize into synchronized volleys of spikes. The
number of spikes per volley can be regulated by the degree
of threshold modulation. In our computer model we simply
group the k largest coefficients in the first volley, the
following k largest in the second and so on until less than &
nonzero coefficients remain, at which point the sequence is
truncated. For image number u, we define r* as the index
vector of the nonzero coefficients in b, ordered according
to descending magnitude. We denote by |r#| the cardinality
of nonzero coefficients. The input image x* is then
represented by a sequence of patterns &“(¢) of length T*;
tell...T":

1 (i) e ((t = Dk, tk],
G = { 0 otherwise, ©)

T = ||| /k]. (6)

This k-winner-take-all coding strategy implements the
collaborative rank coding.

For reconstruction we form a rank code lookup table
for the analog coefficients, based on the volley index (see
Fig. 1). Comparing the error bars of collaborative and non-
collaborative rank coding in Fig. 1 the collaboration seems
to increase the accuracy of the lookup. An analysis of the
rank code statistics of these coding schemes will be given
elsewhere. Most importantly, the collaborative rank coding
allows for the reconstruction of a stimulus, given only an
joint spike volley sequence and the collaborative rank code
lookup table.
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Fig. 1. Coefficient amplitudes as a function of volley index. Error bars
show one standard deviation. The inset figure is for non-collaborative
rank coding. Note the larger variance for the latter.
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3. Memory network model

The collaborative rank coding described in the previous
section, converts graded visual stimuli into sequences of
coincident spike volleys which correspond to sparse
patterns. For storage of the sparse sequences we use a
Willshaw memory [17] with dynamic threshold control [15],
implementing a k-winner take all scheme. By associating
the last pattern in a sequence with the first we turn the
image-encoding pattern sequences into closed loops, that
can reverberate in the absence of input. When p images are
stored, the binary synaptic matrix is given by

wy = i max (G~ D) EOx=E(T") %)

To retrieve stored images from noisy or distorted cues,
the cues are transformed into spike volley sequences using
the collaborative rank coding scheme. Those sequences are
then fed to the associative memory. Since the most relevant
features will occur in the first few volleys after stimulus
onset, we reduce the relative influence of the following
volleys in comparison to the retrieved signal produced by
the associative memory; we ramp the influence of the input
linearly down such that it reaches zero at the end of the
input sequence

() { lgWTAi(W,»jé;et(t — 1)+ n()&*(1) Z o(; )
n(t) = max (0,1 — ¢/ T°). 9)

For detecting successful retrieval, we exploit the cyclic
nature of the stored sequences. The first pattern in the
input sequence is buffered in a short term memory and
compared to the output patterns from the associative
memory. Whenever both patterns are sufficiently similar,
readout of the stored information begins; i.e. when
(E"¢(1), €™'(£)) > O. If such a match does not occur, the
input does not elicit memory retrieval. In cases of
ambiguous cues the recognition thresholding allows the
system to refuse retrieval, rather than to produce random
associations. We refer to this as a detected failure; an
undetected failure on the other hand is when a random
association is produced after all.

4. Results

We evaluate our model by storing image fragments with
24 x 24 grayscale pixels and then test storage and retrieval
under conditions of spatially diffuse noise or spatially
defined occlusion. The system is used to store natural
images, that have previously been whitened with respect to
their spatial frequencies [9]. The images are tiled into nine
8 x 8 patches. The neuronal representation of the image
fragments is three times overcomplete. To reflect properties
of real neurons, we restrict all coefficients to positive
values. For compensation of this representational restric-
tion we double the number of neurons. Thus, there is a
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Fig. 2. Storage capacity and noise tolerance. Noisy cues were generated
for the stored images, where the noise for each pixel is drawn from an
independent Gaussian distribution with zero mean and variance
Voise/ Vsignat = v. The different lines correspond to noise levels
v =10,0.2,0.4,0.6,0.8]. In the left hand panel, storage capacity is shown;
except for the noiseless case, the curves are truncated near the peak
capacity. In the right hand panel, the number of undetected failures is
shown (see text). The bottom panel illustrates the different noise levels in
the cues.

total of n =8-8-3.2 = 384 neurons for each patch. We
set sparseness parameter in Eq. 4 to 6 =0.0178, the
number of spikes per volley is set to k=10 and the
threshold for retrieval detection to ® = 4.

The signal-to-noise ratio in reconstructed images is
calculated as S/N =201og;y (Vrec/Verr), Where Vi and
Ve are the variances in the reconstructed image and in the
reconstruction error, respectively. The signal-to-noise ratio
in the image reconstruction with the analog matching
pursuit coefficients is about 21. When these are replaced by
values from the collaborative rank coding lookup table, the
signal-to-noise ratio is still as high as 17. This is also the
quality of the images that can be retrieved from memory.
As can be seen in Fig. 4, the subjective quality of image
retrieval is good.

With the parameters setting described above, the
maximum number of images that could be retrieved was
found to be around 2800. There are 3456 neurons in the
network, so the storage capacity is about 0.8 images per
neuron. Each image is represented by a sequence of about
10 patterns. This was achieved at a memory load (ratio of
nonzero weights in the memory matrix) of 0.22. The top
solid line in Fig. 2 shows how the number of successfully
retrieved images depends on the number of stored images
under noiseless conditions. We also assessed the signal-to-
noise gain when using the system to clean up noisy images;
it is illustrated in Figs. 3, 4.

5. Discussion

We have proposed a new model for efficient storage and
retrieval of raw images. At the heart of the model is a new
scheme to code raw images into sequences of sparse
patterns, the method called collaborative rank coding. This
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Fig. 3. Denoising by retrieving images from noisy cues. The solid curve
(left axis) shows the improvement of signal-to-noise ratio in images
retrieved by the network model, as compared to their cues. Detected
failures are excluded. The incidence of detected failures is illustrated by the
dashed curve (right axis).
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Fig. 4. Retrieval of occluded pictures. Four different original images are
shown to the left, occluded cues in the middle and network output on the
right. For the bottom right image retrieval failed; a detected failure. The
successfully retrieved images also show the quality of the rank coded
images.

coding method is combined with an efficient associative
memory model [15]. The system uses only binary synapses
to store the graded images.

Two common strategies for representing graded infor-
mation are rate coding and latency coding. The very rapid
processing times for visual input severely limit the
usefulness of a rate code and also restrict the resolution
available to a latency code [5]. In our system, images are
represented by sequences of spike volleys, where only
synchrony and temporal order is important. The coding is
also fast since the most important information is trans-
mitted first. An interesting property of this representation
is that the sparse patterns in the sequences all have the
same low level of activity k. If an image contains more
structure, the sequence will be longer, but the sparsity level
can be kept unchanged. Thus, this representational scheme
offers a solution to the long standing problem how chunks
of raw data with high information content can be
represented by sparse patterns with low information
content [19]. Our memory system allows massive storage
and flexible retrieval of natural images in a neural
architecture. Theoretical analyses of associative memories
of the Willshaw type suggest that the storage capacity of
our system should scale favorably with the size of the
network, though this remains to be verified in large-scale
simulations.

Whether lower levels in sensory systems of the brain
employ content-addressed memory is still an unresolved
issue. To resolve this question, predictions from computa-
tional models will be important. Here our model has
demonstrated how principles of binary sparse sensory
coding, sparse associative memory and the conversion from
spatial into temporal structure can be used for cleanup, fill-
in and memory retrieval of visual representations. The
hypothesis of content-addressed memory in earlier stages
of vision is supported by various experimental finding, for
example, filling-in processes in early visual representations
[8] and the recall of low-level visual features in dreams
[6,16].
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