Kozachenko and Leonenko Entropy Estimation with the help of GPUs

Paul Ivanov

UC Berkeley
Vision Science Graduate Group

Redwood Center for Theoretical Neuroscience
http://redwood.berkeley.edu/

March 7, 2008
Overview of Algorithm

Divide set into Targets and Neighbors (randomly)
randomize order of Neighbors
for (L = 0; L < levels; L++)
 for each $t \in$ Targets
 look through the first $N = 2^L$ Neighbors
 and find the closest (at distance $D \times N$)

$T \sum_{t=1}^{T} \log D \times N$, $t = \text{avg log NN distance (from } N \text{ samples)}$
proximity distribution function

We will use it to estimate $-\log f_X(x)$

Ivanov (Redwood Center)
Overview of Algorithm

Divide set into Targets and Neighbors (randomly)

for (\(L = 0; L < \text{levels}; L++\))
 for each \(t \in \text{Targets} \)
 look through the first \(N = 2^L\) Neighbors
 and find the closest (at distance \(D \ast N, t\))

\[\sum_{t=1}^{T} \log D \ast N, t = \text{avg log NN distance (from } N \text{ samples)} \]

proximity distribution function

avg log \(D \ast (\text{above})\) as a function of \(N\)

We will use it to estimate \(-\log f_X(x)\)
Overview of Algorithm

Divide set into **Targets** and **Neighbors** (randomly)

randomize order of Neighbors

for (L = 0; L < levels; L++)

for each $t \in$ Targets

look through the first $N = 2^L$ Neighbors

and find the closest (at distance $D \ast N$, t)

$\sum_{t=1}^{T} \log D \ast N, t = \text{avg log NN distance (from } N \text{ samples)}$

proximity distribution function

avg log $D \ast (\text{above})$ as a function of N

We will use it to estimate $-\log f_X(x)$

Ivanov (Redwood Center)
Overview of Algorithm

Divide set into Targets and Neighbors (randomly)

randomize order of Neighbors
for (L = 0; L < levels; L++)

Look through the first \(N = 2^L \) Neighbors and find the closest (at distance \(D \cdot N \), \(t \))

\[
T \sum_{t=1}^{T} \log D \cdot N, t = \text{avg log NN distance (from} \ N \text{samples)}
\]

proximity distribution function

avg log \(D \cdot N \) (above) as a function of \(N \)

We will use it to estimate \(-\log 2 f_X(x)\)
Overview of Algorithm

Divide set into **Targets** and **Neighbors** (randomly)

randomize order of Neighbors

for \((L = 0; \; L < \text{levels}; \; L++)\)

 for each \(t \in \text{Targets}\)

\[
\sum_{t=1}^{T} \log D \cdot N, \; t = \text{avg log NN distance (from} \; N \; \text{samples)}
\]

proximity distribution function

avg log \(D \cdot N\) (above) as a function of \(N\)

We will use it to estimate \(-\log_2 f_X(x)\)
Overview of Algorithm

Divide set into Targets and Neighbors (randomly)

randomize order of Neighbors
for (L = 0; L < levels; L++)
 for each $t \in$ Targets
 look through the first $N = 2^L$ Neighbors

proximity distribution function

We will use it to estimate $-\log_2 f_X(x)$
Overview of Algorithm

Divide set into **Targets** and **Neighbors** (randomly)

- randomize order of Neighbors
- for (L = 0; L < levels; L++)
 - for each \(t \in \text{Targets} \)
 - look through the first \(N = 2^L \) Neighbors
 - and find the closest (at distance \(D_{N,t}^* \))
Overview of Algorithm

Divide set into **Targets** and **Neighbors** (randomly)

randomize order of Neighbors

for (L = 0; L < levels; L++)
 for each $t \in$ Targets
 look through the first $N = 2^L$ Neighbors
 and find the closest (at distance $D_{N,t}^*$)

$$\frac{1}{T} \sum_{t=1}^{T} \log D_{N,t}^* = \text{avg log NN distance (from } N \text{ samples)}$$
Overview of Algorithm

Divide set into **Targets** and **Neighbors** (randomly)

randomize order of Neighbors

for (L = 0; L < levels; L++)
 for each \(t \in \text{Targets} \)
 look through the first \(N = 2^L \) Neighbors
 and find the closest (at distance \(D_{N,t}^* \))

\[
\frac{1}{T} \sum_{t=1}^{T} \log D_{N,t}^* = \text{avg log NN distance (from } N \text{ samples)}
\]

proximity distribution function

avg log \(D^* \) (above) as a function of \(N \)
Overview of Algorithm

Divide set into **Targets** and **Neighbors** (randomly)

- randomize order of Neighbors
- for \(L = 0; L < \text{levels}; L++ \)
 - for each \(t \in \text{Targets} \)
 - look through the first \(N = 2^L \) Neighbors
 - and find the closest (at distance \(D^*_{N,t} \))

\[
\frac{1}{T} \sum_{t=1}^{T} \log D^*_{N,t} = \text{avg log NN distance (from } N \text{ samples)}
\]

proximity distribution function

- avg log \(D^* \) (above) as a function of \(N \)
- We will use it to estimate \(-\log_2 f_X(x)\)
An Example

Goal

How much disorder there is in the distribution of people living in California. (How many bits do we need to represent their location?)
An Example

Goal

How much disorder there is in the distribution of people living in California. (How many bits do we need to represent their location?)

<table>
<thead>
<tr>
<th>City</th>
<th>fresno</th>
<th>+san diego</th>
<th>+backersfield stockton</th>
<th>+davis, san francisco riverside, santa cruz</th>
</tr>
</thead>
<tbody>
<tr>
<td>berkeley</td>
<td>155</td>
<td>155</td>
<td>49</td>
<td>12</td>
</tr>
<tr>
<td>mt view</td>
<td>135</td>
<td>135</td>
<td>55</td>
<td>33</td>
</tr>
<tr>
<td>santa monica</td>
<td>215</td>
<td>119</td>
<td>119</td>
<td>65</td>
</tr>
<tr>
<td>roseville</td>
<td>160</td>
<td>160</td>
<td>56</td>
<td>28</td>
</tr>
<tr>
<td>avg log D^*</td>
<td>2.214</td>
<td>2.150</td>
<td>1.813</td>
<td>1.464</td>
</tr>
</tbody>
</table>
70% of CA lives in SF Bay and LA Metro areas
\[h(X) \triangleq -\int_{x \in \mathcal{X}} f_X(x) \log_2 f_X(x) \, dx \]

\[= \int_{x \in \mathcal{X}} f_X(x) i_X(x) \, dx \]

\[= E \{ i_X(x) \} \]

\[\approx \frac{1}{M} \sum_{m=1}^{M} i_X(x_m) \]

Assuming \(f_X(x) \, dx \approx \frac{1}{M}, \forall x_m; \)

\[\hat{i}_X(x) \triangleq -\log_2 f_X(x) \]

\[\hat{i}_X(x) = k E \{ \log_2 D_N^k \} + \log_2 \left(\frac{A_k N}{k} \right) + \frac{\gamma}{\ln 2} \]
\[h(X) \triangleq -\int_{x \in \mathcal{X}} f_X(x) \log_2 f_X(x) \, dx \]

\[= \int_{x \in \mathcal{X}} f_X(x) \hat{i}_X(x) \, dx \]

\[= E \{ \hat{i}_X(x) \} \]

\[\approx \frac{1}{M} \sum_{m=1}^{M} \hat{i}_X(x_m) \]

\[\hat{i}_X(x) \triangleq -\log_2 f_X(x) \]

assuming \(f_X(x) \, dx \approx \frac{1}{M}, \forall x_m; \)

\[\hat{i}_X(x) = k E \{ \log_2 D_N^* \} + \log_2 \left(\frac{A_k N}{k} \right) + \frac{\gamma}{\ln 2} \]

\[E \{ \log_2 D_N^* \} \approx \frac{1}{T} \sum_{t=1}^{T} \log_2 D_{N,t}^* \]
Theory

\[h(X) \triangleq -\int_{x \in \mathcal{X}} f_X(x) \log_2 f_X(x) \, dx \]
\[= \int_{x \in \mathcal{X}} f_X(x) i_X(x) \, dx \]
\[= E \{ i_X(x) \} \]
\[\approx \frac{1}{M} \sum_{m=1}^{M} \hat{i}_X(x_m) \]

\[i_X(x) \triangleq -\log_2 f_X(x) \]

assuming \(f_X(x) \, dx \approx \frac{1}{M}, \forall x_m; \)

\[\hat{i}_X(x) = kE \{ \log_2 D_{N}^{*} \} + \log_2 \left(\frac{A_k N}{k} \right) + \frac{\gamma}{\ln 2} \]

\[E \{ \log_2 D_{N}^{*} \} \approx \frac{1}{T} \sum_{t=1}^{T} \log_2 D_{N,t}^{*}. \]

\[h(X) \approx \frac{k}{M} \sum_{m=1}^{M} \log_2 D_{N,m}^{*} + \log_2 \left(\frac{A_k N}{k} \right) + \frac{\gamma}{\ln 2} \]

\[A_k = k \pi^{k/2} / \Gamma \left(\frac{k}{2} + 1 \right) \]
1. Create library of neighbor patches

\[\{X^{(A_n)}\} = \begin{array}{cccc}
\text{patch} & \text{patch} & \text{patch} & \ldots \\
\end{array} \]

2. Pick a target patch

\[X^{(A_t)} = \begin{array}{c}
\text{target patch}
\end{array} \]

3. Calculate Euclidean distance between target and nearest neighbor as a function of number of neighbors

\[\min_n \| X^{(A_t)} - X^{(A_n)} \|_{L^2} \]
GPGPU with CUDA

http://courses.ece.uiuc.edu/ece498AL1
David Kirk - NVIDIA and Wen-mei W. Hwu - UIUC
GeForce 8800

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768 MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU
Why Massively Parallel Processor

• A quiet revolution and potential build-up
 – Calculation: 367 GFLOPS vs. 32 GFLOPS
 – Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 – Until last year, programmed through graphics API

GPU in every PC and workstation – massive volume and potential impact

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL1, University of Illinois, Urbana-Champaign
What is Behind such an Evolution?

• The GPU is specialized for compute-intensive, highly data parallel computation (exactly what graphics rendering is about)
 - So, more transistors can be devoted to data processing rather than data caching and flow control

• The fast-growing video game industry exerts strong economic pressure that forces constant innovation
Previous Projects

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
<th>Source</th>
<th>Kernel</th>
<th>% time</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.264</td>
<td>SPEC ’06 version, change in guess vector</td>
<td>34,811</td>
<td>194</td>
<td>35%</td>
</tr>
<tr>
<td>LBM</td>
<td>SPEC ’06 version, change to single precision and print fewer reports</td>
<td>1,481</td>
<td>285</td>
<td>>99%</td>
</tr>
<tr>
<td>RC5-72</td>
<td>Distributed.net RC5-72 challenge client code</td>
<td>1,979</td>
<td>218</td>
<td>>99%</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element modeling, simulation of 3D graded materials</td>
<td>1,874</td>
<td>146</td>
<td>99%</td>
</tr>
<tr>
<td>RPES</td>
<td>Rye Polynomial Equation Solver, quantum chem, 2-electron repulsion</td>
<td>1,104</td>
<td>281</td>
<td>99%</td>
</tr>
<tr>
<td>PNS</td>
<td>Petri Net simulation of a distributed system</td>
<td>322</td>
<td>160</td>
<td>>99%</td>
</tr>
<tr>
<td>SAXPY</td>
<td>Single-precision implementation of saxpy, used in Linpack’s Gaussian elim. routine</td>
<td>952</td>
<td>31</td>
<td>>99%</td>
</tr>
<tr>
<td>TRACF</td>
<td>Two Point Angular Correlation Function</td>
<td>536</td>
<td>98</td>
<td>96%</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-Difference Time Domain analysis of 2D electromagnetic wave propagation</td>
<td>1,365</td>
<td>93</td>
<td>16%</td>
</tr>
<tr>
<td>MRI-Q</td>
<td>Computing a matrix Q, a scanner’s configuration in MRI reconstruction</td>
<td>490</td>
<td>33</td>
<td>>99%</td>
</tr>
</tbody>
</table>
Speedup of Applications

- GeForce 8800 GTX vs. 2.2GHz Opteron 248
- 10× speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads
- 25× to 400× speedup if the function’s data requirements and control flow suit the GPU and the application is optimized
- Keep in mind that the speedup also reflects how suitable the CPU is for executing the kernel
What is the GPU Good at?

• The GPU is good at data-parallel processing
 • The same computation executed on many data elements in parallel – low control flow overhead with high SP floating point arithmetic intensity
 • Many calculations per memory access
 • Currently also need high floating point to integer ratio

• High floating-point arithmetic intensity and many data elements mean that memory access latency can be hidden with calculations instead of big data caches – Still need to avoid bandwidth saturation!
A Common Programming Pattern

• Local and global memory reside in device memory (DRAM) - much slower access than shared memory
• So, a profitable way of performing computation on the device is to **block data** to take advantage of fast shared memory:
 – **Partition** data into **data subsets** that fit into shared memory
 – **Handle each data subset with one thread block** by:
 • Loading the subset from global memory to shared memory, **using multiple threads to exploit memory-level parallelism**
 • Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 • Copying results from shared memory to global memory
Thread Batching: Grids and Blocks

- A kernel is executed as a grid of thread blocks
 - All threads share data memory space
- A thread block is a batch of threads that can cooperate with each other by:
 - Synchronizing their execution
 - For hazard-free shared memory accesses
 - Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate
Divide set into **Targets** and **Neighbors** (randomly)

randomize order of Neighbors

for $(L = 0; L < \text{levels}; L++)$

 for each $t \in \text{Targets}$

 look through the first $N = 2^L$ Neighbors

 and find the closest (at distance $D_{N,t}^*$)

$$\frac{1}{T} \sum_{t=1}^{T} \log D_{N,t}^* = \text{avg log NN distance (from } N \text{ samples)}$$

proximity distribution function

avg log D^* (above) as a function of N

We will use it to estimate $-\log_2 f_X(x)$
Back to the Kozachenko Leonenko Estimator

Divide set into **Targets** and **Neighbors** (randomly)

randomize order of Neighbors

for \((L = 0; L < \text{levels}; L++)\)

\hspace{1cm} \text{for each } t \in \text{Targets} - \text{Parallelize here}

\hspace{1cm} \text{look through the first } N = 2^L \text{ Neighbors- here}

\hspace{1cm} \text{and find the closest (at distance } D_{N,t}^*\text{)- and maybe here}

\[\frac{1}{T} \sum_{t=1}^{T} \log D_{N,t}^* = \text{avg log NN distance (from } N \text{ samples)} \]

proximity distribution function

avg log \(D^* \) (above) as a function of \(N \)

We will use it to estimate \(- \log_2 f_X(x)\)

David Kirk - NVIDIA and Wen-mei W. Hwu - UIUC
http://courses.ece.uiuc.edu/ece498AL1

Thank you.