Jorg Lucke

Linear and Non-linear Approaches to Component Extraction and Their Applications to Visual Data

Monday 13th of December 2010 at 12:00pm
508-20 Evans Hall

In the nervous system of humans and animals, sensory data are represented as combinations of elementary data components. While for data such as sound waveforms the elementary components combine linearly, other data can better be modelled by non-linear forms of component superpositions. I motivate and discuss two models with binary latent variables: one using standard linear superpositions of basis functions and one using non-linear superpositions. Crucial for the applicability of both models are efficient learning procedures. I briefly introduce a novel training scheme (ET) and show how it can be applied to probabilistic generative models. For linear and non-linear models the scheme efficiently infers the basis functions as well as the level of sparseness and data noise. In large-scale applications to image patches, we show results on the statistics of inferred model parameters. Differences between the linear and non-linear models are discussed, and both models are compared to results of standard approaches in the literature and to experimental findings. Finally, I briefly discuss learning in a recent model that takes explicit component occlusions into account.

Join Email List

You can subscribe to our weekly seminar email list by sending an email to majordomo@lists.berkeley.edu that contains the words subscribe redwood in the body of the message.
(Note: The subject line can be arbitrary and will be ignored)