Dan Butts
University of Maryland

Common roles of inhibition in visual and auditory processing

Friday 19th of November 2010 at 12:00pm
508-20 Evans Hall

The role of inhibition in sensory processing is often obscured in extracellular recordings, because the absence of a neuronal response associated with inhibition might also be explained by a simple lack of excitation. However, increasingly, evidence from intracellular recordings demonstrates important roles of inhibition in shaping the stimulus selectivity of sensory neurons in both the visual and auditory systems. We have developed a nonlinear modeling approach that can identify putative excitatory and inhibitory inputs to a neuron using standard extracellular recordings, and have applied these techniques to understand the role of inhibition in shaping sensory processing in visual and auditory areas. In pre-cortical visual areas (retina and LGN), we find that inhibition likely plays a role in generating temporally precise responses, and mediates adaptation to changing contrast. In an auditory pre-cortical area (inferior colliculus) identified inhibition has nearly identical appearance and functions in temporal processing and adaptation. Thus, we predict common roles of inhibition in these sensory areas, and more generally demonstrate general methods for characterizing the nonlinear computations that comprise sensory processing.

Join Email List

You can subscribe to our weekly seminar email list by sending an email to majordomo@lists.berkeley.edu that contains the words subscribe redwood in the body of the message.
(Note: The subject line can be arbitrary and will be ignored)