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Abstract

Theoretical studies concerning iterative retrieval in conventional associative memories sug-
gest that cortical gamma-oscillations may constitute sequences of fast associative processes
each restricted to a single period. By providing a rhythmic threshold modulation suppressing
cells that are uncorrelated with a stimulus, interneurons significantly contribute to this process.
This hypothesis is tested in the present paper utilizing a network of two-compartment model
neurons developed by Pinsky and Rinzel. It is shown that gamma-oscillations can simulta-
neously support an optimal speed for single pattern retrieval, an optimal repetition frequency
for consecutive retrieval processes, and a very high memory capacity. © 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Synchronized gamma-oscillations have been observed in many cortical areas of
different species [1,2,8]. Their functional significance in sensory areas has been
interpreted by the feature integration or binding-hypothesis stating that cells express
their participation in the representation of the same external object by rhythmic
synchronized firing in the gamma-range [1,8,11].
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Binding has been repeatedly modelled assuming feature-coding periodically firing
neurons that adjust their phases in time such that different objects become segregated
into different phases of the collective oscillation (see [11] and references therein). In
contrast, we proposed an interpretation that avoids the strong assumptions of
phase-coding and strictly rhythmic firing of single neurons [10-12]. In this scheme,
gamma-oscillations are interpreted as sequences of fast individual retrieval processes
carried by recurrent associative excitatory connections and rhythmically interrupted
by inhibitory interneurons.

Theoretical results by Schwenker et al. [7] on iterative retrieval of sparse binary
patterns in conventional associative memories suggest that such excitation-inhibition
cycles should provide a retrieval mode in networks of spiking neurons that is optimal
in several respects: (1) Provided the number of active neurons is controlled by
a suitable threshold mechanism, at most three feedback steps suffice for perfect
pattern completion [ 7,3]. This implies that retrieval is fast enough to take place within
single gamma periods, say within roughly 10 ms. (2) If retrieval processes are so fast,
then different patterns can in principle be processed at a maximal repetition frequency
in the gamma-range. (3) Morcover, the results in Ref. [7] imply that synchronous
firing of cells within a few milliseconds also supports a very high memory capacity
(cf. [11]).

Cortical conditions have been sketched in an associative memory of simple spiking
neurons where interneurons realize the necessary threshold control [10,117]. Here,
input patterns composed of several stored patterns were completed and segregated
into different periods of the collective rhythm. However, the biological relevance of
fast rhythmic associative memories has to be substantiated by more realistic simula-
tions. To this end we employ associative retrieval in a network of two-compartment
neurons [6]. Unlike models considering asynchronous persistent firing [4], the
activity patterns to be completed in our model are coded by synchronized spike-
patterns.

2. Methods

Pinsky and Rinzel [6] developed a reduced two-compartment model of a 19-
compartment cable model [9] segregating fast currents for sodium spiking into
a soma-like compartment and slower calcium and calcium-mediated currents into
a dendrite-like compartment. We studied a network of 100 excitatory cells and one
inhibitory interneuron. The excitatory subnetwork was exactly the same as in Ref. [6]
including all parameter settings with the exception of the external stimulation,
inhibition, and the recurrent connectivity matrix.

The connectivity matrix was formed by binary Hebbian learning of 0/1-patterns
containing k = 10 ones at random positions [5,7]. Excitatory synapses terminated on
the dendritic compartment and activated AMPA- and NMDA-currents [6]. Since
memory patterns were small, EPSP-amplitudes in response to a single spike had to be
scaled to high values of a few mV (cf. Ref. [4]).
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The single inhibitory interneuron had a graded output modeling the average firing
rate in a pool of interneurons that control the total activity in their neighborhood
[3,5,7,11]. The inhibitory cell received input from all excitatory cells, had a threshold-
linear rate function and inhibited all excitatory cells with equal weights on their
soma-compartment. Inhibitory synapses employed a fast GABA-ergic conductance
change. A single spike of an excitatory cell after being transmitted through the
inhibitory loop evoked an IPSP on the soma of pyramidal cells somewhat delayed
and stronger than the respective EPSP. The decay time of IPSPs (roughly 10 ms)
crucially influenced the period of the collective network oscillation [13].

During retrieval, subsets of principal cells belonging to one of the memory patterns
receives depolarizing dendritic input (Poisson processes) strong enough to evoke
steady firing of these addressing cells.

3. Results

Fig. 1 shows a raster plot of spike trains in a network of N = 100 cells where P = 50
patterns each containing k = 10 ones have been stored. Neurons 1-10 constitute the
first memory pattern, all other stored patterns are random. During the first 100 ms
only neurons 1-5 receive external input, they represent the first address pattern. Note
that the memory pattern is completed in every gamma-cycle, but action potentials
(dots) of the first 10 cells are not perfectly synchronized: the spikes scatter over several
milliseconds mainly caused by input noise and synaptic transmission times: address
neurons 1 ... 5 always fire first and trigger the cells 6 ... 10 after one synaptic feedback
step.

At time t ~ 100 ms the input switches to a second set of [ = 5 neurons addressing
one of the randomly generated patterns. The network immediately follows this switch.
Thus, very quick responses to changing stimuli are possible.
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Fig. 1. Raster plot of spikes and retrieval quality in a network storing 50 patterns.
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Fig. 2. Completion capacities for increasing memory load, P = 20, 30, ...,70.

Since the memory load is already high, retrieval is impaired by cross-talk occa-
sionally observable as erroneously firing cells beside the 10 cells constituting the
memory pattern. Wrong cells respond especially when the input is switched to a new
input pattern (¢t = 0 and 100 ms). A closer investigation of the erroneously firing cells
reveals that these typically belong to memory patterns that have considerable overlap
with the addressed memory pattern.

Retrieval quality in Fig. 1 is defined as the normalized information about the
addressed memory pattern contained in the spike raster binned over the previous
7 ms. The quality often assumes a sharp maximum in the first part of a retrieval
period. Apparently, correct cells respond earlier than spurious cells and could be
segregated in further processing stages by coincidence detection.

Memory capacities for varying numbers of active address neurons (/) and stored
patterns (P) are shown in Fig. 2. Capacities are derived from the transinformation in
spike patterns about memory patterns, averaged over 10 retrieval periods for 10
randomly selected addresses. Strikingly, the compartment neuron network loaded
almost to the theoretical optimum where 50% of the synapses have been increased
[5], still achieves high memory capacity with considerable input fault tolerance. The
theoretical optimum of 0.69bits/synapse could even be approached more closely with
optimized pattern activity which is lower than k = 10 for networks of only 100
neurons [5].

4. Discussion

Our results support an interpretation of synchronized gamma-oscillations by fast
and rhythmic associative processes [10,11]. We have shown that in networks of
realistic neurons synaptic association during gamma-oscillations can be restricted to
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population bursts of cell pools in single periods. Our network operates close to the
theoretically expected capacity and, simultancously, at the maximally possible re-
trieval speed.

Cell firing in our model is characterized by avalanches of activation spreading from
highly excited cells to less excited ones mediated by associative excitatory connec-
tions. Inhibition rhythmically interrupts these processes before most of the patterns
correlated most strongly with the input can respond. Afterwards a new retrieval
process is started by the input.

For future research more plausible interneuron models should be examined. In
particular, the finding by Whittington et al. [13] that inhibitory subnetworks produce
synchronized oscillations by themselves may influence the retrieval.
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