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Here we describe a novel technique for exploratory analysis of event-related fMRI.
The technique comprises two parts. The first component is dense latency sampling
(DLS), an oversampling scheme for event-related fMRI that has the advantage of
providing volume slice timing without the need for signal interpolation. The second
component is dynamical cluster analysis (DCA) of signal time-courses; this analysis
is done with temporal constraints taken from the event-related design: Signal seg-
ments that correspond to different types of events are analyzed separately to reveal
specific event-related activation. The technique does not rely on preassumptions
about the temporal shape of functional activity like common inerential methods.

We demonstrate the utility of the technique and also compare its performance to
standard techniques in a study of working memory. The technique reveals spatio-
temporal patterns of activity associated with different memory load conditions.
Most delay-related activity appeared in parietal and prefrontal regions peaked in
the second half of the delay period; this suggested involvement of these regions
in processes of memory rehearsal and decision making. The superior parietal and
precentral cortices also participated in delay-related activity. But for these regions
the temporal shapes of functional activation suggested additional roles in memory
encoding.
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5.1 Introduction

Almost all methods of data analysis in fMRI make assumptions about the nature
of the underlying neuronal processes. The methods can be divided into two classes,
based on the type of assumptions made. One class of methods uses univariate anal-
ysis and relies on the assumption of functional specialization of cortical regions. The
other class employs multivariate analysis and relies on the assumption of functional
integration, that is, that brain function results from cooperative interactions among
cortical regions. Here, we will describe a technique, belonging to this second class,
that applies multivariate analysis to data from event-related fMRI (ER fMRI). Our
approach of exploratory data analysis is designed to detect weak, task-induced sig-
nal changes whose shapes are not known beforehand (Wichert et al., 2001a,b). The
technique combines a new scheduling scheme of multi-slice data acquisition with a
variant of temporal cluster analysis. The approach is designed for complex experi-
mental paradigms with short events where the event-related signal is weak and has
a time course that is difficult to predict. Studies that explore cognitive processes
like memory typically involve such complex paradigms.

In order to evaluate the strength of our technique we chose the study of working
memory. The choice of this cognitive task made sense for two different reasons.
First, working memory is amenable to study with our technique because the tim-
ing of the neural processes it involves can be directly manipulated by experimental
design. Second, earlier studies had indicated that the formation of working mem-
ory is distributed across disparate cortical areas, thus, suggesting that functional
integration might be important.

The concept of working (or short term) memory refers to a type of memory
that has limited capacity for storing and manipulating information necessary for
performing a specified task. It was originally defined in studies in which subjects
were presented with a list of items and then asked to recall individual entries
on the list. Results from these studies defined the upper limits of memory load,
i.e., the maximum number of items (such as words) that could be memorized
with reasonable accuracy. Typically, experiments test working memorizes whose
durations range from a few seconds to a few minutes. The mechanisms of working
memory vary as a function of the length of time the memory is required to last. If
the duration is short, 10s or less, subjects recall items nearer the end of the list more
accurately that those at the beginning of the list. This recency effect disappears
if the duration of the memory exceeds 10s. Thus, there seems to be a qualitative
difference between memories that persist for more 10s and those that are briefer —
the former are more durable than the latter.

A common type of task used in studies of working memory is called delayed
match-to-sample task or simply delayed response task. The task consists of three
discrete phases. The first is a presentation phase during which the subject is
presented with a set of items to memorize (the memory set). The presentation phase
is followed by the delay period, an interval during which no tasks are required. The
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last phase is the probe phase during which the subject is presented with an item
and must decide whether or not it belongs to the memory set.

The cellular neurophysiology of delayed response tasks has been studied in
experiments with animal models. These studies showed that prefrontal and parietal
cortical region are involved in working memory. Cells in these regions respond
selectively during different phases of the task, indicating ”process specificity”
(Baddeley, 1986, 1996). For instance, a population of cells in prefrontal cortex
fire persistently during the delay phase. Cells in prefrontal cortex are also able
to convey information about both the identity and location of a given item in a
memory set (Rainer et al., 1998).

Whole-brain neuroimaging techniques such as PET and fMRI promise to re-
veal the global functional architecture of working memory (Jonides et al., 1993;
D’Esposito et al., 1995; Goldman-Rakic, 1996; Owen et al., 1996; Postle et al.,
2000b; Goldman-Rakic, 2000). The first neuroimaging studies of working memory
made only indirect assessments of functional activity (Cabeza and Nyberg, 2000).
The advent of the event-related fMRI technique (Josephs et al., 1997; Dale and
Buckner, 1997) gave direct access to the functional activity caused by short events
such as a single delayed response task. These later studies led to revisions of theories
of working memory that had been based on results from the indirect assessments
(Postle et al., 2000a). Thus, the evolution of methods in whole-brain imaging allows
the refinement and revisions of theories of brain function.

In the study of working memory that we will describe we will focus on the
following three questions. i) How do results depend on the paradigm used in
data analysis, specifically, do results change if one switches from the assumption
of functional specialization (underlying common univariate inferential fMRI data
analysis) to the assumption of functional integration (the incentive of multivariate
exploratory fMRI data analysis)? ii) How do the time courses of functional activity
relate to results from single-cell recordings? iii) Are sensory areas involved in the
delay phase?

All told, the overall aims of the chapter are to explain our data acquisition and
analysis technique, to discuss its relations to other approaches in ER fMRI, and to
evaluate its ability to explore processes of working memory. The results of the new
technique will be compared with those of state-of-the-art approaches, i.e., the slice
timing technique usually applied in multi-slice fMRI, and conventional inferential
data analysis by the general linear model (GLM). The discussion of the results of
our study in the context of earlier working memory literature will be brief and
certainly not cover all aspects. A more exhaustive description of the results will
appear in a forthcoming paper.
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5.2 Current Methods for Event-Related fMRI

5.2.1 New Chances and Challenges

The classical block design common in PET and early fMRI introduced stationary
phases of functional activation (blocks). The stationarity requirement posed strong
limits on the investigation of behavioral paradigms. A considerable widening of the
scope of neuroimaging was provided by the introduction of ER fMRI registration
technique. In ER fMRI the data aquisition is exactly scheduled relative to events in
the experimental design. Thus, it allows to register signal changes evoked by short
events, quite similar to evoked event-related potentials measured with EEG/MEG.
Of course, with regional blood flow imaging techniques the temporal resolution is
generically limited by the delayed and low-pass filtered hemodynamic response (HR)
(with time-to-peak interval of about 5s). However, up to the generical resolution
limit, ER fMRI provides more freedom for implementing experimental paradigms.
For instance, short events can be repeated in random order, or categorized post-
hoc. Early studies using the event-related technique were on odd-ball paradigms
(MCarthy et al., 1997) and on various cognitive paradigms (for short comprehensive
reviews, see (Buckner, 1998; Rosen et al., 1998)). In the performance of cognitive
tasks, ER fMRI allows to discern and characterize different phases that were only
indirectly assessible in block designs.

The extended scope of ER fMRI implicates as well new difficulties in data anal-
ysis. For inferential analysis the availability of an adaequate regressor or model
function for functional activation, determined external to the data, is an indispens-
able prerequisite (Lange, 1996, 1997; Lange et al., 1999; Petersson et al., 1999a,b).
The regressors used for block designs are box-car functions reflecting the blocks,
convolved by a canonical HR (Bandettini et al., 1993). If the durations of blocks are
long compared to the HR characteristic, exact modeling of the HR is uncritical for
the inferential analysis. For event-related designs the situation is entirely different.
The time course of functional activity is not as completely prescribed by the exper-
imental paradigm as in block design. Thus adaequate regressor functions necessary
to detect the weak component of functional amctivity1 are hard to predict indepen-
dently of the fMRI data. A method to estimate adaequate regressor functions from
the fMRI data set is revisited in the following paragraph.

1. The typical S/N of functional imaging in an 1.5T scanner is 1-5%. Regression analysis
with the box-car shaped regressor function reflecting the block design reduces the noise
by temporal averaging within blocks.
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5.2.2 Signal Averaging and Data Analysis

To achieve a noise reduction in ER fMRI selective averaging has been proposed by
Dale and Buckner (1997):

h=XTy (5.1)

where h is the sampled HR, y stands for the signal measured at a voxel, and X is
the design matrix reflecting the event timing during the experiment.

Current inferential data analyses for ER fMRI uses families of regressor functions
generated by a canonical HR impulse response function systematically shifted in
time. Since for short events the sensitivity of the analysis depends critically on a
good model of the HR, Dale (1999) had proposed to estimate the HR response from
the data set to be analyzed. He used univariate linear signal estimation based on
ordinary least square (OLS) fits

hors = (XTX)7'X Ty, (5.2)

To take into account influences between events, Burock and Dale (2000) employed
univariate linear signal estimation based on maximum likelihood (ML) estimation:

har = (XTC P X) POt X Ty, (5.3)

where C,, denotes the covariance of the noise. Burock and Dale (2000) used equation
5.3 as regressor in a modified approach of inferential data analysis.

5.2.3 Increased Resolution by Oversampling

In state-of-the-art fMRI scanning the lower limit on the repetition time (TR) is
methodologically prescribed. Since different slices cannot be acquired simultane-
ously, TR grows proportionally with the number of slices in the measurement
volume. Because the time constant of spin relaxation is fixed, the time required
for a slice measurement cannot be arbitrarily reduced. The current limit is about
TR ~ k x 80 ms, with k the number of slices. As first suggested for cardiac fMRI,
oversampling can virtually increase the intrinsically low temporal resolution of
multi-slice ER fMRIZ2. Oversampling means that each type of event is recorded
repeatedly, say r times, each event repetition sampled with a different latency. The
sampling time points can either be randomly jittered, or equidistantly distributed in
the interval TR. The latter we refer to as equidistant oversampling. In such sampling
schemes the latency is varied between 0 and TR(1 — 1/r) in steps of TR/r which
increases the effective sampling rate from 1/TR to r/T R. Josephs et al. (1997) first
proposed equidistant oversampling for neuro fMRI (with r = 2). The method was
used for estimating HR functions (Miezin et al., 2000).

2. Oversampling critically relies upon the condition that repeated trials produce similar
functional activation, an assumption also made in conventional fMRI.
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5.2.4 Slice-Timing

The technical limitation in multi-slice fMRI that different slices cannot be recorded
simultaneously causes the slice timing problem. This describes the fact that a
recorded volume is not an instantaneous picture in time. The different slices are
recorded one after another in intervals of TR/k. While negligible with traditional
block designs, the slice timing differences matter for the investigation of event-
related designs.

The current method to solve this problem is a procedure called volume slice
timing that involves phase-shift manipulations in the data: A reference slice is
selected in the volume and all signals measured in other slices are phase—shifted3
to the sampling points of the reference slice, see figure 5.1 a). Because the required
shifts of the phases are smaller than the sampling intervals of the signals, this
manipulation involves signal interpolation and the typical errors associated with
it, such as ringing and wrap-around effects, see (Schanze, 1995). The described
procedure is applied as a standard preprocessing step, often even before inferential
data analysis, where in principle the slice timing could be reflected more properly
by shifting the regressors for each slice individually (Josephs et al., 1997).

5.3 Exploratory Analysis in Functional Imaging

For multivariate exploratory analysis of fIMRI/PET data various methods have been
proposed, such as principal component analysis (Lai and Fang, 1999; Hansen et al.,
1999; Baumgartner et al., 2000a), indepedent component analysis (McKeown et al.,
1998; McKeown and Sejnowski, 1998; McKeown et al., 1999), and diverse temporal
clustering methods (Scarth et al., 1995; Baumgartner et al., 1997; Golay et al.,
1998; Baune et al., 1999; Goutte et al., 1999; Filzmoser et al., 1999; Fadili et al.,
2000), and see chapter Somorjai and Jamusz. The goal of these approaches is to
detect characteristic spatio-temporal properties in the data as much as possible
uninformed of a priori assumptions about the results.

Exploratory data can yield a reduced data set that still reflects the important
properties in the data. For instance, cluster analysis approaches in functional
imaging usually apply temporal cluster analysis (TCA) i.e., they cluster the data
with respect to the shapes of the signal time courses. TCA partitions the data into
sets of voxels with similar time courses—clusters?. A cluster can be characterized
by its spatial pattern and by the cluster center, that is, the averaged time course.

3. Applying the Fourier-shift theorem, a phase shifting can be achieved by multiplying
with a complex exponential in Fourier space (Aguirre et al., 1998).

4. Tt has to be emphasized that a cluster resulting from temporal TCA is different from
a spatially contiguent set of voxels (for instance, in functional maps), often referred to
as cluster. The first collates voxels of similar signal shape, but completely independent of
spatial positions. To avoid confusion we will refer to the latter as a spatial cluster.
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Exploratory data analysis was successfully applied for block design experiments,
see the comparison between different exploratory and inferential data analysis
approaches in (Lange et al., 1999). However, few attempts have been made to apply
exploratory data analysis to ER fMRI, but see (Richter et al., 2000). For ER fMRI,
where inferential data anlysis is hampered by the lack of adaequate regressors,
exploratory data is particularly interesting.

5.4 New Technique for Exploratory Analysis of Event-Related fMRI

In this section we describe a new approach to characterize functional activity in
event-related fMRI. It relies on selective signal averaging as well, but applies ex-
ploratory analysis techniques (section 5.3) rather than univariate signal estimation
and inferential data analysis described in section 5.2.2. The first part of this section,
section 5.4.1, explains the data acquisition method, the second part, section 5.4.2,
the exploratory analysis algorithm and its application to ER fMRI data.

5.4.1 Data Acquisition and Slice Timing
5.4.1.1 Dense Latency Sampling

For increased temporal resolution we use equidistant oversampling of events as de-
scribed in section 5.2.3. Applying selective averaging (equation 5.1) after equidistant
oversampling yields signal time courses virtually sampled with a rate of r/TR.

Equidistant oversampling can have another interesting consequence for multi-slice
data acquisition that, as far as the authors are aware, has not been exploited before:
With the sampling rate chosen appropriately it can also resolve the slice timing
problem described in section 5.2.4; for r = k, that is the number of repeated events
is equal to the number of acquired slices, a dense sampling can be guaranteed. Dense
sampling means that for any slice measurement all the £ —1 other slices completing
a volume have been recorded with the same latency during other repetitions of the
event. Thus, slice timing can be achieved just by data re-sorting, i.e., by rearranging
slices of same acquisition latency to new volumes. Re-sorting is done with respect
to a labeling of the measured data based on the event-related design matrix. Each
slice is labeled by the latency between the exact acquisition time and the event
with the largest influence on the signal. The labeling takes into account an assumed
delay until the maximum effect of an event is expressed in the HR. We used a 5s
time-to-peak interval of the canonical HR. The described methods are explained by
schematic pictures in figure 5.1.

The combination of equidistant dense sampling scheme and data re-sorting we
call the dense latency sampling (DLS) technique (Wichert et al., 2001b). Like in
conventional ER fMRI the DLS technique leaves the freedom to schedule order and
onsets of events in the experiment in a pseudorandom manner. The advantage of
the DLS fMRI technique is that it provides volume slice timing without introducing
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Figure 5.1 Schematic views of the DLS method and phase-shift slice timing (example
with k£ = 7 slices per volume and r = 7 event repetitions). Picture a) shows the DLS data
acquisition scheme and the effect of phase-shift slice timing: Big squares symbolize the
acquisition of volumes. The horizontal extension corresponds to the acquisition time TR,
the vertical extension to the spatial axis perpendicular to the measured slices (as labeled
on the right margin of the figure). The shaded squares in the background sketch volume
measurements taken at event repetitions. Latencies between events and measurements
were varied such that the interval of TR (marked by the bold horizontal arrow) is
equidistantly divided by sampling points (depicted by the downward arrows). Thus, the
oversampling rate is TR/r. Within the acquisition volume in the foreground the small
squares symbolize how different slices are measured one after the other. The thin horizontal
arrows depict the effect of phase-shift slice timing (with slice 4 chosen as the reference
slice), the dashed rectangle symbolizes the resulting slice-timed volume. Picture b) shows
the result of the DLS-re-sorting. Bold rectangles denote the volumes assembled by re-
sorting with respect to the latencies between event and the individual measurements. The
numbers indicate the event repetition from picture a) indicating the origin of each slice.
In addition, the slices acquired during the first event are marked by shaded squares—they
are distributed over different DLS volumes. Note, that the choice r = k, provides complete
volumes at each sampling point after re-sorting.

artifacts of the conventional slice-timing procedure (section 5.2.4). Particularly for
designs with long repetition times TR, when phase-shift artifacts become more and
more serious, the DLS technique offers an interesting alternative for slice timing. A
reliable method for volume slice timing is crucial for all sorts of exploratory analysis
methods such as principal /independent component analysis and cluster analysis.

5.4.1.2 Dense Latency Sampling at Lower Rates
As explained before, the full DLS technique requires an oversampling rate TR/r

equal to the single-slice sampling rate of the used measurement sequence. For com-
plex experimental paradigms, however, this requirement results in long durations
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of experimental sessions. In such cases one might prefer a lower effective temporal
resolution, if achieved with fewer event repetitions.

A reduction of the sampling rate required for data re-sorting is possible by
combining DLS-fMRI with modest phase-shifting. The idea is to apply phase-shift
time slicing not only with respect to a single reference slice per volume. Instead one
can choose s > 1 reference slices spaced equidistantly over the volume. For each
slice only the data corresponding to the closest reference slice are used. These can
be arranged to complete volumes by DLS re-sorting as explained in section 5.4.1.1.
Compared with the traditional phase-shift slice timing the resulting interpolation
errors are smaller because the maximum phase-shifts involved are reduced from
TR/2 to TR/(2s)°. The combination of DLS-technique and phase-shifting can be
best explained with an example: For a measurement volume consisting of & = 21
slices, phase shifting is done for the reference slices 2,5,8,11,14,17, and 20. The
result is s = 7 slice-timed zones in the volume, each zone comprising three adjacent
slices. The situation is again reflected by figure 5.1 where now each slice corresponds
to a zone of 3 slices and the measurement latencies stand for the latencies of the
reference slices. By DLS-re-sorting one can rearrange the different zones to complete
slice-timed volumes. In this example the maximum phase-shift to be applied to the
data is reduced from 10 x TR/21 in the standard slice timing technique (using slice
10 as reference slice) to 1 x TR/21 with the DLS technique. Thus, the required
event repetitions, as well as the effective sampling rate were reduced by a factor of
3 compared with the full DLS-scheme.

5.4.2 Exploratory Analysis for Event-Related fMRI
5.4.2.1 Restricted Cluster Analysis

The results of multivariate exploratory analyses like temporal cluster analysis
(TCA) depend on the selection of voxels included in the analysis. Therefore, removal
of voxels outside the brain using a simple threshold criterion for the mean signal
amplitude is a usual preprocessing step. The most assumption-free way to perform
data exploration is then to run TCA on the whole brain volume and over the
entire sequence of slice-timed volumes. While this provides a screening of the data
for detecting coarse artifacts, not all functionally induced spatio-temporal structure
might be segregated in clusters under such a broad scope. Particularly, event-related
responses, short in duration, and interspersed with regard to event type, are unlikely
to be detected by unrestricted TCA.

TCA can be restricted in space and time. By applying TCA only in a partial
volume of the brain one can focus on regions of interest, or disregard regions of

5. To further minimize interpolation errors, recent techniques such as the expansion with
phase-invariant Fourier-sets as base functions, or the inclusion of temporal derivatives
could be used, see (Henson et al., 1999; Josephs and Henson, 1999).
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no interest. For uncovering functionally related structure more specifically, one can
restrict TCA in the time dimension, i.e., inspect temporal segments of the data
that have been selected informed by the experimental paradigm. We used temporal
restriction for isolating effects from experimental conditions, in our case, from
different event types. The selection of segments to be analyzed used the labeling of
the measurement sequence as described in section 5.4.1.1 (Wichert et al., 2001a).

In the reminder of this section we will briefly describe two more technical topics
that are essential components of the data analysis technique, the clustering method
(section 5.4.2.2), and definitions of temporal and spatial similarity we used in
the cluster analysis and to assess and compare the clustering results (paragraph
5.4.2.3). After TCA is carried out for each conditions independently, these similarity
measures can be used to search for relations and differences in functional activity
of different conditions.

5.4.2.2 Dynamical Clustering

As a number of previous studies have revealed, the standard clustering algorithm, k-
means clustering is not the right choice for high-dimensional fMRI data sets (with
hundreds of sampling points in time). The gradient-descent performed by the k-
means algorithm is a local minimizer that for high-dimensional data sets frequently
fails to find the global minimum, resulting in poor data fits. An indicator for the
local minima problem of k-means clustering is a poor reproducability of the results.
The results depend strongly on the initialization of the cluster centers. With random
initialization8 repeated runs of k-means clustering on the same data set can lead
to quite different partition results.

Therefore, alternative algorithms have been proposed, like fuzzy clustering
(Scarth et al., 1995; Moser et al., 1997; Baumgartner et al., 1997; Golay et al.,
1998; Fadili et al., 2000), hierarchical clustering (Goutte et al., 1999; Filzmoser
et al., 1999), and dynamical cluster analysis (DCA) (Baune et al., 1997, 1999).
In DCA the number of clusters is not fixed like with k-means clustering; cluster
centers are generated and anihilated during the data fitting process. A comparison
between k-means CA and DCA has shown that the reproducability of DCA is much
better (Baune et al., 1999). The problem with DCA is that it is computationally ex-
pensive. The advantage of dynamical cluster generation in DCA led us to a variant
of k-means clustering with dynamical initialization phase for the choice of cluster
seeds, very similar as the one proposed by Waldemark (1997). For a previously
specified radius r the initialization phase generates a set of cluster seeds such that
for every data point at least one of the seeds is closer than r. The initialization is
completed after a single sweep through the data set where successively each data
point is assigned as cluster seed if all previously assigned seeds are farther away

6. In random initialization, the default used for k-means clustering, k data points are
picked at random as seeds for the cluster centers.
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than r. We will refer to the combination of k-means clustering with the described
dynamical initialization phase as K-MDI clustering. On the data of the working
memory study both methods, K-MDI and DCA, achieved similar results, but the
first was considerably faster. Therefore, in the following we will only report the
results provided by K-MDI clustering.

5.4.2.3 Assessment and Comparison of Cluster Solutions

TCA requires one strong a priori assumption which is the measure of temporal
dissimilarity (td) used for clustering. We used the Euclidean distance between two
time courses. Another commonly used measure, that only compares signal shapes
and entirely disregards absolute signal amplitudes, is based on the correlation
coefficient.

After completion of TCA there is the problem how to inspect, assess and interpret
the results in a systematic and fair manner. This requires quantitative description of
the results, i.e., of the properties of centers and spatial patterns of the clusters. The
td measure used during clustering can also be applied post hoc to the cluster centers
for assessing differences in the temporal signal shape. In addition, we used the
following definitions (Wichert et al., 2001a): The signal change homogeneity (SCH)
which is defined as the ratio between peak-to-peak amplitude of the cluster center
and mean standard deviation of signal amplitudes of the members of a cluster. The
temporal smoothness (TSM) which is defined as the relative spectral power in the
low frequency range of a time course. The spatial contiguity (SC) which is defined as
the relative number of adjacent voxels in a voxel set (presence of “spatial clusters”).
The spatial similarity (0 < ss < 1) between two patterns which is defined as the
normalized overlap, i.e., the ratio between the numbers of voxels in the intersection
and the union of the voxel sets corresponding to the clusters. For a pattern b and a
pattern set A we call a € A best match to b, if a is the element with maximum spatial
similarity to b. For two pattern sets A and B we call a € A,b € B best-matching
pair, if a is best match to B and b is best match to A.

For inspection and interpretation of clustering solutions we select clusters based
on threshold criteria using the introduced measures. Functional activation can be
assessed by focussing on clusters with high values in SCH and TSM. The first
criterion selects clusters whose voxels homogeniously display signal changes of
the cluster center. To assess homogeneity of time courses in fMRI activity maps
Kendall’s coefficient of concordance has been proposed (Baumgartner et al., 1999,
2000b). We prefer the SCH measure for cluster selection because it measures the
homogeneity of signal changes which are essential for characterizing functional
activity 7. A threshold on T'SM is used to reject clusters whose signal shape cannot
be explained by influences mediated by the low-frequent HR.

7. For visual inspection of cluster homogeneity we display cluster centers with error bars
reflecting standard deviation of signal amplitudes of the members.
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As an optional selection criterion one can require high SC'. This rules out clusters
whose spatial patterns are scattered. Such rejection follows a common assumption
that meaningful fMRI activity occupies a larger region than the volume of a single
voxel (typically 1 x 1 x 3 mm?) and thus forms a spatial cluster8. This assumption
also underlies spatial smoothing of the data, a preprocessing step, that is often
applied before starting with data analysis (Xiong et al., 1995). Spatial filtering, for
instance, with Gaussian kernels, enhances contiguous components in the signal by
spatial averaging. In our technique spatial clustering is used as post hoc criterion
to assess the result of temporal clusteringg.

The measures ss and td will be used for various comparisons between conditions.
For instance, cluster results from two different conditions can be checked for spatial
similarity. A spatially corresponding cluster pair (a best-matching pair) suggests
that similar regions are recruited by both conditions. Differences in the centers of
corresponding clusters indicate condition-specific changes of functional activation.
Size differences of corresponding clusters, however, cannot be interpreted directly.
Due to the global nature of the clustering process, the size of a cluster is influenced

by push-away effects from other clusters0.

5.5 The Working Memory Study

5.5.1 The Experimental Task and Data Aquisition

Five male and four female volunteers performed a delayed match-to-sample task in
the fMRI scanner. Experiment blocks consisted of 42 task events with two different
event types pseudo-randomly shuffled, one with low memory load (memory set with
1 letter) and one with high load (6 letters). Each event type occurred r = 21 times
during one experimental block. An event started with the visual presentation of
the memory set, a 2 x 3 array of the letters. For low load, a single letter to be
memorized in the array was marked with a different color. The presentation lasted
for 1s and 3.5s for low and high load, respectively. To reduce confounding effects
in the following delay phase we adjusted memory set presentation time according
to the number of items to be remembered (0.5s per item plus 0.5s) as usually done
in behavioral studies (Richardson et al., 1996; Neath et al., 1999). After the delay

8. It is important to distinguish between spatial clusters, defined by voxel contiguities in
spatial patterns, and the clusters extracted by clustering signal time courses as described
in section 5.4.2.2. The latter are formed without any information about voxel contiguity. If
the voxel pattern forms a spatial cluster this reflects the additional property that similar
time courses are found in nearby voxels.

9. We apply spatial smoothing for preprocessing only before group averaging to account
for imprecision of realignment and normalization and for interindividual differences in
functional localization.

10. Neighboring clusters will compete for data points, resulting in a repulsive interaction.
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period of 6s, a second visual stimulus was presented for 1.5s. It displayed a similiar
2 x 3 array containing one letter and five dummies. The subject had to press a
yes/no button deciding whether or not the letter was in the memory set previously
seen. Video goggles were used for visual presentation.

An experimental session consisted of two identical pseudorandom event blocks,
as described above. For one male subject the experiment block was repeated five
times. This data set was used in the single subject analysis. Data aquisition was
performed on a 1.5 T Siemens Vision scanner. A full brain volume consisted of
k = 21 slices and was sampled with TR = 1.9s.

5.5.2 Data Preprocessing and Analyses

We started data processing by motion correction using the realignment procedure in
SPM99 (http://www .fil.ion.ucl.ac.uk/spm). In a second step for each subject the
signals from repeated blocks were averaged. For assessing group effects the data
of eight subjects (four male and four female) where spatially smoothed (with a
Gaussian kernel of 8mm), normalized to the SPM Epi template, and averaged.
Having performed the experiment with the DLS-fMRI technique described in
section 5.4.1.1, there were two options for volume slice timing, DLS-re-sorting, or
the usual phase-shift method. DLS-re-sorting was provided by a self-implemented
program. For the purpose of comparison we also carried out the second option: The
common signal interpolation slice timing was performed by the routine available in
SPM99. Both, the phase-shifted and the DLS-re-sorted data set were analyzed in
two different ways. We will use the following descriptors for different exprimental
conditions: H denotes the high and L the low load condition in the working memory
task. Different phases in the trials are denoted by s for memory set presentation,
d for delay phase, and t for the test or probe phase. Thus, the set of different
experimental conditions is C = {Hs, Hd, Ht, Ls, Ld, Lt, P}, with P denoting pauses
between events.

For inferential data analysis regression analysis in the GLM was carried out with
SPM99. As regressors we used the box cars of the distinct experimental periods,
stimulation, delay and target, convolved with a canonical HR function, a gamma,
function with a time-to-peak constant of 5s. The contrast functions we used in the
GLM will be given in the result sections using a notation with the elements of C.
For instance, Hd — Hs denotes the contrast function requiring a higher signal in
the delay than in stimulus during the high load condition.

Cluster analysis was applied on different temporal segments of the data sets.
For overall data exploration we applied TCA on H&L, the data set containing the
measurements during both load conditions. Such overall data exploration revealed
for eight of the nine subjects scanner artifacts localized in the basal parts of the
brain. For assessing group effects we disregarded the regions with distorted signal
in the further analysis by spatial restriction of the cluster analysis. As described
in section 5.4.2.1, we applied TCA separately on two data segments: L with a
duration of 12s corresponding to the low load event; and H with a duration of 13.5s
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corresponding to the high load event. The cluster analyses yielded 20 clusters for
low load, and and 18 clusters for high load. In the following, these cluster sets will
be labeled by L1 — L20, and H1 — H18, respectively.

5.5.3 Results for a Single Subject

This section compares the results from different data acquisition and analysis
techniques for a single subject. The two most contrasting analysis approaches we
employed were linear regression analysis (GLM) on the phase-shifted data set,
as the most conventional, and K-MDI clustering on the DLS-data, as the most
unconventional. If these extremes yielded agreeing results, we will not describe the
results produced by intermediate approaches, such as TCA on phase-shifted data, or
linear regression in the DLS data set. Overall data examination with TCA revealed
no obvious artifacts so that the whole data set could be examined.

Our first question concerned visual functional activity. In the GLM we looked
for voxels showing the same activation pattern in both load conditions, a higher
signal intensity under visual stimulation, in the periods s and ¢, than without visual
stimulation in the delay periods d. The binarized SPM; map is shown in figure 5.2.

Figure 5.2 The SPM; map of the contrast function +Ls — Ld + Lt + Hs — Hd + Ht
(corrected with p < 0.05) in the signal interpolation slice-timed data.

TCA was applied on the H&L DLS-data. For comparison with the results of
standard GLM analysis we selected those clusters from the clustering result whose
centers had highest temporal similarity with the used contrast functionll. Note,
however, that the selection of visual clusters was done post hoc, i.e., the formation
of clusters was uninformed of any target function. The spatial maps of the two
visual clusters are displayed in figure 5.3. The two clusters had very similar signal
shape but different signal amplitude levels.

11. A boxcar function convolved with a canonical HR function.
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Figure 5.3 The clusters with highest temporal similarity to the contrast used in the
SPM; map displayed in figure 5.2.

Figures 5.2 and 5.3 show quite similar spatial maps for visual stimulation in-
dicating that the time courses of visual stimulation were well preserved by both
time-slicing operations. Further, this result suggested that visual activity is so dom-
inant in the data statistics that it is lumped together even by a data exploration
completely uninformed about the functional paradigm.

Our second question addressed delay activity, the focus of our study. We concen-
trated on the high load, using the contrast function —Hs + Hd, and masked the
SPM; map exclusively by two other contrast maps: stimulus deactivation against
the baseline, i.e., —Hs + P, and second, higher delay activity during low load than
during high load, i.e., +Ld — Hd. For the single subject this search was negative,
neither in the slice-timed, nor in the DLS data set we were able to find significant
delay activity with SPM or the exploratory analysis technique. Our negative result
of finding delay-related functional activity in the single subject is in line with some
previous fMRI studies of working memory fMRI, however, there are also studies
reporting positive results.

Finally, we asked about functional activity related to both phases, delay period
s and probe phase t. We applied a contrast including target and delay in both
conditions against baseline +D + T — P. The obtained SPM,; map was exclusively
masked by the contrast function for visual activation (cf. Figs. 5.3 and 5.4).
The resulting map on the phase-shift slice-timed data is displayed in figure 5.4.
Functional activity is scattered but shows higher spatial density in left parietal
regions and bilateral prefrontal regions.

To assess the influence of the slice timing methods on such a smaller effect,
we analyzed the DLS-re-sorted data set with the equivalent contrast function, see
figure 5.5. Although the main spatial clusters agree, the maps differ in detail. There
is less lateralization in the DLS-re-sorted data set than in the phase-shift slice-timed
data set. This example shows that effects less salient than visual stimulation are
influenced by the method of time-slicing.



Exploratory Analysis of Event-Related fMRI Demonstrated in a Working Memory Study

contrasi(s)

1 5 91317212829 35
Design matrix
Figure 5.4 SPM; map of the contrast function +Ld + Lt + Hd + Ht — P, exclusively
masked by +Ls — Ld + Lt + Hs — Hd + Ht (corrected. p < 0.05). Height threshold T =
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Figure 5.5 SPM; map of the contrast function +Ld + Lt + Hd + Ht — P exclusively
masked by +Ls— Ld+ Lt+ Hs — Hd+ Ht (corrected, p = 0.05). Height threshold T=5.04,
extent threshold k=0. DLS-re-sorted data.
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5.5.4 Results of the Group Analysis

A group analysis can reveal effects similarly expressed in several group members,
even if hidden by signal variability in individual data sets. The rationale of a group
analysis is simply that group effects add up, while those signal components are
averaged out that vary over the subjects.

Linear regression in the GLM was again used on the group data for cross-checking.
We used the same combination of contrasts in the GLM as for the single subject
analysis in section 5.5.3. Unlike in the single subject, where no functional activity
could be detected, delay activation was found in the group analysis, see figure 5.6.

The cluster centers resulting from the TCA of the group data are displayed in
figure 5.8. First we asked for spatial similarities between the high load clustering
results and the SPM,; map of figure 5.6. The best and the second best matches
to the SPM; map were the clusters H12 and H10, reaching together a spatial
similarity to the SPM; map of ss = 0.077. Their spatial maps are displayed in
figure 5.7.

Figures 5.6 and 5.7 reveal a qualitative agreement. Both spatial maps were
dominantly located in the left superior parietal cortex (BA40), in regions at the
midline, superior frontal gyrus (BA6) and in the left prefrontal cortex (BA9).
Furthermore, the time courses of H12 and H10 were similiar to each other, and
showed, in fact, delay activity; a pronounced peak in the second half of the delay
period, see figure 5.8. Thus, the TCA found components with qualitative spatial

Figure 5.6 SPM; map of the contrast —Hs + Hd, masked exclusively by Hs — P, and
by +Ld — Hd (corrected, p = 0.05). In the upper row the cursor position is in BA40, in
the lower row in BA9. Phase-shift time-slicing used.
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Figure 5.7 Spatial maps of H10 and H12, the clusters with highest spatial overlap
with the SPM; map of figure 5.6. Both cluster centers show a pronounced peak in the
late delay period, see figure 5.8. In the upper row the cursor position is in BA40, in the
lower row in BA9. DLS-re-sorting used for slice timing.

similarity to the SPM map. The detailed patterns of activity, however, deviated: the
spatial similarity ss between the TCA clusters and the S PM; stayed far below one,
and at some regions they disagreed considerably. The spatial cluster located in right
prefrontal cortex in the SPM map, for instance, had only some scattered voxels as
counterparts in the TCA result. Differences must be caused by the different ways
of data analysis and preprocessing as well. One should be aware, that there is no
“gold standard” for analyzing these data. The mutual masking of contrasts used to
generate the SPM; map is just another way of exploratory data analysis.

The crucial question is now what the exploratory analysis technique based on
cluster analysis can reveal about the expression of delay activity exceeding the
scope of GLM-based data analysis. For the systematic assessment of the entire
clustering results we proceeded as described in the sections 5.4.2.3 and 5.4.2.1.
First, we selected clusters with high signal change homogeneity. The chosen selection
threshold was SCH > 2.6, which was surpassed by 7 clusters for high, and 8 for
low load condition. One low load cluster was excluded because of lacking temporal
smoothness. The cluster centers of 11 of the selected clusters are displayed in
figure 5.8. Among the selected high load clusters were the previously described
“delay activity” clusters H12 and H10, but also H15, with quite similar activation
time course, peaked in the late delay. There were more clusters displaying activation
during the delay, however, with quite different time course: The signal courses of
H2 and H16 show not only activation in the delay period but also in the phase of
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Figure 5.8 Cluster centers obtained by the analyses of high and low load trials. The
displayed clusters satisfied our selection criteria based on the measures SCH and TCH
(defined in section 5.4.2.3). High and low load clusters are paired with respect to high
spatial similarity. Each pair a) to f) shows on the left the center for low load and on
the right the center for high load. The horizontal axes display latency time with respect
to stimulus onset (in seconds, ¢ = 0 marks the canonical hemodynamic delay interval of
5s after stimulus onset). The curve onsets mark the begin of the phase s, the three bars
indicate transitions between the phases s, d, t and P. The vertical axes display relative
signal strength (in arbitrary units). Error bars represent the signal standard deviation
within the cluster. Below each diagram one finds the name of the cluster, and in brackets,
the SCH value and cluster size (in voxels). The pairs a) to f) are ordered with respect to
decreasing spatial similarity (ranging from ss = 0.156 for a), to ss = 0.127 for f).

memory set presentation. The time course of H2 displayed an activity peak in the
late delay period quite similar to the cluster centers of H12, H10 and H15, but
there was a second activity peak in the preceeding period with visual stimulation.
Of course, voxels with such temporal behavior remain undetected by the d — s
contrast used in the GLM-based data analysis. Figure 5.9 shows the spatial pattern
of the cluster H2. The spatial pattern of cluster H2 was located in the upper left
and right occipito-parietal cortex, (BA19, BA40).

Cluster H16 showed a signal time course that was quite unique among the
clusters with increased activities in the delay. The signal was high during the visual
stimulation and the activity persisted without interuption almost until to the end
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Figure 5.9 Map of cluster H2. It was activated in the stimulus and had a second peak
in the delay. The cursor is set at the Talairach coordinates 27 -78.1 37.6 mm in BA19.

of the target period. The interpretation of this activation function is less clear since
the prolonged activity could just be a confounding effect from the preceeding phase,
but see discussion below.

So far, we have discussed the high load clusters showing pronounced effects in the
delay period. To study load dependencies, we checked for spatial correspondences
between high and low load clusters. We scored high/low load pairs with respect to
spatial similarity. The spatial similarities ranged between ss = 0.156 and ss = 0.0.
Interestingly, all 14 selected clusters belonged to the 10 high scored pairs, with
spatial similarities higher than ss = 0.098. Eight of the 10 high scored pairs
had a pairwise association, i.e., they were best-matching pairs, see definition in
section 5.4.2.3. Figure 5.8 shows the six pairs with highest spatial similarity. With
the exception of pair d), the clusters displayed in figure 5.8 were best-matching
pairs. The pairs a) and d) associate the clusters H12 and H10 with the same low
load cluster L20. Note that H12 and H10 were the both clusters with highest spatial
similarity to the GLM map, see figure 5.7. The magnitudes of the spatial similarity
within pairs already indicated a substantial overlap region12 and a visually salient
similarity.

Interestingly, in many cluster pairs, a), b), d), f), we found high similarity in
signal shape and amplitude of the cluster centers. This indicated load-independent
activation time courses in the overlap regions of these cluster pairs. The strongest
load-dependency was observed in the overlap of pair c¢): While during low load
the activity was peaked in the late delay (L13), the cluster H16, described above,
showed persistent activity from stimulus to the end of the delay phase during high
load. Since quite clearly L13 displayed delay-related activity, the region where L13
overlapped with H16 was likely to convey delay-related neuronal activity also during
high load, even if this was unclear from the time course of H16 alone. The spatial
pattern of the overlap region of cluster pair c) is shown in figure 5.10. It is spatially
clustered in the precentral gyrus (BA6), bilateral near the midline (SMA), and left
parietal cortex.

12. For instance, the overlap region of cluster pair c) is displayed in figure 5.10.
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Figure 5.10 Voxels belonging to both clusters L13 and H16 of cluster pair c) showing
the most extreme load-dependency in the activation. The cursor is set at the Talairach
coordinates -2.2 1.4 61.0 mm in medial precentral gyrus (BA6).

Figure 5.11 Load-dependent delay period specific effect. This map shows the voxels
in the superset of high load clusters with delay peak (H10, H12, H15), but not in the
superset of low load clusters with delay peak (L4, L20). The cursor is set at the Talairach
coordinates 35.3 56.1 18.6 mm in the right BA10.

The spatial deviations within the cluster pairs cannot be interpreted directly,
see section 5.4.2.1. For a rough estimation how the global region of exclusive delay
activation changed with load we merged for each load all the clusters with the
typical activity peak in the late delay/early target (the clusters in the pairs a, b,
and d). The voxel ratio between high and low load was 1.27, indicating a slight load-
dependent increase of the activated volume. We asked for the spatial distributions
of load specific activation: The map of voxels with delay activation only in the high
load, shown in figure 5.11, was clearly spatially clustered in prefrontal cortex and in
gyrus cinguli anterior. The map of voxels with delay activation exclusively during
the low load exhibited less pronounced spatial clusters located in premotor and
posterior parietal regions (map not shown here).
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5.6 Discussion

5.6.1 Relations to Other Exploratory Analysis Techniques for fMRI

A number of different exploratory analysis methods have been proposed for fMRI,
e. g. cluster analysis, principal /independent component analysis, neural networks.
These exploratory approaches have demonstrated that for block designs functional
activity can be detected completely uninformed by the experimental paradigm, see
references in section 5.4.2.

For event-related designs involving short events and different conditions, func-
tional activation is unlikely to be found completely uninformed of the paradigm.
Event-related effects are small compared to other signal influences and functional
recruitment of different conditions might interfere with each other. Earlier studies
applying explorative techniques on event-related experiments used previous knowl-
edge about the task by introducing spatial constraints, i.e., restricting the analysis
to regions of interests (Richter et al., 2000). The incentive of our technique is to ex-
plore the whole brain, by relying on temporal constraints dictated by experimental
paradigm. In the case of the working memory study we applied TCA separately on
data segments that corresponded to different load conditions.

Exploratory methods, though reducing raw data, still tend to produce data sets
rich in structure (like the clusters obtained from temporal clustering as involved
in our technique). Often, the a posteriori assessment of exploratory results is done
more or less ad hoc and the selection of reported clusters does not rely on fair data-
based criteria, but is biased by expectations about the results. We believe that a
crucial component of exploratory data analysis is a systematic and fair a posteriori
assessment of the reduced data sets. Therefore we introduced quantitative measures
and similarity relations to select, evaluate and interprete the TCA clusters. We
selected clusters with high signal change homogeneity SCH and high temporal
smoothness T'SM to account for functional activityls. However, once thresholds
were fixed, all clusters were reported that fullfill the criterion.

The paradigm-informed application of TCA presented in this chapter actually
increased the difficulty of a posteriori assessment. Instead of just one data partition
we had to deal with different data partitions for each load condition. For a
systematic assessment of load-dependent effects we scored the spatial similarity
between cluster pairs. We found pairwise correspondences between most of the
previously selected clusters. Thus, the assessment of load-dependencies mainly
involved pairwise comparisons between clusters.

Various temporal clustering methods have turned out to perform well on fMRI
data, see section 5.3. Biased by our previous experience, we chose a dynamical hard
clustering algorithm (DCA) (Baune et al., 1999) and compared this approach with

13. In the displayed mean time courses we visualize by error bars the cluster homogeneity
proposed earlier (Baumgartner et al., 1999).
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faster clustering algorithms. Previously it had been shown that k-means cluster
analysis with random initialization of the cluster seeds has lower robustness than
DCA (Baune et al., 1999). We found that k-means clustering, if extended by an
dynamical initialization phase (Waldemark, 1997), can achieve similar results and
similar robustness as DCA. The dynamical initialization proved to be effective in
preventing the gradient-descent to terminate in local minima.

Volume slice timing is an inevitable step of data preprocessing for exploratory
data analysis based on temporal similarity. In common slice timing techniques
(Aguirre et al., 1998) the signal interpolation is a potential source of signal dis-
tortion. Since the detection of functional activation during a working memory task
with short delay is hard (low S/N), we wanted to eliminate as much as possible
sources of noise in data preprocessing. We proposed dense latency sampling (DLS)
that not only enhances time resolution by oversampling (Josephs et al., 1997; Miezin
et al., 2000), but provided slice timing without introducing any signal interpola-
tion errors. It should be noted that the re-sorting process of the DLS-technique
destroys the auto-correlation structure of signal components that are unrelated to
the events. However, this does not have a strong impact on the detection of event-
related activity.

5.6.2 Probing Delay Related Activity: Methodological Issues

The slow HR characteristic is the limiting factor for the temporal resolution of
regional cerebral blood-flow-based techniques including fMRI. A serious problem
these techniques have with event-related data acquisition is to disentangle func-
tional activity from different events following on each other in fast succession. In
the case of event-related working memory studies, delay related activity might be
confounded by the HR resulting from processes during the preceding presentation
period. A way to exclude this confound is to prolong the delay period — e.g. to 12s
— and to consider only delay activity occuring not earlier than 4-5s after the onset
of the delay period, e.g. (Zarahn et al., 1997; Cohen et al., 1997; Postle et al., 1999;
Rypma and D’Esposito, 1999; D’Esposito et al., 2000). However, this approach has
major drawbacks, such as the qualitative changes of working memory with variation
of the delay period, and the fact that experimental sessions become quite long.

In this study we examined a delayed response task with a delay period of 6s. The
chosen delay length was still in the time domain of working memory most intensely
studied by other experimental methods. Though the delay duration was on the
short end of those examined by other neuroimaging studies, we were confident
to detect delay-related activity for a number of reasons. Visual experiments had
indicated almost linear summation for the hemodynamic responses of different
events (Boynton et al., 1996; Buckner, 1998), and consecutive events have been
successfully resolved, even if their time delay was only about 2 — 3s (Kim et al.,
1997). Burock et al. (1998) demonstrated that at fast stimulus presentation rates
the hemodynamic responses could be estimated quite well. Moreover, confounding
due to the HR is only a problem if successive events activate the same regions. Small



100

Exploratory Analysis of Event-Related fMRI Demonstrated in a Working Memory Study

latencies (of the order of several hundreds of milliseconds) between different regions
had been previously detected, for instance in regions involved in voluntary hand
movement (Wildgruber et al., 1997; Baune et al., 1999). To provide the optimum
power for detection of delay-specific activity, we tried to optimize experimental
paradigm, design, and the exploratory technique: i) In order to restrict in both
load conditions encoding processes to the period of memory set presentation, we
adjusted the presentation time according to the number of items to be remembered,
see section 5.5. i) We eliminated possible distortions from signal interpolation by
applying the DLS method. iii) In the GLM analysis we checked for delay activity
against the activity level during stimulus presentation, and not against baseline.
iv) The exploratory technique was unbiased by a priori hypotheses about the signal
shape of functional activation. Such a bias reduces sensitivity in case of mismatch
between hypothesis and actual activation.

5.6.3 Results on Working Memory

We examined a delayed response task with 6s delay duration and two different load
conditions (1 versus 6 letters). In a single subject we found functional activation
related to the phase including delay period and probe phase in parietal and
prefrontal regions. However, none of the techniques found purely delay-related
activation. The situation was different in the data averaged over 8 subjects. Here
clear delay-specific activity was found, with the conventional slice timing and
analysis technique (figure 5.6) and as well with the exploratory analysis technique
(figure 5.7). Both analysis techniques located the delay activity accordingly in
typical working memory regions, inferior parietal left, superior frontal left, superior
medial (BA6) and bilateral prefrontal (BA9).

The exploratory technique yielded results going beyond those obtained by an
inferential technique, mainly because the former can characterize functional acti-
vation unbiased by expected signal shapes (regressors) or locations (anatomically
defined regions of interest14). Most delay-related activity found by the exploratory
data analysis had a particular transient signal shape, a peak in the second half of
the delay period (figure 5.8 a,b,d,L.13). In some clusters the peak width was some-
what wider and involved some of the target period too (figure 5.8 b,H10). Since
all these time courses involved no high activity in the preceeding visual stimulus
period, confounding effects were no problem in indentifying these activity peaks
as delay-related. In pre- and sensomotoric regions delay peaks were found during
both load conditions (overlaps of the cluster pairs a, b and d in figure 5.8). In other
regions delay peaks occurred load specifically: for high load in bilateral spatial clus-
ters in PFC, and in anterior cingulate (figure 5.11). The latter regions seemed to
be particularly involved in working memory related processes during the delay pe-

14. Jhi and McCarthy (2000) studied signal time courses during delayed tasks averaged
over anatomically defined regions of interest.
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riod. Since the activation occured in the later part of the delay period, they might
participate in rehearsal as well as in preparation of the stored information to be
used in desicion making. The left lateralization of delay-related activity (seen in
Figs. 5.6 and 5.7) is in accordance to a number of studies on the processing of ver-
bal material, see for instance (Awh et al., 1996; Gabrieli et al., 1998; Smith et al.,
1997; Smith and Jonides, 1999).

Other clusters showed activity during the delay period as well, but the activation
also included the preceeding period of memory set presentation (figure 5.8 H2,H16).
The functional interpretation of these clusters relied on their detailed time courses
or on spatial relationships between clusters of the different load conditions. One
cluster center (H2) exhibited two peaks clearly separated in time, one during
stimulus presentation and one during delay. This suggested that the delay activity
is no confound from the preceeding phase, but a true delay-related component. The
cluster was localized in bilateral superior parietal regions near midline. We conclude
that superior parietal regions are not only involved in perception and encoding, but
also in delay-locked processes of working memory, such as rehearsal. Another cluster
(H16) allowed no functional assignment based on its signal shape, the activity was
high during visual stimulation and persisted continously almost over the complete
delay period. But for this cluster the best-matching cluster from the analysis of low
load events (L13) showed peaked delay activity (figure 5.11 c¢). Thus, voxels in the
overlap of H16 and L13 are likely to be involved in delay-related processes as well.
These voxels were located in BAG, precentral and left lateral (figure 5.10). In BA6
the load dependency was largest during the period of visual stimulation. Thus, BA6
might participate in working memory maintainance, but its most important role is
more likely to be in encoding.

In this paragraph we summarized results obtained with the explorative technique
and how they can be interpreted in terms of process specific involvements of cortical
regions. A more complete description and discussion of the results in the context
of process specific theories of working memory (Baddeley, 1996), as well as the
relation to other working memory studies, will be subject of a forthcoming paper.

5.6.4 Conclusions

We have described a technique of exploratory data analysis for ER fMRI exper-
iments. The technique includes two components. The first component is a new
oversampling and data sorting scheme (DLS: dense latency sampling. The sec-
ond component is a paradigm-informed application of temporal cluster analysis
to event-related data combined with a systematic evaluation of the clustering re-
sults. A dynamical variant of k-means analysis (K-MDI CA) permitted rapid and
reproducible cluster analysis of the data.

The technique was used for a study of delayed response working memory. As a
reference, we also used standard techniques to evaluate the same data set. At a
magcroscopic level, both methods gave a similar view of patterns of delay-related
approaches gave similar results about. Thus important features of the results can
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be extracted by methods that differ in the type of underlying assumptions—
functional specialization versus functional integration. Furthermore, the exploratory
technique yielded results that the standard technique could not provide. The
exploratory technique was able to provide a global view of the spatio-temporal
structure associated with each different type of event. Thus, it was possible to
assess involvement of disparate regions in different process of working memory.

The time course of the delay-related activity that we found differed from that
measured with single cell recordings. The delay-related activity we measured
reached a peak over time while the firing rates of individual prefrontal cells is
persistent, a pattern that is interpreted as memory maintainance. The difference
between the results might come from the fact that {MRI signals reflect activity of
functionally diverse populations of cells that are involved in several processes. Such
processes could include rehearsal that sets in later in the delay and computations
that prepare the decision process.

In additon, our results suggest that superior parietal visual areas might be not
only involved in perception or encoding, but also in rehearsal or decision making.
This finding is especially encouraging because the involvement of sensory areas in
decision processes has recently been found in electrophysiological studies of working
memory, see (Brody, 2002).

We hope to have been able to convince the reader that using exploratory anal-
ysis for event-related fMRI adds an interesting alternative to existing techniques.
Further we advocated that paradigm-informed application of TCA and systematic
assessment of clustering results allows exploratory data analysis without restriction
to regions of interest as by Richter et al. (2000). Finally, we proposed a solution
of the slice timing problem (a problem that must be solved before any type of ex-
ploratory data analyis can be done) that avoids artifacts introduced by the standard
method.

We believe it is important to add a final remark about one caveat of multivariate
analysis of fMRI at high temporal resolution. Current methods rely on the assump-
tion that synchrony of the hemodynamic response in different voxels corresponds to
synchrony of the underlying neuronal activity. This assumption becomes more and
more questionable as temporal resolution is increased. Indeed, there is some evi-
dence that the delay of the hemodynamic response can vary with location (Aguirre
et al., 1998) and with type of stimulation (Friston et al., 1998). Thus, further ad-
vances in fMRI will depend on a better understanding of the relationship between
the hemodynamic response and patterns of neural activity.

Acknowledgments

This work was supported by a Landesforschungsschwerpunktprogramm grant from
the state of Baden-Wiirttemberg and by Wilhelm-Schweizer-Zinnfiguren in Diessen.



References

108

References

G. K. Aguirre, E. Zarahn, and M. D’Esposito. The variability of human BOLD
hemodynamic responses. NeuroImage, 8(4):360-369, 1998.

E. Awh, J. J. Jonides, E. E. Smith, E. H. Schumacher, R. A. Koeppe, and S. Katz.
Dissociation of storage and rehearsal in verbal working memory: evidence from
positron emmission tomography. Psychological Sciences, 7:25-31, 1996.

A. Baddeley. Working Memory. Oxford University Press, Oxford, England, 1986.

A. Baddeley. The fractionation of working memory. Proceedings of the National
Academy of Sciences USA, 93:13468-13472, 1996.

P. A. Bandettini, A. Jesmanowicz, E. C. Wong, and J. S. Hyde. Processing strategies
for time-course data sets in functional MRI of the human brain. Magnetic
Resonance in Medicine, 30:161-173, 1993.

R. Baumgartner, L. Ryner, W. Richter, R. Summers, M. Jarmasz, and R. Somorjai.
Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering
vs. principal component analysis. Magnetic Resononance Imaging, 18(1):89 — 94,
2000a.

R. Baumgartner, G. Scarth, C. Teichtmeister, R. Samorjai, and E. Moser. Fuzzy
clustering of gradient-echo functional MRI in human visual cortex. part I: Re-
producibility. Journal of Magnetic Resonance Imaging, 7:1094 — 1101, 1997.

R. Baumgartner, R. Somorjai, and W. Richter. Assessment of cluster homogeneity
in fMRI data using Kendall’s coefficient of concordance. Journal of Magnetic
Resononance Imaging, 17(2):1525 — 1532, 1999.

R. Baumgartner, R. Somorjai, R. Summers, W. Richter, and L. Ryner. Correlator
beware: Correlation has limited selectivity for fMRI data analysis. NeuroImage,
12(2):240-243, 2000b.

A. Baune, M. Erb, F. T. Sommer, D. Wildgruber, U. Klose, and W. Grodd.
Evaluation of fast fMRI measurements in motorcortex: Comparing a new cluster
analysis with z-mapping. Ezp. Brain Res., 117:50, 1997.

A. Baune, F. T. Sommer, M. Erb, D. Wildgruber, B. Kardatzky, and W. Grodd.
Dynamical cluster analysis of cortical fMRI activation. NeuroImage, 6(5):477 —
489, 19909.

G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger. Linear systems analysis
of functional magnetic resonance imaging in human. Journal of Neuroscience,
16:4207 — 4221, 1996.

C. Brody. Dynamics of sensory area during sensory discrimination and decision
task. Talk presented at NICE 2002 workshop, Les Houches, 2002.

R. L. Buckner. Event-related fmri and the hemodynamic response. Human Brain
Mapping, 6(5-6):373-377, 1998.



104

Exploratory Analysis of Event-Related fMRI Demonstrated in a Working Memory Study

M. A. Burock, R. L. Buckner, M. G. Wolfdorff, B. R. Rosen, and A. M. Dale.
Randomized event-related experimental desighs allow for extremely rapid pre-
sentation rates using functional MRI. Neuroreport, 9:3735-3739, 1998.

M. A. Burock and A. M. Dale. Estimation and detection of event-related fmri
signals with temporally correlated noise: A statistically efficient and unbiased
approach. Human Brain Mapping, 11(4):249-260, 2000.

R. Cabeza and L. Nyberg. Imaging cognition II: an empirical overview of 275 PET
and fMRI studies. Journal of Cognitive Neuroscience, 12(1):1-47, 2000.

J. D. Cohen, W. M. Perlstein, T. S. Braver, L. E. Nystroem, D. C. Noll, J. Jonides,
and E. E. Smith. Temporal dynamics of brain activation during a working
memory task. Nature, 386:604-608, 1997.

A. M. Dale. Optimal experimental design for event-related fMRI. Human Brain
Mapping, 8(2-3):109-114, 1999.

A. M. Dale and R. L. Buckner. Selective averaging of rapidly presented individual
trials using fMRI. Human Brain Mapping, 5(5):329-340, 1997.

M. D’Esposito, D. Ballard, E. Zarahn, and G. K. Aguirre. The role of prefrontal
cortex in sensory memory and motor preparation: An event-related fMRI study.
NeuroImage, 11(5):400-408, 2000.

M. D’Esposito, J. A. Detre, D. C. Alsop, R. K. Shin, S. Atlas, and M. Grossman.
The neural basis of the central executice system of working memory. Nature, 378:
279-281, 1995.

M. D’Esposito, B. R. Postle, J. Jonides, and E. E. Smith. The neural substrate
and temporal dynamics of interference effects in working memory as revealed by
event-related functional MRI. Proceedings of the National Academy of Sciences
USA, 96:7514-7519, 1999.

M.J. Fadili, S. Ruan amd D. Bloyet, and B. Mazoyer. A multistep unsupervised
fuzzy clustering analysis of fmri time series. Human Brain Mapping, 10(4):160 —
178, 2000.

P. Filzmoser, R. Baumgartner, and E. Moser. A hierarchical clustering method for
analyzing functional MR images. Magnetic Resonance Imaging, 17(6):817 — 826,
1999.

K. J. Friston, P. Fletcher, O. Josephs, A. P. Holmes, K. J. Worsley, M. D. Rugg, and
R. Turner. Event-related fmri: characterizing differential responses. Neuroimage,
7(1):30-40, 1998.

John D. E. Gabrieli, Russell A. Poldrack, and John E. Desmond. The role of left
prefrontal cortex in language and memory. Proceedings of the National Academy
of Sciences, U.S.A., 95:906-913, 1998.

X. Golay, S. Kollias, G. Stoll, D. Meier, A. Valavanis, and P. Boesiger. A new

correlation-based fuzzy logic clustering algorithm for fmri. Magn Reson Med, 40:
249-260, 1998.



References

105

P. Goldman-Rakic. The prefrontal landscape: Implications of functional architec-
ture for understanding of human mentation and the central executive. Philosoph-
ical Transactions of the Royal Society B, 351:1445-1453, 1996.

P. Goldman-Rakic. Localization of function all over again. NeuroImage, 11(5):
451-457, 2000.

C. Goutte, P. Toft, E. Rostrup, F. A. Nielsen, and L. K. Hansen. On clustering
fMRI time series. NeuroImage, 9(3):298-310, 1999.

L. K. Hansen, J. Larsen, F. A. Nielsen, S. C. Strother, E. Rostrup, R. Savoy,
N. Lange, J. Sidtis, C. Svarer, and O. B. Paulson. Generalizable patterns in
neuroimaging: how many principal components? NeuroImage, 9(5):534-544,
1999.

R. N. A. Henson, C. Biichel, O. Josephs, and K. Friston. The slice-timing problem
in event-related fMRI. NeuroImage, 9:125, 1999.

P. Jezzard and S. Clare. Sources of distortion in functional MRI data. Human
Brain Mapping, 8(2-3):80-85, 1999.
A. P. Jhi and G. McCarthy. The influence of memory load upon delay-interval

activity in a working-memory tast: an event related functional MRI study.
Journal of Neuroscience, 12(Supplement 2):90-105, 2000.

J. Jonides, E. E. Smith, R. A. Koeppe, E. Awh, S. Minoshima, and M. A. Mintun.

Spatial working memory in humans as revealed by PET. Nature, 363:623—-625,
1993.

O. Josephs and N. A. Henson. Event-related funcitonal magnetic resonance imaging:
modelling, inference and optimization. Philosophical Transactions of the Royal
Society of London B Biological Sciences, 354:1215-1228, 1999.

0. Josephs, R. Turner, and K. Friston. Event-related fMRI. Human Brain Mapping,
5:243-248, 1997.

S.-G. Kim, W. Richter, and K. Ugurbil. Limitations of temporal resolution in
functional MRI. Magnetic Resonance in Medicine, 37(4):631-636, 1997.

S. H. Lai and M. Fang. A novel local pca-based method for detecting activation
signals in fmri. Magnetic Resonance Imaging, 17(6):827-836, 1999.

N. Lange. Statistical approaches to human brain mapping by functional magnetic
resonance imaging. Statistics in Medicine, 15(4):389-428, 1996.

N. Lange. Empirical and substantive models, the Bayesian paradigm, and meta-
analysis in functional brain imaging. Human Brain Mapping, 5(4):259-263, 1997.

N. Lange, S. C. Strother, J. R. Anderson, F. A. Nielsen, A. P. Holmes, T. Kolenda,
R. Savoy, and L. K. Hansen. Plurality and resemblance in fMRI data analysis.
NeuroImage, 10(3):282-303, 1999.

G. MCarthy, M. Luby, J. Gore, and P. Goldman-Rakic. Infrequent events transiently

activate human prefrontal and parietal cortex as measured by functional MRI.
Journal of Neurophysiology, 77:1630-1634, 1997.



106

Exploratory Analysis of Event-Related fMRI Demonstrated in a Working Memory Study

M. J. McKeown, S. Makeig, G. G. Brown, T.-P. Jung, S. Kindermann, A. J. Bell,
and T. J. Sejnowski. Analysis of fMRI by blind separation into independent
spatial components. Human Brain Mapping, 6:160-188, 1998.

M. J. McKeown, S. Makeig, G. G. Brown, T.-P. Jung, S. S. Kindermann, A. J. Bell,
and T. J. Sejnowski. Functionally independent components of early event-related
potentials in a visual spacial attention task. Philosophical Transactions of the
Royal Society of London B Biological Sciences, 354:1135-1144, 1999.

M. J. McKeown and T. J. Sejnowski. Independent component analysis of fMRI
data: Examining the assumptions. Human Brain Mapping, 6:368-372, 1998.

F. M. Miezin, L. Maccotta, J. M. Ollinger, S. E. Petersen, and R. L. Buckner.
Characterizing the hemodynamic response: Effects of presentation rate, sampling
procedure, and the possibility of ordering brain activity based on relative timing.
NeuroImage, 11(6):735-759, 2000.

P. P. Mitra, S. Ogawa, X. Hu, and K. Ugurbil. The nature of spatiotemporal changes
in cerebral hemodynamics as manifested in functional magnetic resonance imag-
ing. Magn Reson Med, 37:511-518, 1997.

E. Moser, M. Diemling, and R. Baumgartner. Fuzzy clustering of gradient-echo
functional MRI in human visual cortex. part ii: Quantification. Journal of
Magnetic Resonance Imaging, 7:1102-1108, 1997.

I Neath, G. D.A. Brown, M. Poirier, and C. Fortin. Short-term/working memory:
An overview. International Journal of Psychology, 34(5/6):273 — 275, 1999.

A. M. Owen, A. C. Evans, and M. Petrides. Evidence for a two-pstage model of
spatial working memory within the lateral frontal cortex: a positron emission
tomography study. Cerebral Cortex, 6:31-38, 1996.

K. M. Petersson, T. E. Nichols, J. B. Poline, and A. P. Holmes. Statistical
limitations in functional neuroimaging. i. non-inferential methods and statistical
models. Philosophical Transactions of the Royal Society of London B Biological
Sciences, 354:1239-1260, 1999a.

K. M. Petersson, T. E. Nichols, J. B. Poline, and A. P. Holmes. Statistical limi-
tations in functional neuroimaging. ii. signal detection and statistical inference.
Philosophical Transactions of the Royal Society of London B Biological Sciences,
354:1261-1281, 1999b.

B. R. Postle, , and M. D’Esposito. Evaluating models of the topographical
organization of working memory function in frontal cortex with event-related
fMRI. Psychobiology, 28:132-145, 2000a.

B. R. Postle, J. S. Berger, and M. D’Esposito. Functional neuroanatomical double
dissociation of mnemonic and executive control processes contributing to working
memory performance. Proceedings of the National Academy of Sciences, U.S.A.,
96:12959-12964, 1999.



References

107

B. R. Postle, E. Zarahn, and M. D’Esposito. Using event-related fmri to asses delay-
period activity during performance of spatial and nonspatial working memory
tasks. Brain Research Protocolls, 1:57-66, 2000b.

G. Rainer, W. F. Asaad, and E. K. Miller. Memory fields of neurons in the primate
prefrontal cortex. Proceedings of the National Academy of Sciences USA, 95:
15008-15013, 1998.

J. T. E. Richardson, R. W. Engle, L. Hasher, R. H. Logie, E. R. Stoltzfus, and
T. Zacks. Working Memory and Human Cognition. Oxford University Press,
Oxford, England, 1996.

W. Richter, R. Somorjai, R. Summers, M. Jarmasz, R. S. Menon, J. S. Gati, A. P.
Georgopoulos, C. Tegeler, K. Ugurbil, and S.-G. Kim. Motor area activity during
mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive
Neuroscience, 12(2):310-320, 2000.

B. R. Rosen, Randy L. Buckner, and Anders M. Dale. Behind the scenes of

functional brain imaging: A historical and physiological perspective. Proceedings
of the National Academy of Sciences, U.S.A., 95:773-780, 1998.

J. B. Rowe, I. Toni, O. Josephs, R. S. J. Frackowiak, and R. E. Passingham. The
prefronatal cortex: response selecthion or maintainance. Science, 288:1656—-1660,
2000.

B. Rypma and M. D’Esposito. The roles of prefrontal brain regions in components of
working memory: effects of memory load and individual differences. Proceedings
of the National Academy of Sciences, U.S.A., 96(11):6558-6563, 1999.

G. Scarth, M. Mclntire, B. Wouk, and R. L. Samorjai. Detecxtion of novelty in
functional images using fuzzy clustering. Proceedings of the Society of Magnetic
Resonance, 3rd Sci. Meeting:238, 1995.

T. Schanze. Sinc interpolation of discrete periodic signals. IEEE Transactions on
Signal Processing, 43(6):1502-1503, 1995.

E. E. Smith and J. J. Jonides. Storage and execution in the frontal lobes. Science,
283:1657-1661, 1999.

E. E. Smith, J. J. Jonides, C. Marshuetz, and R. A. Koeppe. Components of
verbal working memory: evidence from neuroimaging. Proceedings of the National
Academy of Sciences USA, 95:875-882, 1997.

J. Waldemark. An automated procedure for cluster analysis of multivariate satellite
data. International Journal of Neural Systems, 8(1):3-15, 1997.

A. Wichert, A. Baune, G. Gron, H. Walter, and F. T. Sommer. Interpretation of
event-related fMRI using cluster analysis. In V. Kurkova, N. C. Steele, R. Neruda,
and M. Karny, editors, Artificial Neural Nets and Genetic Algorithms, 446-448.
Springer, Wien, 2001a.



108

Exploratory Analysis of Event-Related fMRI Demonstrated in a Working Memory Study

A. Wichert, H. A. Kestler, H. Walter, G. Gron, A. Baune, J. Grothe, A. Wunderlich,
and F. T. Sommer. Explorative detection of delay activity during a working
memory task. In G. M. Papadourakis, editor, Proc. 4th Int. Conference on Neural
Networks and Expert Systems in Medizine and Healthcare, 266—271. Technological
Educational Institute of Crete, Heraklion, 2001b.

D. Wildgruber, M. Erb, U. Klose, and W. Grodd. Sequential activation of suplemen-
tary motor area and primary motor cortex during self-paced finger movement in
human evaluated by functional neural MRI. Neuroscience Letters, 227:1-4, 1997.

J. Xiong, J.-H. Gao, J.L. Lancaster, and P. T. Fox. Clustered pixel analysis for
functional MRI activation studies of the human brain. Human Brain Mapping,
3:287-301, 1995.

E. Zarahn, G. K. Aguirre, and M. D’Esposito. Empirical analyses of BOLD
fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis
conditions. NeuroImage, 5(2):179-197, 1997.



