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Abstract

Although experimental evidence for distributed cell assemblies is grow-
ing, theories of cell assemblies are still marginalized in theoretical neuro-
science. We argue that this has to do with shortcomings of the currently best
understood assembly theories, the ones based on formal associative memory
models. These only insufficiently reflect anatomical and physiological prop-
erties of nervous tissue and their functionality is too restricted to provide a
framework for cognitive modeling. We describe cell assembly models that in-
tegrate more neurobiological constraints and review results from simulations
of a simple nonlocal associative network formed by a reciprocal topographic
projection. Impacts of nonlocal associative projections in the brain are dis-
cussed with respect to the functionality they can explain.

Keywords: Cell assemblies; Reciprocal connections; Bidirectional associa-
tive memory; Memory systems; Cognitive modeling;

1 Introduction

Building on earlier ideas about cortical function (James, 1890; Lorente de No,
1938), D. O. Hebb (1949) proposed distributed neural representations for
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psychological concepts such as objects, ideas, situations, etc. Hebb’s liter-
ally trend-setting contribution was to relate cognitive functions of concept
learning and associations between concepts directly to processes in the neural
and synaptic dynamics. For concept learning he postulated a simple synap-
tic modification mechanism that is now referred to as the Hebb rule: 1f the
representation of a particular concept is externally stimulated, excitatory
cortico-cortical synapses become potentiated that experience coincident pre-
and postsynaptic neural activity. The consequence of such a learning pro-
cedure is a connectivity graph in which cells representing a learned concept
form “cliques” with strong mutual excitation, the so-called cell assemblies.
According to Hebb, cell assemblies can be recalled or evoked by what we
nowadays call content addressing: Whenever a large enough subset in the
assembly is stimulated, activity spreads preferably within the assembly and
tends to activate it as a whole. Independent from Hebb, Hayek (1952) devel-
oped in his theory of perception quite similar ideas about coincidence based
synaptic learning. Hebb and Hayek were among the first to propose a brain
theory essentially based on a neural network model. The class of neural net-
work models that implements most directly the ideas of Hebb and Hayek is
nowadays referred to as associative memories. Taylor (1956) and Steinbuch
(1961) introduced the first formal models of associative memories with the
potential to be analyzed mathematically and to be implemented artificially.
However, at that time neither the methods for mathematical treatment nor
the technology for large-scale artificial implementations were available. A
couple of years later it was in fact demonstrated that associative memories
can be efficient matched filters for pattern recognition problems (Willshaw
et al., 1969; Kohonen, 1972). It was also shown that in formal associative
memories with feedback, the memories correspond to fixed-point attractors
(Little, 1974; Gardner-Medwin, 1976; Hopfield, 1982) and can be analyzed
by methods from statistical physics (Amit et al., 1985). These results on
attractor networks dominated the first generation of computational theories
of cell assemblies, which we will briefly address in section 2.

In the late 1980s, with increasing availability of computer resources, sim-
ulation experiments could be used to investigate computational theories that
unlike formal neural networks reflected biophysical properties of nerve tissue
in a quantitative way. However, cell assemblies were barely the subject of
studies in computational neuroscience because there was little experimental
evidence for them. In the meantime experimental and data-analysis meth-
ods developed and evidence for cell assemblies started to accumulate (Riehle
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et al., 1997; Aertsen et al., 1989; Griin et al., 2002). It therefore seems time
to recapitulate recent developments in computational theories of cell assem-
blies, in particular with regard to their ability to reflect neuro-anatomical
and -physiological properties, and to provide a framework for cognitive brain
research as outlined in a number of conceptual papers (Braitenberg, 1978;
Edelman, 1982; Damasio, 1989; Miller, 1991; Pulvermiiller, 1992).

2 Early theories of cell assemblies

Progress in the analysis of neural associative memories, mainly by extend-
ing methods from statistical mechanics during the 1980s (Amit et al., 1985;
Gardner, 1988) led to a first quantitative picture of cell assemblies in the
framework of the first-generation computational theories. A negative side ef-
fect of this progress was to narrow the scope of the much broader brain theory
originally outlined by Hebb to models and mechanisms the analysis meth-
ods could handle. The first-generation computational theories are based on
formal auto-associative memories Hopfield (1982): These employ units with
a sigmoid transfer function and assume a fully and symmetrically connected
network. Typically, finite-size effects (effects particular to networks of finite
size), realistic neuronal and synaptic dynamics, structured architectures, and
biological features of spatio-temporal coding are neglected and did not reach
a broader attention until recently. Conceptually, the paper of Hopfield (1982)
and the development of first-generation theories it entailed, was of course a
huge landmark. However, these theories failed to reflect important properties
of real neural networks and requirements of a computational brain theory:

e Lack of anatomical correspondence: Neuroanatomy revealed that nerve
cells in the brain are neither fully connected, nor just statistically di-
luted (two cases that can be treated analytically). In fact, regionally
varying connectivity densities and long-range connections obeying spe-
cific architectural laws seem to be hardwired in the cortex (see below).

e Lack of physiological correspondence: (i) There is increasing evidence
that neurons employ spatio-temporal codes, e.g., expressed in the ex-
act timing of single spikes in one cell relative to the firing of other cells
(Abeles, 1991; Singer and Gray, 1995). However, formal associative
memories exclude the description of temporal neuronal codes that go



beyond spike rates. (ii) Electrophysiological and optical recordings fur-
ther indicate that there is changing activity rather than relaxation to
fixed-point attractors even under conditions of stationary stimulation
(Arieli et al., 1996). Some evidence for persistent activity, however, has
been reported in temporal and frontal areas, cf., e.g., Fuster (1995).

e Lack of psychological relevance: The original claim of Hebb’s cell as-
sembly theory was to model psychological processes. To approach this
goal the repertoire of memory formation and access in standard asso-
ciative models seems to be much too limited: (i) Hebb’s cell assemblies
represent psychological concepts that are distributed and overlapping
to such a degree that they can evoke each other, but associations be-
tween different memories cannot be performed in standard attractor
networks. (ii) From a psychological point of view, memories are not
just monolithic. They can have facettes in various modalities and ap-
pear to provide a binding function between features (Damasio, 1989;
Mesulam, 1998), sometimes in a hierarchical manner. (iii) It seems
that a number of learned concepts can coexist in working memory. In
standard associative memories only one memory can be activated at a
time.

3 Neurobiologically constrained assemblies

3.1 Definition of basic computational units

Using an artificial neural network architecture—like an associative memory
model—as a computational model of a neuroanatomical structure requires
several assumptions by the modeler. The first assumption concerns the choice
as to which neuroanatomical entities should correspond to the basic model
units. In the theoretical neurosciences even this choice is anything but uni-
vocal. A large body of literature about cell assemblies regards excitatory
cells (cortical pyramidal cells) as the basic units in computational models.
An alternative choice are local groups of cells that can be considered as func-
tionally homogenous as for instance Mountcastle’s minicolums (Mountcastle,
1978), cf. the article by Lansner et al. in this special issue.

The concept of minicolumns was confirmed also in electrophysiological
studies showing that in many cortical areas small regions are relatively homo-
geneous with respect to their physiological function. It is questionable, how-
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ever, whether this homogenity holds through all cortical layers (e.g., Miller
(1996a)). Therefore, as in most theories of cell assemblies, we will use the first
of the described possibilities, i.e., we take excitatory cells as basic units. In
the discussion section we draw a connection to the second choice of regarding
groups of cells as units.

3.2 The selection of the neural model

Once the basic computational units have been defined, their physiological
properties will further constrain the neural model to be used. If the units
represent single cells, the formal neurons of the first-generation models of cell
assemblies can describe spike rates, but they fail to cover influences arising
from the timing of single spikes. However, there is cumulating evidence that
these influences are important. The simplest single-neuron model comprising
a threshold mechanism for spike generation and after-hyperpolarization, the
integrate and fire model (Dayan and Abbott, 2002), can account for some
spike timing effects, but still neglects most properties of synaptic and mem-
brane processes with their various nonlinearities and activation time con-
stants. Exploration of the impact of different ionic currents on the synaptic
and single-neuron dynamics, and network properties is ongoing, e.g. (Traub
et al., 1991; Lisman et al., 1998). In order to account for the most basic
effects we employ a two-compartment model for excitatory cells proposed
by Pinsky and Rinzel (1994) as a simplifcation of a more elaborate multi-
compartment model studied by Traub et al. (1991). This neuron model as
depicted in Fig. 1 consists of a dendritic compartment comprising an after-
hyperpolarizing potassium current, a calcium-controlled potassium current,
and a slow calcium current. The dendritic compartment is capable of gen-
erating slow dendritic spikes and further integrates AMPA- and NMDA-
mediated synaptic inputs from other neurons. It is coupled galvanically to
a somatic compartment capable of generating fast sodium spikes. This type
of neural model retains the basic physiological properties observed in hip-
pocampal/cortical slice experiments (Pinsky and Rinzel, 1994), but is still
simple enough to simulate networks of many hundreds of cells. Parameters
in our experiments are set as in Pinsky and Rinzel (1994). Differing from
the original model we take into account the influence of local inhibitory cells
by a sigmoid interneuron that provides negative feedback proportional to the
mean excitatory network activity, cf. Fig. 1(left).



3.3 Constraints on network architecture

The choice of basic computational units also prescribes how the neu-
roanatomical interconnectivity should project on the neural network struc-
ture. With single cells as basic units, the true distribution of synaptic con-
tacts in cortex has to be reflected in the connectivity of the network model.
For larger modules, e.g., minicolumns, the set of connections between a pair of
modules defines an “effective connection” in the network model. Thus, even
if the true connectivity between single cells is sparse, there might be enough
connections between each pair of modules for direct interaction (Malach,
1994) such that the network of modules might be considered as densely or
even fully connected. This fact provides an argument why fully connected
associative memories can be biologically plausible even if cell-to-cell connec-
tivity is incomplete (Shaw et al., 1985; Fransén and Lansner, 1998).

The anatomy of connections also influences the choice of the neural net-
work circuit most appropriate as a functional unit. If the density of con-
nections between basic neural units is not homogenous, e.g., patchy, the
function of the whole tissue might be better described by the functions of
smaller regions of high interconnectivity that operate individually, though
not independently, as associative networks. Therefore, the brain structures
considered briefly in the next section are local networks of excitatory cells
with high connectivity.

3.4 Models of local cell assemblies

Quantitative neuroanatomy revealed that connectivity drops with the dis-
tance between pyramidal cells and is roughly 10% within distances of 1 mm
(Braitenberg and Schiiz, 1991). These data suggest that local circuits of the
size of a cortical macrocolumn (about 1 mm? of cortex) are good candidates
for associative memories. Therefore, most models of cell assemblies assume
spatially localized associative memories as depicted in Fig. 1. Comparable
computational models for local cell assemblies have been proposed for var-
ious cortical regions including area CA3 of the hippocampus (Marr, 1971;
Treves and Rolls, 1992; Hasselmo, 1993; Rolls et al., 1997), dentate gyrus
(Levy et al., 1983), and inferior temporal cortex (Fuster, 1995; Amit, 1995).

Our previous studies show that sparse memories in local associative nets
can exploit the synaptic memory fast and efficiently in terms of informa-
tion capacity (Schwenker et al., 1996) and statistical reasoning (Sommer and
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Figure 1: Associative network. The vertical structures 1,...,n represent excitatory cells.
Axon collaterals project back in the same set of cells. The effect of local inhibitory neurons
is modeled by a negative feed back loop for the mean network activity. An auto-associative
connectivity matrix is depicted on the upper right. The lower right displays schematically
a two-compartment Pinsky-Rinzel neuron with corresponding membrane currents.

Dayan, 1998). Based on the numbers given by Braitenberg and Schiiz (1991)
and Wickens and Miller (1997) we analyzed a local network to estimate the
number and size of cell assemblies processable in a macrocolumn: It was
found that the local synaptic memory is used most efficiently if local as-
semblies contain several hundreds of cells each. Then, tens of thousands of
assemblies could in principle be stored in a macrocolumn (Sommer, 2000).
We further analyzed temporal properties of recall in a simulation network
as the one described in section 3.2 (Sommer and Wennekers, 2000, 2001a).
These simulations demonstrate that biologically realistic networks can indeed
store patterns at a capacity close to the theoretical limit. The network ex-
hibits gamma oscillations and pattern completion is very fast: Synchronized
spike events in an assembly within individual gamma-cycles turn out to pro-
vide the elementary local association or retrieval processes contrasting the



view of feature-coding by periodic firing (Wennekers and Palm, 1997). How-
ever, for a satisfying theory of memory one has to study nonlocal associative
memories, t0o0.

4 Reciprocal associative projections

The main emphasis of this paper is to show how associative memory could
be expressed in the rich network of long-range projections in the brain which
exist in addition to local connectivity patterns. If one important aspect
of memory during a cognitive task is to bind groups of neurons distributed
throughout brain areas of different functional specialisation (Mesulam, 1998),
then associative processes should also be expressed nonlocally, i.e., in topo-
graphic long-range projections (Braitenberg’s B-system, cf. Palm (1982)).
Most of the known cortico-cortical projections have been shown to be
reciprocal (Felleman and Van Essen, 1991). Furthermore, they often start
and terminate in patches of the size of cortical columns (Malach, 1994).
Recently it has been shown that in reciprocal projections, patches of origins
and terminations overlap (Lund et al., 2003). These findings suggest that the
most basic circuit extending local associative memories would consist of a
pair of cortical patches with bidirectional connections. In the present section
we summarize results from a computational study of a nonlocal associative
net formed by such a bidirectional topographic projection. Some earlier
studies suggested versions of such a model although in more abstract settings
(Sommer et al., 1998; Renart et al., 1999; Sommer and Palm, 1999).

4.1 Simulation model

We performed simulation experiments with a bidirectional associative net-
work architecture comprising two cell populations, A and B, each with 50
Pinsky-Rinzel-type neurons, see also Sommer and Wennekers (2001a). There
were no (local) connections between excitatory cells within A or within B,
but activity in both pools was controlled individually by inhibitory cells as
in section 3. Ten pairs of patterns where stored by Hebbian learning as in
the Willshaw model. Each pattern had 10 ones at random positions. To test
the retrieval properties after learning we stimulated cells in population A for
a brief period of 25 ms. After that, the external input was turned off. To
assess robustness of the retrieval against spurious input we used subsets of
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Figure 2: Raster plots of soma potentials during retrieval trials with different stimulation
pattern size. Cell 1 to 50 form pool A, cell 51 to 100 pool B. In stimulation pattern z/y,
z is the number of cells in the memory pattern that received no stimulation and y is the
number of stimulated cells outside the memory pattern. Arrows in the left figure indicate
spike bursts.

memory patterns for stimulation as well as patterns containing more neu-
rons than the original memory pattern (i.e. additional random bits). This
assessment is important because in the cortex additional (spurious) activity
is likely, but in most associative memory models the retrieval is considerably
more impaired by additional active units than by missing ones. To assess re-
trieval performance we compared the activity state in the non-addressed cell
group (denoted as B) with the respective stored configuration, either during
the first synchronized response (one-step mode, see below) or by determining
the best (most similar) response during the simulation period (high-fidelity
mode). Neuronal and network parameters were identical in both groups with
the exception of the external input, which was only supplied to group A.

4.2 Simulation experiments

We conducted experiments using stimulation patterns of different sizes and
recorded the network activity over a 500 ms interval after stimulus onset.
Typical time courses of soma potentials for different stimulation patterns
are displayed in Fig. 2. About 25-40ms after stimulus onset the first syn-
chronized wave of induced activity arrived in cell group B. Subsequently,
the activity propagated back and forth through the reciprocal connections,
thereby influencing the synchronized activity configurations in the cell groups
iteratively. The spike frequencies were in the gamma band (30-90 Hz) just
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as in the single pool in section 3, cf. also (Sommer and Wennekers, 2000,
2001a). We observed spike synchronization within each cell group but no
phase locking between the groups. Neurons that did not receive external in-
put showed regular spiking. In contrast, neurons with external input showed
a tendency to burst. This tendency increased as the number of stimulated
cells decreased: In Fig. 2 the small stimulation population in a) produces
bursting in the first gamma cycles, while larger stimulation populations as in
b) do not. This provides a mechanism of activity balance in the network: In
a wide range of stimulation pattern size (between two and twenty cells) recall
quality was high without any further (e.g., manual) adjustment of network
parameters. Thus, bursting enhances the input fault tolerance of association
processes by balancing the network activity for different input pattern size.

4.3 Information capacities and retrieval latencies

To judge the performance of the fastest possible response we determined the
retrieval quality in the first wave of activity. We call this one-step retrieval
since only monosynaptic activity propagation from cell group a to B is in-
volved. To monitor the results provided by the iterative activity flow between
the cell groups (the bidirectional retrieval mode) we also detected the quality
maximum over the whole recording sequence. Figure 3 shows the results.
Diagrams a) and c¢) in Fig. 3 display the measured quality values. A
quality equal to 1 corresponds to perfectly retrieved patterns. Diagram a)
compares the one-step retrieval quality with the performance of the Willshaw
model at the same memory load (computed for constant activity threshold
setting using the theory from Sommer and Palm (1999)). The fact that
the quality curves stay somewhat below 1 indicates that the load in both
networks is near maximum, i.e., cross-talk is already setting in, even in as-
sociations with perfect stimulus pattern. Due to the additional noise in the
biological model its maximum capacity falls somewhat below the values for
the Willshaw net. Also the fault-tolerant association capability is impaired,
only slightly for lower, but substantially for higher input activities. The
question underlying the measurements displayed in diagram b) is whether
bidirectional activation cycles in the network can improve retrieval qualitity.
In fact, for very small stimulation sets (2 to 3 cells) and for large input activ-
ities (12 to 20 cells) bijective (i.e., iterative) retrieval improved the retrieval
quality in between 70 and 80 % of the simulation runs. Figures 3¢ and 3d
compare the qualities and retrieval time of one-step and iterative retrieval in
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Figure 3: The x-axes label the number of cells that receive addressing input. At an
input activity of ten the stimulation pattern was identical to one of the stored patterns.
At lower or higher activities it deviated by miss or add errors, respectively. The displayed
quantities are averaged for every input condition over all memory patterns and 32 runs
with different sets of memory patterns.

the Pinsky-Rinzel neuron network. The iterative retrieval performs better in
all cases. Most importantly, the fault tolerance with respect to higher input
activity can be significantly improved by iteration. Of course, the required
retrieval time increases from 25-60 ms to 60-260 ms depending on the input
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5 Discussion

5.1 Associative memory in a reciprocal projection

In the previous section we described how associative memory could be ex-
pressed in possibly far-reaching reciprocal projections. We studied simula-
tions of a bidirectional associative network storing pattern pairs in the con-
nections between two pools of conductance-based neurons. We investigated
how brief afferent stimulation (25ms) of cells in pool A could be used to com-
plete a stored pattern pair. The simulation demonstrates that the memory
load can be increased up to a point where associative memory is efficient in
terms of information capacity. This is in agreement with statistical mechan-
ics analyses by Renart et al. (1999) of a biologically constrained bidirectional
memory employing rate coding neurons. Our model with conductance-based
neurons makes some specific predictions about the possible recall modes and
the latencies associated with them. At higher memory loads two different
modes of retrieval are discernable: One can either use the spatial pattern of
the first activity wave in population B that occured after 25-40 ms, or em-
ploy the pattern settling after 60-260 ms of bidirectional iteration (up to ten
gamma cycles). We performed retrieval tests in a wide range of situations,
from cases where only very few cells were stimulated up to the case where a lot
of neurons received current injections, a large fraction of them not belonging
to the recalled pattern. These extreme cases are biologically relevant since
they might correspond to ambiguous situations, where not exclusively one
of the stored associations is addressed. Both retrieval procedures performed
differently, in particular in the ambiguous situations: It was interesting to
find the slower retrieval mode clearly to outperform the first response re-
trieval. The quality of first response retrieval could be improved in 70 to 80
% of the performed retrieval trials. Because of this result we characterize the
two retrieval modes as the fast mode and the high-fidelity mode. We would
expect expression of the high-fidelity mode particularly for ambiguous stim-
ulation. It should be accompanied by oscillatory activity and would require
new input to be attenuated in order to listen to the reverberating “echoes”.

Another interesting observation concerns the functional role of cell burst-
ing. It was observed in directly stimulated cells when the stimulation set was
small. Bursting in that regime actually turned out to constructively support
memory retrieval: If the number of stimulated cells is low, they first produce
bursts instead of regular spikes. Thereby, the relatively few cells can provide
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enough excitation in the network to start the recall process.

All in all, our simulation results suggest that efficient associative memory
should be possible in reciprocal projections. The memory function we tested
just relied on heteroassociative storage in the synaptic structure connect-
ing the reciprocal pathways. However, the bidirectional associative network
without local connections we have studied should not be considered in iso-
lation. It is likely that local and nonlocal expressions of associative memory
are coexisting and interacting. In fact, we also run simulations with added
local connectivity (data not shown) that resulted in an improvement of the
retrieval in agreement with the analytic study of Renart et al. (1999). The in-
teraction between local and nonlocal associative memory systems could also
lead to ways of hierarchical processing in the cortex as we will explain next.

5.2 Nonlocal models of cortical memory

The importance of an associative coordination of diverse and multimodal in-
formation into concepts (binding) was central in the original theories of Hebb
and Hayek. But the idea goes even farther back in history: Already Descartes
considered this as pivotal to human cognition when he proposed the conver-
gence of multisensory information in the pineal gland “where the immaterial
mind would observe the representation of experience provided by the material
brain”. Neuroanatomy and electrophysiology identified a number of regions
of multimodal convergence, such as posterior parietal, lateral prefrontal and
temporal cortices, and archicortex. Typically, multi-modality is found in
areas that are several cortical stages apart from direct sensory inputs, but
never in primary sensory areas. In technical terms one would speak of late
or perhaps “semantic” sensor fusion as opposed to early sensory feature inte-
gration. Mesulam (1998) gave a reason why a role of memory is particularly
important in multimodal areas: A permanent convergence of different sen-
sory streams would just be threatened to run into severe crosstalk or capacity
problems. Mesulam therefore proposed that the role of crossmodal areas is
to create directories for binding distributed modality-specific fragments into
coherent memories, see also Bibbig et al. (1995). The function of these areas
he describes as content-addressable or associative memories.

A cell assembly theory suited for describing multimodal processing, has
to convey how nonlocal cell assemblies are formed based on anatomical struc-
tures of the brain. Eichenbaum (1993) pointed out a way how nonlocal cell
assemblies could emerge from local representations. Wickelgren (1992) was
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the first to propose an extended cell assembly theory that, at least qual-
itatively, reflected the neuroanatomy of the cortex. He proposed what he
called neural webs as neural representations of concepts. Neural webs are
cell assemblies shaped like spider webs. According to the specific proper-
ties of the concept, neurons are recruited in different areas of cortical and
subcortical structures that are connected by long-range projections. As the
simulation results described in the present work suggest, a single reciprocal
connection could be used to form the simplest type or element of a neural
web. Participating local neuron sets could further form local associatively
formed assemblies, and they could be recruited into different global assem-
blies. Miller (1996b) put forward a hypotheses about the laminar location
of cortical pyramidal cells. He proposed that cortical laminae II, III and IV
contain “library cells”, i.e., cells belonging to cell assemblies. Furthermore
he argued that thalamo-cortical projection neurons could have a pivotal role
in the save activation of one or more cortical assemblies (Miller, 1996a).

Building on the results presented in this paper we can add more to the
picture given so far. Since local assembly completion can be very fast (Som-
mer and Wennekers, 2001b), a model similar to the one presented here, but
with the single neurons replaced by local assemblies, would still exhibit a
similar performance as in the simulations shown above. Using the same
argument as for the increased connectivity between minicolumns, such a re-
placement in the model extends the type of cortical circuitry where it could
apply: Cortico-cortical pathways, even with sparse connection densities on
a cell-to-cell level, could act as associative networks. The formation of cell
assemblies in networks of structured connectivity could reflect the learning of
hierarchical neuronal representations: Initially, assemblies would form locally
representing unimodal objects. Local assemblies might then become basic
neural units for a larger scale associative system integrating information of
various subregions (and modalities). By such a learning process, sparser and
sparser connectivity could be used for the storage of associations. Recall can
operate in different subregions in parallel and may lead to associations at a
high level representing complex integrated entities.

5.3 Conclusions

We argued that the concepts of cell assemblies and associative memory
have been underestimated in theoretical neuroscience over the last ten years
because, as we believe, the first-generation computational models were ori-
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ented on analysis techniques rather than cortical implementations and brain
theory. As a result, associative memory and cell assemblies played only a
marginal role in theoretical neuroscience, mainly as a model for local cortical
computation. However, as the early promotors of cell assemblies (Hebb,
1949; Hayek, 1952; Braitenberg, 1978; Edelman, 1982; Palm, 1982; Damasio,
1989; Miller, 1991; Wickelgren, 1992; Eichenbaum, 1993; Bienenstock, 1994)
pointed out, it is the potential of cell assemblies for multimodal binding
that in especially makes them an interesting concept (Mesulam, 1998). To
address this issue we have described how a computational model can be built
from neuroscientific data and abstract neural networks. We followed this
path to derive a computational model of associative memory in a reciprocal
long-range projection. Simulation studies show that associative memory in
this model is efficient and supports mainly two different modes for recall, a
fast “one-shot” mode and a high-fidelity mode relying on (a few) cycles of
bidirectional feedback. Finally, we have outlined how associative memory
in long-range projections could be the basis of a more general theory of
distributed cell assemblies and, ultimately, a part of a computational theory
of memory and cognition.

Acknowledgement: F.T.S. thanks Pentti Kanerva for detailed com-
ments on the manuscript and all members of the Redwood Neuroscience
Institute for stimulating discussions.
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