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Abstract

The Willshaw model is asymptotically the most efficient neural associative memory (NAM), but its finite version is hampered by high
retrieval errors. Iterative retrieval has been proposed in a large number of different models to improve performance in auto-association tasks.
In this paper, bidirectional retrieval for the hetero-associative memory task is considered: we define information efficiency as a general
performance measure for bidirectional associative memory (BAM) and determine its asymptotic bound for the bidirectional Willshaw model.
For the finite Willshaw model, an efficient new bidirectional retrieval strategy is proposed, the appropriate combinatorial model analysis is
derived, and implications of the proposed sparse BAM for applications and brain theory are discussed. The distribution of the dendritic sum
in the finite Willshaw model given by Buckingham and Willshaw [Buckingham, J., & Willshaw, D. (1992). Performance characteristics of
associative nets.Network, 3, 407–414] allows no fast numerical evaluation. We derive a combinatorial formula with a highly reduced
evaluation time that is used in the improved error analysis of the basic model and for estimation of the retrieval error in the naive model
extension, where bidirectional retrieval is employed in the hetero-associative Willshaw model. The analysis rules out the naive BAM
extension as a promising improvement. A new bidirectional retrieval algorithm — called crosswise bidirectional (CB) retrieval — is
presented. The cross talk error is significantly reduced without employing more complex learning procedures or dummy augmentation in
the pattern coding, as proposed in other refined BAM models [Wang, Y. F., Cruz, J. B., & Mulligan, J. H. (1990). Two coding strategies for
bidirectional associative memory.IEEE Trans. Neural Networks, 1(1), 81–92; Leung, C.-S., Chan, L.-W., & Lai, E. (1995). Stability,
capacity and statistical dynamics of second-order bidirectional associative memory.IEEE Trans. Syst. Man Cybern., 25(10), 1414–1424].
The improved performance of CB retrieval is shown by a combinatorial analysis of the first step and by simulation experiments: it allows very
efficient hetero-associative mapping, as well as auto-associative completion for sparse patterns — the experimentally achieved information
efficiency is close to the asymptotic bound. The different retrieval methods in the hetero-associative Willshaw matrix are discussed as
Boolean linear optimization problems. The improved BAM model opens interesting new perspectives, for instance, in information retrieval it
allows efficient data access providing segmentation of ambiguous user input, relevance feedback and relevance ranking. Finally, we discuss
BAM models as functional models for reciprocal cortico–cortical pathways, and the implication of this for a more flexible version of
Hebbian cell-assemblies.q 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

a number of active components in anx-
memory

A output capacity describing hetero-associa-
tion

b number of active components in ay-
memory

C completion capacity describing auto-asso-
ciation

Cij memory matrix formed by clipped Hebbian
learning

e number of hits obtained with pattern part
retrieval

f number of components extracted by pattern
part retrieval

F set of fixed point pattern pairs of the
memory matrixCij

g number of ‘false alarm’ bits in an initialx-
pattern

H(x) Heavyside function
i index ofx-pattern component (subscript)
i(p) Shannon information of a binary event with

probability p

Neural Networks 12 (1999) 281–297PERGAMON

Neural
Networks

0893-6080/99/$ - see front matterq 1999 Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(98)00125-7

* Corresponding author. Tel.:1 49-731-502-4154; Fax:1 49-731-502-
4156; e-mail: Friedrich.Sommer@informatik.uni-ulm.de



i(p,a,b) conditional information in a noisy channel
with error probabilitiesa andb for a binary
event with probabilityp

j index ofy-pattern component (subscript)
k index ofx-pattern component (subscript)
l index ofy-pattern component (subscript)
m length of they-patterns
M number of learning pattern pairs
M association mappingxn! yn performed by

the memory
n length of thex-patterns
p ratio between active and passive compo-

nents in ax-memory
PB(p,c;d) binomial distribution
PD(x1,…,xn,c;d) distribution of integer variabled with 0 #

d # c,x1,…,xn additional parameters,D
descriptor of the distribution

pr(z) hit probability for pattern part retrieval
p1 probability that a memory matrix element

is one
q ratio between active and passive compo-

nents in ay-memory
QD(x1,…,xn,c;d) � Pc

i�dPD(x1,…,xn,c;d) cumulative
distribution

r index of the iteration time step
s index of the iteration time step
S search capacity describing bidirectional

hetero-association
S set of memory pattern pairs
t(p,a,b) transinformation of a noisy channel with

error probabilitiesa andb for a binary
event with probabilityp

u unit usage index
wx�r�

il conditional link betweeny units i,l for
given patternx(r)

wy�r�
jk conditional link betweenx units j,k for

given patterny(r)
x binary pattern of lengthn
X binary pattern of lengthn
~xm noisy version of the memoryxm used as

initial pattern
uxu number of active components in patternx
y binary pattern of lengthm
Y binary pattern of lengthm
ŷ output pattern of the standard Willshaw

model
z number of ‘miss’ bits in an initialx-pattern
a(r) retrieval ‘false alarm’ error probability in

y(r)-patterns
b(r) retrieval ‘miss’ error probability iny(r)-

patterns
g(r) retrieval ‘false alarm’ error probability in

x(r)-patterns
gI ‘False alarm’ error probability in initial

patternsx(0)
dm,n Kronecker symbol

z(r) retrieval ‘miss’ error probability inx(r)-
patterns

zI ‘Miss’ error probability in initial patterns
x(0)

Q(r) neural threshold of they-units in time stepr
m index of memory patterns (superscript)
n index of memory patterns (superscript)
J(r) neural threshold of thex-units in time stepr

1. Introduction

In the late fifties, Steinbuch (1961) proposed one of the
first hardware realizations of a neural associative memory
(NAM) model, his so called ‘Lernmatrix’, where binary
synapses are formed by Hebbian local learning from binary
memory patterns and hetero-associative one-step retrieval is
performed. This model is now referred to as the Willshaw
model, since Willshaw et al. (1969) first determined its
asymptotic1 information efficiency as ln[2]� 0.69 bit/
synapse. Such high efficiencies are only achieved in models
with sparse memory patterns where the ratio between active
and passive elements is far below 0.5 (Palm and Sommer,
1995), and asymptotically, the Willshaw model is the most
efficient NAM, see the model comparison in Sommer and
Dayan (1998). Unfortunately, at maximum memory load,
the finite Willshaw network retrieves with high error rates
(see Section 5). Error reduction in the Willshaw model can
only be achieved by reducing the memory load that leads to
information efficiencies far below the asymptotic value. For
the Hopfield task, namely auto-associative pattern comple-
tion (Hopfield, 1982), iterative retrieval has been introduced
in the Willshaw model (Gardner-Medwin, 1976; Gibson and
Robinson, 1992; Hirase and Recce, 1996; Schwenker et al.,
1996). For auto-association of finite sparse patterns, it is
now well understood that the original retrieval process is
the limiting bottleneck (Palm and Sommer, 1992), and what
kind of retrieval modifications are most promising in the
light of probabilistic reasoning (Sommer and Dayan, 1998).

This paper considers bidirectional retrieval in the hetero-
associative Willshaw model. Hetero-associative iterative
retrieval schemes have been proposed in bidirectional asso-
ciative memory (BAM) models for dense patterns (Kosko,
1987), where two sets of threshold units are bidirectionally
connected by a synaptic weight matrix. An improved theo-
retical analysis for the Willshaw model is derived and
applied to the straightforward BAM extension of the Will-
shaw model (Haines and Hecht-Nielsen, 1988), referred to
as standard bidirectional (SB) retrieval in the following,
where standard retrieval is performed alternatingly for the
two disjunct sets of units, thex and they layers. By this
analysis, the SB model can be ruled out as a promising
model variant. Standard retrieval discriminates active
neurons by thresholding the overlap between the vector of

F.T. Sommer, G. Palm / Neural Networks 12 (1999) 281–297282

1 i.e. for infinitely large systems.



synaptic values and the activity pattern in the other layer.
We propose a completely new retrieval method, crosswise
bidirectional (CB) retrieval, based on dynamic virtual
connections between units within a layer called conditional
links. The conditional link between two neurons depends on
the activity pattern in the other layer: it is defined by the
overlap between the parts of their synaptic vectors that
receive input from active units in the other layer. By the
structure of the Hebbian synaptic matrix in the Willshaw
model, the conditional link has a probabilistic interpreta-
tion: a high value indicates a high probability that the corre-
sponding unit pair belongs to the memory pattern that
should be associated with the activity pattern in the other
layer. CB retrieval employs bidirectional activity propaga-
tion to determine the clique of units that are connected by
the highest conditional links. CB retrieval uses dendritic
sums weighted by conditional links that can be computed
in parallel — by bidirectional propagation through the
synaptic matrix. Thus, each CB update step involves evalua-
tion of columns and rows as well, a fact that led to the name
of this retrieval strategy. The advantage of CB retrieval is
shown by the analysis of a single step and by simulation
experiments.

The paper is organized into six sections. Section 2 revisits
briefly the Willshaw NAM, its biological motivation and
some basic definitions; it also explains the relations and
differences between the hetero- and auto-association task
and what memory models can combine both functionalities.
In Section 3, we define bidirectional extensions of the
model, namely SB retrieval — the classical BAM scheme,
and CB retrieval based on conditional links. We present two
versions of CB retrieval that differ in the iteration scheme
and in the means to limit activity in the network. The theo-
retical background of the proposed retrieval strategies is
developed in Section 4. In Section 4.1, the information effi-
ciency is defined as a general performance measure for
BAM and in Section 4.2, the asymptotic efficiency bound
for the Willshaw model is determined. Section 4.3 contains
a refined analysis of the finite size Willshaw model: an
improved combinatorial calculation of retrieval error prob-
abilities is derived (Proposition 4.2) that allows much faster
numerical evaluation than the previously given formula
(Buckingham and Willshaw, 1993). We analyze pattern
part retrieval (Proposition 4.3), a method using the standard
model to extract a part of the 1-elements in the memory
pattern with higher accuracy. The analysis of the standard
model is used in Section 4.4 to estimate the retrieval error of
SB retrieval (Proposition 4.4). Section 4.5 analyzes the first
step of CB retrieval (Proposition 4.5). Section 4.6 identifies
the problem of optimal retrieval (POOR) as a Boolean linear
optimization problem. In this framework, we point out the
differences between SB and CB retrieval in Section 4.7.
Section 5 presents some typical simulation results with the
CB retrieval method and compares it with the Willshaw
model. The conclusion section resumes the implications of
the presented analysis (Section 6.1) and the properties of the

proposed new BAM model (Section 6.2). The perspectives
of applying the CB model in information retrieval are
discussed in Section 6.3. We close with some speculations
about the biological realization of BAM in reciprocal
cortico–cortical pathways and the impact of such a cortex
model on concept formation and processing (Section 6.4).

2. Neural associative memory (NAM) models

2.1. Motivations for associative memory models

In one of the first attempts of computational brain model-
ing, McCulloch and Pitts (1943) proposed a neural network
of binary ‘all or none’ units and showed the computational
universality of such systems. The psychologist Hebb (1949)
speculated that psychological concepts could be represented
by simultaneous activity of many nerve cells distributed
throughout the brain, which he called a cell-assembly. He
postulated that cell-assemblies are formed by an amplifica-
tion process taking place in all synapses between active
nerve cells during learning. This process of synaptic
strengthening depending on coincident neural activity in
the direct vicinity of the synapse was later called Hebbian
learning. The simplest class of neural associative memories
(NAM) are mathematical models of Hebb’s idea: in such
models, activity patterns (of nerve cells) are stored in a
matrix of synaptic connections during a one-step storage
process employing a local synaptic learning rule (see
Section 2.2) (Willshaw et al., 1969; Palm, 1980; Hopfield,
1982). Following Hebb, a learned assembly can be recalled
if enough of its assembly neurons become activated. The
corresponding recall process in a NAM is the retrieval
process.

NAM models have been proposed for efficient searching
in large data-bases allowing fast, fault-tolerant access and
being particularly well-suited for parallel implementations
(Steinbuch, 1961; Kohonen, 1977; Bentz et al., 1989). An
appropriate performance measure for NAMs is the informa-
tion efficiency, the amount of information that can be stored
(and recalled) per bit of synaptic memory (see Section 4.2).
The search for models with high information efficiency is
one essential issue towards an application of NAM models.2

Other important issues are sparse coding prescriptions for
particular data, (see Section 6.3), and efficient Hardware
implementations of NAM (Potter, 1992; Palm et al., 1997).

2.2. The Willshaw model

Consider the computational task where a mapping
M:xn ! yn (for n � 1,…,M) has to be performed between
binary patterns. We call the pattern pairs involved the
memory patterns, or simply the memories:S: � {( xn,yn):
xn [ {0,1} n, yn [ {0,1} m, n � 1,…,M}. The number of
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active (‘one’) components in a pattern is called pattern
activity: uyu: � Pn

i�1 yi. The pattern symboly is also identi-
fied with the set of its active components:y � { i:yi � 1}.
Consequently, a patterny0 is called part ofy if y0 , y holds.
In the following, we use memories with constant activities,
i.e. uxnu � a, uynu � b ;n. Noise in a memory is expressed by
the two possible error types that can change a component: a
‘miss’ error converts a 1-entry to ‘0’ and a ‘false alarm’ or
‘add’ error does the opposite.

During learning, the set of memories is transformed into
the synaptic weight matrix:

Cij � min 1;
X
n

xni ynj

 !
� 1 2

Y
n

1 2 xni ynj
� �

� sup
n

xni ynj

�1�
Note that this learning process provides distributed

storage, i.e. learning of one memory trace affects many
synapses and one synapse is in general affected from traces
of several memories.

During retrieval, an initial pattern is mapped to its
corresponding memory. The retrieval process is called an
association, if the mapping is fault tolerant, in the sense that
its domain also contains noisy memories. For a given initial
pattern~xm, one-step retrieval yields the output patternŷ, by
determining the dendritic sum in each neuron as the overlap
between the input and the synaptic vector:

�C~xm�j �
X

i

Cij ~x
m
i �2�

and by calculating the activity value by threshold compar-
ison:

ŷmj � H��C~xm�j 2 Q� ;j �3�
with a global threshold valueQ, and H(x) denoting the
Heavyside function, to be evaluated for each vector compo-
nent.

In fault-tolerant NAM models with distributed storage the
retrieval output can also contain noise. Successful retrieval,
i.e. a low Hamming distance to the desired memoryym ,
depends on the following conditions that have to be
fulfilled:

• The stored patterns are sparse, i.e. the activities of the
memories are similar and of the order of the logarithm of
the pattern length.

• The 1-elements in the memories have even distribution
over the pattern components.

• The number of memories is below a certain limitM*, i.e.
cross talk due to the superposition of different memory
traces is kept small enough.

• The error level in the initial pattern is sufficiently low.
• The threshold is adjusted properly, that is,Q .

P
i ~x

m
i xmi .

The given threshold setting we call ‘no misses’ threshold
setting because dendritic sums at 1-elements will assume or
exceed this value and therefore the retrieved pattern

contains no ‘miss’ errors at all. There is a trade-off between
the limits on the model performance implied by the listed
conditions: for instance, if the cross talk is increased by a
higher memory loadM, fault tolerance, that is, the limit on
the admitted initial error level decreases. The most unplea-
sant property of the finite Willshaw model is that loads
allowing maximum storage capacity cannot be realized
with reasonable fault tolerance. In particular, the fault toler-
ance to initial patterns with ‘false alarm’ errors is very low,
see Figs. 4 and 5(a). Thus, in applications, the number of
stored patterns has to be drastically reduced compared with
the theoretical value ofM*.

2.3. NAM models combining auto- and hetero-association

Associative memories work either hetero- or auto-asso-
ciatively. In a hetero-associative memory, a mapping,M,
between pairs of different memory patterns is stored. An
auto-associative memory — with the Hopfield model as
the most prominent example (Hopfield, 1982) — is the
special case where an identity mapping is stored, i.e.S: �
{( xn,xn): xn [ {0,1} n, n � 1,…,M}. Note that, with auto-
association, (i) the synaptic memory matrix formed by Eq.
(1) is symmetrical; and (ii) the retrieval Eq. (3) performs
pattern completion, if noisy memory patterns are used as
initial patterns. Hetero-associative retrieval provides a fault-
tolerant mapping between different subrepresentations.
Typically, association tasks occurring with applications
are rather of the hetero-associative type.

Nevertheless, hetero-associative tasks can also be carried
out in an auto-associative NAM, if the memory pairs are
concatenated into larger memory patterns that are stored
auto-associatively. Using an auto-associative memory
allows both the mapping of initial patterns to the associated
memory patterns and pattern completion on the noisy initial
patterns. However, the price for this extended functionality
is a larger memory matrix that has to be represented by
adjustable synapses (see Fig. 1): the weights of the hetero-
associative memory constitute one off-diagonal quadrant of
the auto-associative matrix. Additionally, the two diagonal
quadrants contain weights that store auto-associations
within each subrepresentation and a second off-diagonal
quadrant contains the transposed hetero-associative
weights.

The combination of auto- and hetero-association in a
memory only using the hetero-associative matrix can be
achieved by introducing bidirectional iterative retrieval. In
the bidirectional associative memory (BAM) (Kosko,
1987), two pools of neurons are connected by the hetero-
associative weights in one off-diagonal quadrant of the
matrix in Fig. 1 (see Section 3.1). Thus, the introduction
of more sophisticated retrieval yields an extended func-
tionality of the memory model. Moreover, as we will
show, appropriate iterative retrieval strategies remedy
the mentioned problems of the Willshaw model for
finite system size. Different from the auto-associative

F.T. Sommer, G. Palm / Neural Networks 12 (1999) 281–297284



implementation, the BAM does not store the auto-
correlations within each of the neuron pools. Nevertheless,
information about these auto-associations is contained in
the hetero-associative weights and can be exploited by
appropriate retrieval strategies (see Section 3.3).

3. Improved retrieval strategies

This section describes the model modifications that we
introduce in the Willshaw model. The simplest idea is the
straight-forward BAM extension which, however, turns out
as an inefficient model. The literature about BAM concen-
trates on improving the learning prescription: either multi-
ple training schemes have to be employed (Hassoun, 1989),
or a higher number thannm weights have to be stored, for
instance, if dummy augmentation (adding subsidiary
components to the original memory patterns) or higher-
order connections are used (Wang et al., 1990; Leung et
al., 1995). Our modifications follow the other alternative:
we propose more refined retrieval strategies that enhance the
performance by a better employment of the information
stored in the simple Hebbian second-order correlation
matrix Eq. (1).

3.1. Standard bidirectional (SB) retrieval

For the hetero-associative Willshaw model, the straight-
forward iterative retrieval extension is the BAM, where
standard retrieval steps are performed in both directions
(Haines and Hecht-Nielsen, 1988). Withx�0� � ~x, the

iterative retrieval scheme is:

y�r 1 1�j � H�Cx�r��j 2 Q�r 1 1� ;j �4�

x�r 1 1�i � H�CTy�r��i 2 J�r 1 1� ;i �5�
With threshold choice from Section 2.2 in Eq. (4),y(1)

contains the memory pattern distorted only by ‘false alarm’
errors. Because of low robustness to ‘false alarm’ errors of
the standard model, completion of the initial pattern and
reduction of retrieval errors by bidirectional iteration is
limited to the range of low memory load (see Proposition
4 in Section 4.4). With a higher memory load, iterative
retrieval using a constant threshold causes either informa-
tion loss or exploding activity.

3.2. Mechanisms of activity reduction

To avoid the problem of exploding activity, this sections
presents two different methods to limit the activity in the
network.

3.2.1. Iterative retrieval with Boolean ANDing
In a retrieval step with the ‘no misses’ threshold setting,

the Willshaw model produces only ‘false alarm’ errors, cf.
Section 2.2. Further iteration steps have therefore only one
function: the reduction of ‘false alarm’ errors. Based on this
idea, a simple trick has been used by Schwenker et al.
(1996) for auto-association to prevent activity explosion.
From the second iteration step onwards, Boolean ANDing
with the previous pattern is applied:

x�r 1 1�i � x�r�i ∧ H��Cx�r��i 2 Q�r 1 1�� ;i �6�
Here we use the definitionx ∧ y � xy for x,y [ {0,1}.

However, for bidirectional hetero-associative retrieval
starting with the initial patternx(0), a previous pattern
version with all correct one components present is not avail-
able before the third retrieval step (r � 3). Therefore, in the
iteration scheme Eqs. (4) and (5), Boolean ANDing can only
be used from the third iteration step onwards, which may be
too late to prevent activity explosion if the memory load is
high.

3.2.2. Pattern part retrieval
Alternatively, one can restrict the activity obtained by the

first step, let us say to the valuef , b: the corresponding
retrieval task is to determinef , b components that agree
with the highest probability with 1-elements in they-
memory pattern using one-step retrieval. In the case of a
perfect hit, the extracted elements are a part of the memory
pattern with sizef, and therefore we call this task pattern
part retrieval. If the number of ‘false alarm’ and ‘miss’
errors in the initial pattern is denoted byg and z, respec-
tively, there are two different regimes: forg� 0 the highest
possible threshold is the ‘no misses’ threshold setting:Q �
a 2 z, cf. Section 2.2, leading to a retrieved pattern with
activity larger than or equal tob. From this pattern, one has
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Fig. 1. A hetero-associative relation (x,y) can be stored auto-associatively,
if the patterns are concatenated into larger memory patterns that are used
during learning. The diagonal quadrants of the resulting memory matrix
contain auto-associations: the upper left quadrant corresponds to thex
patterns and the lower right quadrant to they patterns. The off-diagonal
quadrants contain hetero-associations betweenx andy patterns: one is the
transposed matrix of the other. This associative processing provides
extended functionality, namely hetero-associative mapping and auto-asso-
ciative completion ofx andy patterns but requires more synaptic memory.
The same functionality can be achieved by BAM retrieval schemes that use
only one offdiagonal quadrant of the synaptic memory.



to select randomly thef elements. Forg . 0, there is more
freedom in the possible threshold choice; one-step retrieval
with a 2 z . Q $ a 2 z 1 g yields retrieval patterns with
reduced activity. Reducing the activity by increasing the
threshold yields a higher hit probability compared with
random selection of thef elements in the ‘no misses’
retrieval pattern, see results of Proposition 4.3 in Fig. 2.

3.3. Conditional links

The Willshaw model classifies an output neuron as active
depending on the dendritic sum Eq. (2), i.e. the overlap
between the corresponding matrix column and the input
pattern. The new retrieval methods that will be proposed
in the next section employ a more selective classification
evaluating overlaps between parts of different columns of
the clipped Hebbian matrix: for a givenx(r) we call the
underlying quantities conditional links:

wx�r�
jl �

X
i

Cij Cil x�r�i ;j; l [ f1;…;mg �7�

The conditional linkwx�r�
jl is a nonnegative integer and

expresses the overlap between the matrix columnsj and l
conditioned on the patternx(r), that is, restricted to such
matrix rows i where x(r)i � 1. Conditional links can be
viewed as virtual lateral interactions between units in the
y-pattern. Since uwx�r�

jl u # ux�r�u and uwx�r�
jl u � ux�r�u, if

�x�r� � xn�> �ynj � ynl � 1�, it is clear that a high condi-
tional link indicates a high probability that both components
in they pattern belong to one learning patternyn, under the
condition thatx(r) has a high overlap with the corresponding
learning patternxn. The diagonal interactions are equal to
the standard dendritic sums caused byx(r), i.e. wx�r�

jj �
�Cx�r��j as in Eq. (4).

Of course, for a bidirectional retrieval scheme, condi-

tional links can similarly be computed in thex-layer for a
given patterny(r):

wy�r�
ik �

X
j

Cij Ckjy�r�j ;i; k [ f1;…; ng �8�

The detection of active components in a pattern can now
be achieved by finding the clique of neurons that are tied
together by the highest conditional links. This problem can
be approximately solved by different bidirectional retrieval
schemes involving computation of weighted sums with
matrix rows and columns. For this reason, retrieval with
conditional links is referred to as crosswise bidirectional
(CB) retrieval and its different variants will be explained
in the next section.

3.4. Crosswise bidirectional (CB) retrieval

Crosswise bidirectional (CB) retrieval estimates a solu-
tion of the conditional links clique problem by auto-asso-
ciative retrieval using the virtual feedback network with
interaction matrixw and threshold neurons.

The dendritic sum of CB retrieval can be expressed as:

�wy�r11�x�r��i �
X

k

wy�r11�
ik xk �

X
j[y�r 1 1�

Cij �Cx�r��j �9�

In Eq. (9), [Cx(r)] i is the dendritic sum of the Willshaw
model Eq. (2) that is propagated back through the synaptic
weights. It has to be emphasized that Eq. (9) is not just the
linear transformationCT*C: the signal flow is gated by
y(r 1 1) allowing only feedback of dendritic sums at active
neurons in this pattern. Thus, the RHS of Eq. (9) gives a
parallel scheme for fast computation of the dendritic sums
during CB retrieval.

There are two CB retrieval schemes how a fixed point
pattern pair can be approached either by a sequence of auto-
associative fixed point retrieval processes (variant I) or by
direct hetero-associative iteration to the fixed point (variant
II). Both variants have been tested experimentally, see
Section 5. In the dendritic sum Eq. (9) of CB retrieval an
integer valued vector [Cx(r)] j yj(r 1 1) has to be propagated
through the synaptic weights.

3.4.1. Variant I
The initial patternx(0) is used in a pattern part retrieval

step, cf. Section 3.2.2, to estimate one component of they
pattern. The resulting pattern pair is put as [x(0),y( 2 1)] in
Eq. (10) of the following iterative scheme to obtainy(1).

Using the pattern pair [x(r),y(r 2 1)], the patterny(r 1 1)
is the fixed point after iteration of:

y�s1 1�j � H �wx�r�y�s��j 2 Q�s1 1�
n o

;j �10�

starting withy(0) � y(r 2 1).
Using the pattern pair [y(r),x(r 2 1)], the patternx(r 1 1)

F.T. Sommer, G. Palm / Neural Networks 12 (1999) 281–297286

Fig. 2. Hit distribution of pattern part retrieval extracting exactlyf elements
that belong with highest probability to the memory pattern as described in
Section 3.2.2. Proposition 4.3 is applied withf � 2, and the parametersn�
m� 2000,a� b� 10 andM � 15 000. Thex-axis displays the activity of
the initial pattern. Activities lower thana� 10 correspond to initial pattern
with no ‘add’ errors, i.e.g� 0, activities higher thana� 10 correspond to
‘miss’ error free initial patterns, i.e.z � 0. The dotted curve displays
PS(g,z,2;0), the dashed curvePS(g,z,2;1) and the solid curvePS(g,z,2;2).



is the fixed point after iteration of:

x�s1 1�i � H �wy�r�x�s��i 2 J�s1 1�
n o

;i �11�
starting withx(0) � x(r 2 1).

3.4.1.1. Threshold strategy.For pattern part retrieval the
highest possible threshold is chosen that yields nonzero
activity. In Eqs. (10) and (11), fixed points are traced at
threshold valuesbux(r)u andauy(r)u, respectively.

3.4.2. Variant II
This variant includes also Boolean ANDing from Section

3.2.1. Starting again fromx(0) with a standard retrieval step
Eq. (4), the resulting pattern pair is used as [x(0),y(1)] in a
single step of Eq. (11) to determinex(2). For r . 2, the
update is performed by the iterative retrieval equations:

y�r 1 2�j � y�r�j ∧ H �wx�r11�y�r��j 2 Q�r 1 2�
n o

;j �12�

x�r 1 2�i � x�r�i ∧ H �wy�r11�x�r��i 2 J�r 1 2�
n o

;i �13�
Unlike in variant I in Eqs. (12) and (13), only one auto-

associative step is performed, and no iteration takes place
until the fixed point, as in variant I.

3.4.2.1. Threshold strategy.For r � 1, a standard retrieval
step is performed with threshold as chosen in Section 2.2,
yielding a pattern withuy(1) > b. For initial patterns with
ux(0)u , a, the r � 2 update step Eq. (13) is carried out
without Boolean ANDing. In this iteration step, the
thresholdJ(2) � ux(0)uuy(1)u is used, yielding a result with
ux(2)u > ux(0)u.

Subsequently, and in the case of initial patterns with
ux(0)u $ a already forr � 2, the thresholdsJ(r) andQ(r)
are adjusted in order to obtain resulting activities which are
as close as possible to prescribed values. During the itera-
tion, these values are chosen as follows:

J�r 1 1� : ux�r 1 1�u . ux�r�u 2 1

Q�r 1 1� : uy�r 1 1�u . b

The iteration is stopped ifux(r)u � a is reached.

4. Model analysis

4.1. Definitions

In the following, we assume that the memory patterns are
randomly generated, i.e. each component in thex- and y-
patterns has been set to ‘one’ with probabilityp: � a/n and
q: � b/m respectively. (a, b, m, andn as defined in Section
2.2).

We consider the retrieval with an initial patternx�0� � ~xm

which is the noisy version of thex pattern in a learning
pattern pair (xm, ym). For the occurrence probabilities of

‘false alarm’ and ‘miss’ errors, the following notation will
be used:Forr odd:

a�r� :� p�y�r�j � 1uymj � 0�

b�r� :� p�y�r�j � 0uymj � 1�
For r even:

g�r� :� p�x�r�j � 1uxmj � 0�

z�r� :� p�x�r�j � 0uxmj � 1�
In this notation,r � 0 plays a unique role:gI: � g(0) and

z I: � z(0) describe the initial errors, i.e. the error levels in
the initial patternx(0). It has to be kept in mind that the error
probabilities at timer depend on the initial errors as well as
on the threshold values. For instance, for oddr’s we have:

a�r� � f �Q�r�;Q�r 2 2�;…;

Q�1�;J�r 2 1�;J�r 2 3�;…;J�2�; gI
; zI� �14�

A NAM model works efficiently, if the set of retrieved
patterns contains as much information as possible about the
memories, and as few as possible synaptic memory have
been used: the information efficiency of a memory model
is defined as the dimensionless ratio between the informa-
tion contained in the retrieved patterns and in the synaptic
memory matrix, respectively. The information about a
memory pattern that is contained in a noisy version of this
pattern can be calculated for each component in terms of the
transinformationt(p,a,b): � i(p) 2 i(p,a,b). Here,i(p): �
2 plog2[p] 2 (1 2 p)log2[1 2 p] is the Shannon information
in a pattern component (Shannon and Weaver, 1949). The
conditional information describes the amount of informa-
tion necessary to correct the errors:

i�p;a;b� :� ~pi
�1 2 p�a

~p

� �
1 �1 2 ~p�i pb

1 2 ~p

� �
�15�

with ~p :� p�1 2 b�1 �1 2 p�a.
Depending on the considered memory task, the net infor-

mation provided by the retrieval about the memory patterns
has to account for the effect of retrieval errors, and the
information already contained in the initial patterns.
Usually, this net information divided by the weight matrix
size nm is called memory capacity and used as a perfor-
mance measure for NAM. The information efficiency is
then simply the memory capacity divided by the number
of bits needed to specify a synaptic value — and, of course,
for NAM with binary synapses, both quantities coincide.
For a hetero-associative mapping task, we define the output
capacity as:

A :� Mm t�q;a�r�;b�r��=mn �16�
for large r(r ! ∞). The maximum output capacity will be
expected, if no fault tolerance has to be provided, that is,
with noiseless initial patterns. For an auto-associative
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completion task acting on distortedx-patterns, the comple-
tion capacity is the information balance defined by:

C :� Mn�t�p;g�r�; z�r��2 t�p;gI
; zI��=n2 �17�

for large r(r ! ∞). For the BAM situation, when the
memory should complete the input pattern and, at the
same time, map to the output pattern we define the search
capacity:S: � C 1 A. The search capacity that equals the
information efficiency for BAM models with binary
synapses will be used to evaluate and compare the different
models considered in this paper.

4.2. Asymptotic information efficiency of the Willshaw BAM

Former theoretical results can be used to derive asympto-
tic values for the information efficiency of BAM: (a) for the
case of error-free address, that is,gI � 0 andzI � 0, since
C(0,0)� 0, the search capacity is limited by the Willshaw
capacity:S(0,0)� A(0,0)� ln[2] bit/synapse (Willshaw et
al., 1969); (b) addresses withgI � 0 andz I � 0.5 achieve
asymptotically the maximum completion capacity with an
asymptotic value ofC(0,0.5) # ln[2]/4 bit/synapse. With
the same input noise the asymptotic output capacity is
given by A(0,0.5) # ln[2]/2 bit/synapse (Palm, 1988).
Thus, the asymptotic search capacity for bidirectional retrie-
val is S(0,0.5)� (3ln[2])/4 � 0.52 bit/synapse.

A universal upper bound on the search capacity can be
obtained by analyzing a process where the memory recog-
nizes stored patterns in the whole space of sparse initial
patterns: an initial pattern is classified as known if it is
reproduced after a bidirectional retrieval cycle. The infor-
mation capacity of this recognition process is an upper
bound of the completion capacity, and has been determined
as ln[2]/2 (Palm and Sommer, 1992), which is achieved as
well with the parameter setM,p,q providing A � ln[2]/2.
Thus, the asymptotic search capacityS(0,0.5) is bounded by
ln[2] bit/synapse. Indeed, it can be shown that this bound
cannot be exceeded by any choice of parameter values.
Again, the Willshaw capacity (Willshaw et al., 1969)
turns out as an invincible bound for retrieval from the
binary-valued synaptic weights. From the finite auto-
associative model, we know that iterative retrieval methods
are able to reach and even slightly surpass the capacity
values calculated for the infinite model (Schwenker et al.,
1996). In fact, only iterative retrieval provides the retrieval
error reduction necessary to exploit the high capacity of
the model. The error probabilities of one-step retrieval
become negligible only for system sizes far beyond
realization.

4.3. Refined combinatorial analysis for the Willshaw model

For a retrieval error analysis of the Willshaw model, we
have to consider the rows in each synaptic matrix column,
which correspond to the ‘one’ components in the initial
patternx(0). If c� ux(0)u, one has to calculate the probability

that a c-subcolumn containsd ‘one’ entries P(c;d): �
p[
P

i [ x(0)Cij � d]. For a matrix where the elements are
generated independently withp1: � p[Cij � 1];i,j, the
integerd is binomially distributed withPB(p1,c;d).

The binomial distribution is defined as

PB�p; c; d� �
c

d

 !
pd�1 2 p�c2d

;

where

c

d

 !
�

c

d; c 2 d

 !
denotes the binomial coefficient, a special case of the multi-
nomial coefficient that will be used later:

c

d1;…; dk

 !
� n!

d1!d2!…dk!
;{ d1;…; dk :

Xk
i�1

di � c} :

For discrete distributions we use consistently the notation
PD(x1,…,xn,c;d): the variabled can assume the values 0,…,c,
x1,…,xn are additional parameters, and D is a descriptor of
the distribution, if it is not uniquely specified by the number
of parameters, for instance, subscript B stands for the bino-
mial distribution, and S for the distribution of the dendritic
sum in standard retrieval. For the cumulation3 of a discrete
distribution, we will use a similar nomenclature:
QD�x1;…; xn; c;d� �

Pc
i�d PD�x1;…; xn; c; d�. For the sake

of brevity, dependencies onM, n, m, p, q will be suppressed
in the parameter lists.

In the first analysis of the Willshaw model (Willshaw et
al., 1969), the binomial distribution has been used with the
estimation:

p1 . 1 2 �1 2 pq�M �18�
Since, even with random patterns, Eq. (1) does not inde-

pendently generate the matrix elements, the analysis should
be refined. Proposition 4.1 gives the distribution of 1-
elements in a column (or row) in the synaptic weight matrix
after storage of random patterns. It is a prerequisite for the
three subsequent propositions: Proposition 4.2 derives the
retrieval errors in the first retrieval step, i.e.r � 1. All
iterative retrieval methods we have considered deviate
only from the second retrieval step onwards. Proposition 4.3
analyzes the pattern part retrieval and Proposition 4.4 yields
lower bounds for the retrieval errors with SB retrieval.

Proposition 4.1.(Willshaw model: distribution of dendritic
sum.)After learning according to Eq. (1), the probability
that a synaptic c-subcolumn contains exactly d# c one
entries is:

PS�c; d� �
c

d

 !Xd
s�0

�21�s
d

s

 !
1 2 q 1 2 �1 2 p�s1c2d

n oh iM

�19�
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with our definitionQ(c;d) � 1 ; d # 0, whereas in the usual definition the
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Proof. Eq. (19) can be derived from the formula given by
Buckingham and Willshaw (1992), rewritten in the follow-
ing as Eq. (20). The dependencies between matrix elements
caused by the clipped Hebbian learning process are taken
into account by introducing the unit usage, i.e. the number
of memory patterns that have changed the matrix column of
a particular neural unit. For random patterns, the unit usage
is a binomially distributed quantity. In Eq. (20), the 1-
density in a synaptic subcolumn for a fixed value ofu is
averaged over all its possible values:

PS�c; d�
c

d

 ! �
XM
u�1

PB�q;M; u� �12�12 p�u�d|�����{z�����}
�
Pd
s�0

d

s

 !
�2 1�s�12 p�us

��1 2 p�u�c2d

�
Xd
s�0

d

s

 !
�21�s�1 2 q�M

�
XM
u�1

M

u

 !
q

1 2 q
�1 2 p�c2d1s

� �u

|�������������{z�������������}
� 11

q
1 2 q

�12p�c2d1s

� �M

21

�20�

The derivation of Eq. (19) from Eq. (20) employs a twofold
application of the binomial theorem as highlighted by the
underbracings.

Proposition 4.1 provides a big difference in numerical
evaluation time for the parameter range where the Willshaw
model has high information capacity: in Eq. (20),M terms
have to be added with typicallyM/ n2/(ln[n]) 2, while in Eq.
(19), the sum is only conducted overd terms with typically
d/ ln[n] (for the determination of typical values, see Palm
and Sommer, 1995).

Proposition 4.2. (Willshaw model: retrieval errors.)If the
initial pattern contains g ‘false alarm’ and z ‘miss’ errors
and the threshold is set toQ (1) � Q , the retrieval error
probabilities are:

aS�g; z;Q� � QS�a 1 g 2 z;Q� �21�

bS�g; z;Q� � 1 2 QS�g;Q 2 �a 2 z�� �22�

with the cumulative distribution:

QS�c;Q� � 1 1
c

Q

 ! XQ2 1

i�0

�21�Q2i

�
Q

i

 !
Q 2 i
c 2 i

1 2 q 1 2 �1 2 p�c2i
n oh iM �23�

Proof. The distribution of the dendritic sum of standard
retrieval Eq. (19) given in Proposition 4.1 has to be
cumulated for all values larger than the threshold to calculate
the ‘false alarm’ error probability Eq. (21). The terms in the
resulting double sum can be relabeled in order to avoid multi-
ple terms with the same factor [12 q{1 2 (12 p) j}] M. Beyond
the basic relations for binomial coefficients, the key transfor-
mations to obtain the cumulative distribution Eq. (23) are:Xw
v�0

w

v

 !
�21�v � dw;0

Xw2 t

v�0

w

v

 !
�21�w2t2v �

w 21

t 21

 !
�24�

with dw,v the Kronecker symbol. An invaluable source for
combinatorial identities is Riordan (1968): relations of Eq.
(24) can be found on pages 4 and 34. In our calculation, they
are applied forw � c 2 i and t � Q 2 i. The ‘miss’ error
probability also requires cumulation of Eq. (19) of Proposition
4.1 and can be computed similarly using Eq. (23).

In the parameter range considered in our simulation
experiments, the numerical evaluation at a reasonable
speed is only possible using Propositions 4.1 and 4.2. Eq.
(21) has been compared with the formula obtained by cumu-
lating the distribution [Eq. (20)] in terms of evaluation time.
In addition to the shorter sum in Eq. (19), in (21) the double
sum is reduced to a summation over a single variable. With
Mathematica,4 the evaluation time for a single value is
reduced from minutes to the fraction of a second. Eq. (19)
generalizes an old result that had been derived for the
special casec � d (and exactly equal activities of the
memories) by Palm (1980). We will now use Propositions
4.1 and 4.2 to analyze the pattern part retrieval.

Proposition 4.3. (Willshaw model: hit distribution of
pattern part retrieval.)Employing pattern part retrieval,
described in Section 3.2.2 with g ‘false alarm’ and z
‘miss’ initial errors, the probability that a pattern part
with size f, b contains e# f elements that belong to the
learning pattern is:
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PS�g; z; f ; e� �
PH�m;b; f ; e�

g

Xg
i�1

R�g; z;a 2 z1 i�ePf
j�0

PH�m; b; f ; j�R�g; z;a 2 z1 i�j

0BBBB@
1CCCCA g . 0

PB�pr �z�; f ; e� g� 0

8>>>>>><>>>>>>:
�25�

4 To evaluate the binomial sums it is important to use a programming
language where the computation precision can be increased arbitrarily.



with R(g,z,Q) � [1 2 bS(g,z,Q)][1 2 aS(g,z,Q)]/
[aS(g,z,Q)bS(g, z,Q)], pr(z) � q/[q 1 aS�0; z;a 2 z��,
aS(g,z,Q) and bS(g,z,Q) from Proposition 4.2, and with
the hypergeometrical distribution

PH�m; b; f ; e� �
b

e

 !
m2 b

f 2 e

 !
=

m

f

 !
:

Proof. The wanted distribution can be calculated as
conditional probability:PS�g; z; f ; e� � p�euf �. For g . 0, it
is p�euf � � P

Qp[e,f,Q]p[Q]/p[f,Q], with p[e,f,Q] �
p[euQ]p[w � f 2 euQ]p[Q] and p[f,Q] � p[fuQ]p[Q]. The
conditional distribution of correct ones is given byp[euQ] �
PB[1 2 bS(g,z,Q),b;e], the conditional distribution of
wrong ones byp[wuQ] � PB[aS(g,z,Q),m 2 b;w], and
p�f uQ� � Pf

e�0 p�euQ�p�w� f 2 euQ�. For g � 0, one-step
retrieval is performed with the highest possible threshold:
Q� a 2 z. From the resulting pattern, thef one components
have to be chosen randomly, leading to a hit probability for
a single component ofpr(z).

4.4. Error analysis of SB retrieval

Proposition 4.4.(SB retrieval errors: lower bounds.)The
‘false alarm’ error probabilities after the first step, i.e. r$ 1
satisfy:

g�r� $ QS�uy�r 2 1�u;J�r�� ;r even �26�

a�r� $ QS�ux�r 2 1�u;Q�r�� ;r odd �27�
with the definitions of QS(c;Q ) from Proposition 4.2.

Proof. In the second step of SB retrieval, we have to
consider two different cases in the update process: all
neurons not belonging to the setxm < x(0) can be described
with Eq. (19) as in the first retrieval step, since all synapses
ending at such neurons have not been involved to obtain
y(1). Neurons in the setxm < x(0) will behave differently
because of the statistical dependencies betweeny(1) and the
matrix elements. Since the synapses corresponding to this
set have been selected by the threshold criterion during the
first retrieval step, the ‘false alarm’ error probability of these
units will be strictly increased. Thus, the cumulative distri-
bution from Proposition 4.2 provides a lower bound on the
error probability in the second step. This argument for the
second step can be extended to subsequent iteration steps.
Hence, the one-step error is always a lower error bound.

As pointed out in Section 2.2, the most urgent demand on
modified retrieval strategies is the improved ability to
process initial patterns with ‘false alarm’ errors. We now
consider initial patterns without ‘miss’ errors, i.e.z I � 0. For
this case and with our assumption that thex andy patterns
have the same dimension and activity, bidirectional iteration
of standard retrieval is useful, if the noise is decreasing
during iteration, i.e.:

gI . a�1� . g�2� . … �28�

For a given initial ‘add’ noise level,gI � g/(n 2 a), a
necessary condition for decreasing noise can be derived
from Proposition 4.3, yielding the fixed point equation:

g� �n 2 a�QS�a 1 g; a� �29�

whereQS(c;Q) is given by Proposition 4.2. Solving Eq. (29)
for each number of initial errors,g . 0 gives an upper bound
on the number of possible stored patterns with standard
bidirectional retrieval. Beyond that bound, which is
displayed in Fig. 3, an improvement by iteration of retrieval
steps has to be excluded. As a consequence, the number of
stored patterns has to stay below that curve. Since the bound
decreases rapidly with a growing number of initial errors,
standard bidirectional retrieval cannot improve the memory
performance.

4.5. Error analysis of CB retrieval

Since the analysis CB retrieval is more intricate, the
proposition in this section will neglect the mutual depen-
dencies between different elements in the Hebbian matrix.

Proposition 4.5. (CB retrieval: errors after first step of
variant I.) The initial pattern contains g ‘false alarm’ and
z ‘miss’ errors. Consider the first step of variant I, i.e. Eq.
(10) for s� 0. Assume that y(0) computed by pattern part
retrieval has activity f$ 1 and contains e# f correct 1-
elements. The error probabilities of the first update step of
CB retrieval are given by:

aCB�g; z; f ; e;Q� � Qa
CB�e; �a 2 z1 g�f ;Q� �30�

bCB�g; z; f ; e;Q� � 1 2 Qb
CB�e; �a 2 z1 g�f ;Q� �31�

where the distributions of the dendritic potentials that have
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Fig. 3. Maximum number of patternsMmax for which bidirectional iteration
of standard retrieval can be expected to improve the retrieval results. In this
calculation, we use again the parametersn�m� 2000 anda� b� 10. The
x-axis displays the numberg of ‘false alarm’ errors in the initial pattern. The
initial ‘miss’ errors are set to zero, i.e.z� 0, thus the initial activities vary
in the range 11# ux(0)u # 20.



to be cumulated are:

Pr
CB�e; �a 2 z1 g�f ;Q�

�
Xmin��a2 z�f ;Q�

i�max�0;Q2 gf �
Pr

SRI�e; �a 2 z�f ; i�PSRI�gf ;Q 2 i�
�32�

with r � a ,b . The first factor in the convolution sum Eq.
(32) is:

Pa
SRI�e;df ;Q�

� p1

1 2 p1

� �Q �1 2 p1�f
pe21

1

" #d

Za�f 2 e; f ;e;Q;d�
�33�

Pb
SRI�e;df ;Q�

� p1

1 2 p1

� �Q �1 2 p1�f
pe

1

" #d

Zb�f 2 e; f ;e;Q;d�
�34�

where Za and Zb can be calculated recursively:

Zr�f ; f p
;e;Q;d�

�
XFl�Q=f �

i�0

f p 2 e

f

 !i

i!
Zr�f 2 1; f p

;e;Q 2 �f 1 e�i; d 2 i�

with initial values:

Za�0; f p
;e;Q;d� � H d 2

Q

e

� �
d
Q
e ;Fl Q

e

h i d

Q=e

 !

� pe21
1

�1 2 p1�f p21

" #d2Q=e

Zb�0; f p
;e;Q;d� � d Q

e ;d

d

Q=e

 !
1

�Q=d�!
Similarly, the second factor in Eq. (32) can be calculated

recursively:

PSRI�df ;Q� � p1

1 2 p1

� �Q
p1�1 2 p1�f
h id

Z�f ; f ;Q; d�

Z�f ; f p
;Q; d� �

XFl�Q=f �

i�0

f p

f

 !i

i!
Z�f 2 1; f p

;Q 2 fi; d 2 i�

Z�1; f p
;Q; d� � H�d 2 Q�

d

Q

 !
�f p�Q

� 1 1
1

p1�1 2 p1�f p21

" #d2Q

�35�

where p1 is the density of one entry in matrix Eq. (18), and
Fl[x] is the greatest integer less or equal to x.

Proof. The dendritic sum at each neuron is composed of two
contributions,r1 and r2, corresponding to addressed matrix
rows either agreeing with one components in thex-memory
pattern or not. Each contribution is a sum over discrete
random variables. Forr1, the sum containsd � a 2 z
random integers that have at on-neurons the distribution:

Pb
RI�e; f ; j� � PB�p1; f ; j 2 e� �36�

and at off-neurons the distribution:

Pa
RI�e; f ; j� �

p1PB�p1; f ; j 2 e� e # j # f

1 2 p1 j � 0

(
�37�

For r2, the sum containsd � g random integers with
distribution:

PRI�f ; j� �
p1PB�p1; f ; j� 0 , j # f

1 2 p1�1 2 PB�p1; f ; 0� j � 0

(
�38�

A sumr � Pd
i�1 vi over independent random integersvi �

{0,1,…,f} has the distribution:

P�r�SRI�df ; j� �
X

u [ Ud

dQ;
P

j

juj

d

u0;…;ul

 !Yl

j�0

�P�r�RI �f ; j��uj �39�

whereUd � { u [ Nf 11 :
Pf

j�0 uj � d} is the set of vectors
generating all possible configurations of the sum by
r � Pf

j�0 juj , and the multinomial coefficient
ÿ d

u0;…;ul

�
as

defined in Section 4.3. The recursive formulae Eqs. (33)–
(35) are obtained by insertion of Eqs. (36)–(38) in Eq. (39)
and considerable algebra. The distribution of the sum ofr1

and r2 is given by the convolution of their distributions
leading to Eq. (30).

Finally, using the results of Propositions 4.3 and 4.5, we
can estimate the error probabilities of the first update step of
variant I, i.e. Eq. (10) withs � 0, with the patterny(0)
generated by pattern part retrieval. Corresponding to the
‘no misses’ threshold setting in simple retrieval we consider
a ‘minimal misses’ threshold setting for CB retrieval that
avoids miss errors whenever possible, namely in all cases
wherey(0) contains any hits:e. 0. Fore� 0 we assume the
worst case, i.e.aCB � bCB � 1. The error probabilities are
then:

aCB�g; z; f �

� PS�g; z; f ; 0�1
Xf

e�1

PS�g; z; f ; e�aCB�g; z; f ; e; �a 2 z�e�

�40�

bCB�g; z; f � � PS�g; z; f ; 0� �41�
Fig. 4 shows the improvement of CB retrieval in three

stages: after the first update step; after the first auto-
associative cycle; and after the complete procedure. As
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can be observed in Fig. 4(a), the theory predicts lower errors
of the first CB update step compared with standard retrieval.
Experimental results indicate that errors of the first CB
retrieval cycle are below these of a single CB update step,
and fully iterated CB retrieval displayed in diagrams (b) and
(c) yield by far the lowest retrieval errors.

4.6. The problem of optimal retrieval (POOR)

Since all bidirectional retrieval strategies start with an
ordinary threshold retrieval step, as analyzed by Proposition
4.2, condition Eq. (28) is a universal prerequisite for
successful retrieval for initial patterns without miss errors.
If b � a andm� n, it should not matter whether you start

with an x or a y initial pattern and for error-free initial
patterns, i.e.gI � 0 orz I � 0, requirement Eq. (28) demands
that learning pattern pairs are fixed points of the synaptic
matrix:

yp � H��Cxp�2 Q�; xp � H��CTyp�2 J� �42�
We call (x*,y*) in Eq. (42) a (Q,J)-fixed point of the

synaptic matrixC. (ux* u,uy* u)-fixed points we call simply
the fixed points of the synaptic matrixC, denoted byF.
A necessary condition, that the associative memory at least
‘recognizes’ all learned patterns, is:

S # F �43�
On the other hand, no pattern different from the learning

patterns, often denoted as spurious state, should fulfill the
fixed point condition:

F # S �44�
If condition Eq. (44) is violated, the set of initial patterns

from which the retrieval dynamics cannot move to the near-
est learning pattern is nonempty. Combining both condi-
tions, Eq. (43) and (44), yields:

F �S �45�
which is a necessary condition that individual learning
patterns can be retrieved in an effective and fault-tolerant
way from the synaptic matrix. The Willshaw matrix fulfills
Eq. (45), if the memory load is below the point where super-
positions of traces form completely filled ‘subrectangles’.

Given that the matrix fulfills Eq. (45), what can be opti-
mally expected from a retrieval procedure? The answer can
be formulated as the following linear optimization problem:

Problem of optimal retrieval (POOR): given a binary
matrix, Cij, with the fixed points set,S, and an initial
pattern,x(0), find a pattern pair (x*,y*) with:

kxp
; x�0�l � Max! �46�

which satisfies the constraints:ux* u � a, uy* u � b, and
(x*,y*) is a fixed point ofC.

In POOR, the maximization guarantees thatx* is the
closest fixed point, i.e. with maximum overlap to the initial
pattern x(0). The normalizations and the fixed point
constraints implied by Eq. (42) lead to 2n 1 2 conditions,
that are linear equations/inequations.

Like related problems, the Knapsack problem, and the
graph bipartitioning problem, we conjecture that POOR is
also anNP-hard problem. An exact (brute force) solving
strategy for POOR is to extract all point pairs satisfying
the constraints, and then to select the pair which maximizes
Eq. (46). This fixed point extraction referred to in Section
4.2 as the recognition process has been analyzed by Palm
and Sommer (1992) to estimate the asymptotic information
capacity bound of the optimal retrieval procedure. Of
course, as a retrieval method this exact solution of POOR
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Fig. 4. Comparison of the expected number of retrieval errors in they-
patterns for the different methods. The parametersn,m,a,b,M and thex-axes
labeling by the initial activity has been chosen as in Fig. 2. Points in
diagram (a) display experimental errors for standard retrieval (S) and the
first auto-associative cycle of CB retrieval (K and× for add and miss errors,
respectively). Standard retrieval uses ‘no misses’ threshold setting and CB
retrieval variant I was performed to the fixed point of the first auto-asso-
ciative iteration of Eq. (10). The startingy-pattern of CB retrieval was
determined by pattern-part retrieval, withf � 3, cf. Section 3.2.2. The
lines in diagram (a) correspond to theoretical values, the dotted line
displays add errors for standard retrieval [Eq. (21)], the solid and the dashed
lines represent add and miss errors, respectively, produced by the first CB
update step using the ‘minimal misses’ strategy explained in Section 4.5,
and calculated by Eq. (40) and Eq. (41). The theory confirms that already
the first update step outperforms standard retrieval. Note that the results
after the first cycle are even better. Diagram (b) and (c) compare add and
miss errors, respectively, for the different retrieval strategies. The dotted
line represents results with standard retrieval, dashed lines with the first
iteration cycle of CB retrieval and solid lines with complete CB retrieval.
Clearly the fully iterated (complete) CB retrieval yields the lowest retrieval
errors.



is computationally exhaustive, since it requires retrieval to
be performed on all possible

ÿ n
a

�
initial patterns with the

wanted activity a. Fast algorithms, like the retrieval
processes proposed in this paper, can only yield approxima-
tive solutions.

4.7. Approximative solutions of POOR

A possible approximative solving strategy of POOR
consists of two phases. In a first phase the normalization
constraints are released in order to find a pattern pair
(X,Y) which contains the solution, i.e.x* , X andy* , Y.
In a second phase only subsets of (X,Y) are considered and
the solution (x*,y*) is extracted by tightening the activity
constraints.

The SB and the CB variant II retrieval strategies
described in this paper follow this type of strategy. After
the second retrieval step they have finished the first phase.
The second phase has exclusively to eliminate wrong active
components, and corresponds to the onset of the Boolean
AND operation. With SB retrieval, the activity values in the
pattern pair (X,Y) will be very high at high memory load and
the second phase will often get stuck before reaching the
desired low activity. The reason for the high activity in (X,Y)
is that standard retrieval uses only half of the constraints
implied by the fixed point condition Eq. (42) for the discri-
mination of active neurons — either row or column
constraints. For high memory load, this discrimination can
be too rough: even with the highest possible threshold —
guaranteeingux(r)u $ a — no activity reduction can be
achieved. CB retrieval checks both row and column
constraints in each retrieval step by forming the dendritic
sum using the conditional links (see Section 3.3). This
allows an activity reduction in cases where SB retrieval
already fails to work.

5. Experiments

5.1. Retrieval errors and capacity

Both versions of CB retrieval have been tested in simula-
tion experiments with random patterns, and compared with
the standard retrieval model. Here, we show results for
variant II with a parameter setting that has not been parti-
cularly optimized to maximum capacity. For more detailed
experimental results with variant I, see Sommer and Palm
(1998b) and Sommer et al. (1998). SB retrieval is not inves-
tigated experimentally, because it can be ruled out as a
promising modification by the arguments in Section 4.4
for the parameter range we used.

Fig. 5(a) displays the experimental error rates in the
retrieved y-patterns. For this parameter set, the synaptic
matrix is filled withp1 � 0.38. One-step retrieval produces
unacceptably high mean errors as soon as initial noise is
present, while CB retrieval achieves low error rates in the
y-pattern and is much more robust to initial noise, even with

such a high memory load. CB retrieval permits completion
of thex-patterns with comparable quality. The total number
of iteration steps depends on the initial pattern and with the
proposed threshold strategy; it lies in a range between five
and 50. The CB capacity values in Fig. 5(b) are close to the
theoretical expectations given in Section 4.2. The capacity
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Fig. 5. Results of CB variant II (A) and the Willshaw model (S) with M�
20 000, but the other parameter setting and thex-axes labeled as in Fig. 2.
Diagram (a) compares the expected number of ‘false alarm’ retrieval errors
in the y-patterns. Diagram (b) displays the information efficiency. Due to
retrieval errors, the capacity of the Willshaw model drops down very
rapidly with increasing initial noise. For CB retrieval, diagram (c) displays
output capacity and search capacity (� efficiency) in bit/synapse by (× )
and (A), respectively. The difference between both curves is the contribu-
tion due tox-pattern completion, the completion capacityC. It is zero for
ux(0)u � 10, if the initial pattern is error free.



increases with slight distortions of the initial pattern due to
the completion capacity contribution. It stays at a high level
even if in the initial pattern every second active component
is a ‘false alarm’ error. The one-step retrieval capacity is
rapidly decreasing with initial errors. Because of the explod-
ing retrieval errors of one-step retrieval [see Fig. 5(a)], its
theoretical capacity cannot be fully exploited; in applica-
tions, the number of stored patterns has to be drastically
reduced. Fig. 5(c) displays for the CB model how comple-
tion and output capacity contribute to the search capacity.
For noiseless initial patterns, the pattern completion is zero
and it assumes local maxima at certain values of ‘miss’ and
‘add’ errors.

5.2. Processing of ambiguous initial patterns

Retrieval from ambiguous initial patterns, where one
memory pattern is superimposed not by random noise but
by parts from one or a few other memory patterns, is a very
likely scenario in nature as well as in many applications.
Thus, a NAM model should be able to cope with such a
situation.

Parts of several memory patterns can form an ambiguous
initial pattern by two different kinds of superposition; either
by Boolean AND or by the OR operation. The first kind
produces an initial pattern with decreased but nonzero
activity only in the special case of correlated patterns —
with nonzero overlap. The more general kind of superposi-
tion is the second type, which produces an increased activity
in the initial pattern. This case turned out as particularly
hard for the standard model.

With CB retrieval, it is possible to process initial patterns
containing an OR-superposition of several parts of stored
patterns (see Sommer and Palm, 1998b). The predominating
part will be singled out first. Its active components have to
be deleted in the initial pattern to retrieve the next part and
so on. Thus, a segmentation of the different initial compo-
nents is achieved, and successively, a list of retrieved items
ordered with respect to the relevance for the given initial
pattern can be obtained. Only, if parts of several memory
patterns with the same size are present in the initial pattern,
the symmetry has to be broken before segmentation is
possible in the CB model. This can be achieved by a random
deletion process which singles out one predominate compo-
nent in the initial pattern.

6. Conclusions

6.1. Implications of the analysis

In this paper, we have analyzed bidirectional retrieval
from hetero-associative memories. The search capacity
introduced in Section 4.1 describes the information balance
of BAM, taking into account both pattern mapping and
pattern completion. As a general performance measure for
BAM models, we propose the information efficiency which

is based on the search capacity, but also takes into account
the required synaptic depth. For memories with binary
synapses both quantities coincide. We calculate the asymp-
totic efficiency of the BAM Willshaw model in different
cases of initial noise:S(0,0) # 0.69 bit/synapse and
S(0,0.5)# 0.52 bit/synapse. ForS(0,0.5), we derive a theo-
retical bound of ln[2]� 0.69, which is the universal effi-
ciency bound of the BAM Willshaw model, valid for all
parameter settings. This value agrees with the bound in
the simple Willshaw model, indicating that BAM extension
does not increase the asymptotic efficiency bound.

We present new methods for the theoretical description of
the considered memory models for finite sizes. A finite size
theory is important because the finite model behavior is
entirely different from the asymptotic behavior and
approaches the latter only for sizes far beyond realization.
For instance, iterative retrieval schemes do improve finite
models but are not required at all asymptotically (see
Schwenker et al., 1996). The finite model cannot be
described by simple elegant expressions as in the asymptotic
case. The derived combinatorial formulae and recursive
computation schemes expose their appeal not at first sight,
but they allow easy and fast evaluation in a high level
programming language like Mathematica. Our formula for
the distribution of the dendritic sum of the Willshaw model
(Proposition 4.1) is mathematically equivalent to a combi-
natorial expression given by Buckingham and Willshaw
(1992), but in the interesting range of parameters the numer-
ical evaluation is much simpler. The improved error analy-
sis of the Willshaw model (Proposition 4.2) serves two
purposes: (a) Proposition 4.3 derives the hit distribution of
pattern part retrieval — a retrieval strategy in the original
Willshaw model leading to an output pattern with limited
activity, which is part of the proposed CB retrieval; and (b)
Proposition 4.4 estimates the parameter range where stan-
dard bidirectional retrieval outperforms the Willshaw
model. By theoretical analysis, standard bidirectional retrie-
val can be ruled out as a promising retrieval improvement
(Section 4.4). Moreover, we derive a combinatorial error
analysis of the first step of CB retrieval (Proposition 4.5)
that corroborates its experimental superiority in the range
where the performance of the finite Willshaw model is
flawed by high retrieval errors, i.e. when memory load is
high and activity in the initial pattern exceeds the activity of
the memory patterns. The mathematical essence of Proposi-
tion 4.5 is the derivation of a recursive method to calculate
the distribution of a sum of random integers.

We formulate a necessary condition for all memory
patterns to be retrieved from the memory matrix and con-
sider retrieval as an optimization problem. The problem
with retrieving the appropriate memory pattern, given the
memory matrix and the initial pattern, corresponds to a
linear programming problem (POOR). We conjecture that
POOR isNP-hard and explain how the considered retrieval
strategies can be regarded as approximative solutions of
POOR and what their differences are from this perspective.
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6.2. The new BAM model

This paper suggests refined bidirectional retrieval meth-
ods in the hetero-associative Willshaw model, i.e. better
exploitation of the information stored by the simple and
incremental binary Hebbian learning process. In the
Willshaw model, suppression of cross-talk noise has been
proposed by specifically adjusted individual thresholds
during one-step retrieval (Buckingham and Willshaw,
1993; Graham and Willshaw, 1995). However, this retrieval
modification allows no completion of noisy addresses, and
the computationally expensive threshold alignment cannot
be accelerated by parallel hardware and requires additional
information about the learning data. Our new retrieval strat-
egy — CB retrieval — reduces cross-talk errors signifi-
cantly without employing more complex learning
procedures or dummy augmentation in the pattern coding
as has been proposed to improve BAM (Wang et al., 1990;
Leung et al., 1995). The conditional links, the quantities on
which CB retrieval is essentially based, have a probabilistic
interpretation: a high value between two units expresses a
high probability that both units belong to the same memory
pattern. This information can be exploited in various itera-
tion schemes, two of which have been proposed and tested
experimentally. CB retrieval yields an information effi-
ciency of about 0.5 bit/synapse, which is close to the asymp-
totic value with low error rates even for initial patterns with
high false alarm noise. It provides hetero-associative
mapping, and can be used to complete noisy addresses
and to segment superimposed addresses.

While the proposed NAM uses a very simple incremental
learning strategy and quite sophisticated optimization retrie-
val strategies (type A), many of the reasonably efficient
NAM models in the literature use sophisticated optimization
learning strategies combined with simple retrieval (type B).
In a type B memory, it takes longer to learn one new asso-
ciation the higher the number of stored associations already
is, because in the learning process all previously learned
patterns have to be presented several times. This is time
consuming and it requires all learned patterns to be avail-
able, either by a kind of retrieval process during training, or
from some kind of additional pattern store. A type A
memory is more flexible in terms of learning, but if the
number of stored associations grows, it will take longer to
retrieve a learned association. As previously proposed auto-
associative models have demonstrated (Gibson and Robin-
son, 1992; Hirase and Recce, 1996; Schwenker et al., 1996),
and now the CB memory model shows for hetero-associa-
tive tasks, there are type A models that still retrieve effi-
ciently and fast, since the required iteration numbers are low
and operations required in an update step can be computed
in parallel. In situations where retrieval time is critical, the
iteration can also be interrupted at a preliminary result that
can already be used as a reasonable approximation. The
biological realization of associative memory may lie in
between the two extremes discussed. We detail in Section

6.4 that refined iterative retrieval is suggested by the recur-
rent cortical connectivity. But also more elaborate learning
has been proposed, for example as a functional model of
REM sleep (Crick and Michison, 1986): in a one-step learn-
ing associative memory, a second learning phase provides
an unsupervised reorganization of the information gathered
by one-step learning. This REM sleep phase was shown in
simulations to enhance the information capacity signifi-
cantly, and to permit simpler retrieval (van Hemmen et
al., 1990).

6.3. Application in information retrieval

Accessing records in large data bases according to user
requests is the central problem of information retrieval. The
application of the proposed NAM in information retrieval
requires a similarity preserving coding of the data into
sparse binary patterns. However, for user interaction, sparse
representations meet natural preferences. Feature encoding,
i.e. the extraction of feature sets which directly and quickly
characterize complex situations, has been classified in
cognitive psychology as one of the three basic types of
cognitive processes (Sternberg, 1977). Such feature repre-
sentations tend to be sparse: a description of 10 features out
of 2000 possible features will be easier for a person to
handle, compared with a description with only 90 possible
features, but where around 50% of them apply. Since

90

45

 !
.

2000

10

 !
;

the information contained in both descriptions is practically
the same. The problem of finding appropriate sparse codings
is application-dependent. For text indexing, word fragments
used in existing indexing techniques (Gebhardt, 1987) can
be directly used as sparse features. For image processing,
the most natural features like lines and edges are usually
sparse (Zetsche, 1990). Also a neural sparse coding model
using anti-Hebbian learning has been proposed (Fo¨ldiak,
1990). Sparse patterns extracted from different data chan-
nels in heterogeneous data can be easily combined (by
concatenation) and processed simultaneously in the neural
memory.

In information systems, the CB model offers an alterna-
tive to inverted indices, for the task of mapping from user
queries to record locations in a similarity based, fault-toler-
ant manner. Improving the early suggestion of sparse asso-
ciative memory for information retrieval by Bentz et al.
(1989), our model offers the following advantages: (a) a
user query should not only provide a data record, but also
the completed feature description leading to the record
(relevance feedback); and (b) ambiguous queries should
not only trigger a single response, but a list of relevant
records, ordered by their relevance (relevance ranking; see
Section 5.2). A problem for image processing with sparse
NAM models is the low information content of sparse
patterns (Zetsche, 1990). It has been proposed to store larger
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items as sequences of sparse patterns (Kohring, 1990) which
can be efficiently realized in the CB model: once the first
pattern pair has been extracted by CB retrieval, unidirec-
tional iteration of standard retrieval yields the pattern
sequence.

6.4. Bidirectional retrieval in the cortex

The idea of BAM and the corresponding iterative
retrieval strategies may be important not only in technical
applications but also as a model of associative memory in
the cortex. We end this paper with a few speculations in this
direction. In the cortex, neighboring pyramidal cells have a
high synaptic connection probability that, however, rapidly
decreases with distance (Braitenberg and Schu¨z, 1991).
Therefore, in small regions (cortical columns), iterative
retrieval, such as in the Hopfield model, is likely, where
each neuron performs several processing steps until the
final retrieval pattern is obtained from the initial pattern
(Amit, 1995). Many pyramidal cells also have long axon
colaterals (Ramon y Cajal, 1911) that, as tracer studies
have revealed, are organized in cortico–cortical pathways
between pairs of different cortical areas. The reported path-
ways realize perhaps 20% of all possible direct connections
between areas, and the majority of them are reciprocal, i.e.
provide activity propagation in both directions (Felleman
and Essen, 1991). Since many cortical areas can be assigned
to particular tasks, the pathways must play a role in combin-
ing different kinds of information. A biological interpreta-
tion of CB retrieval (Sommer et al., 1998) examines the
hypothesis that the ‘expensive’ reciprocal long range path-
ways provide efficient associative memory function. A
detailed model with spiking neurons will be the subject of
a forthcoming paper. It has already been shown that NAM
with spiking neurons can efficiently process patterns of
simultaneously spiking neurons (Wennekers and Sommer,
1998).

As a final remark, we briefly address the implications of
BAM function in reciprocal projections of the cortex for the
theory of Hebbian cell-assemblies as distributed multi-
modal representations of concepts (Hebb, 1949). We
assume that BAM operation of single pathways can be
selectively enabled by input — and threshold — control.
In such a cortex model, distributed cell-assemblies can
emerge, if learned associations on different projections
support each other. Cell-assemblies are formed by mutually
supporting hetero-associative associations between pairs of
cortical subrepresentations. In psychological terms, the
basic memory units correspond to simple stimulus-reaction
schemes, like habituation and conditioning, and multi-
modal concept formation emerges as a secondary phenom-
enon. In this model, the information stored in a multi-modal
cell-assembly can be accessed more flexibly without always
activating the whole assembly: different parts of the
assembly can be understood as different facets of a concept.
This fits into the introspective observation that, depending

on the situation, the recall of a learned concept may appear
in various forms.
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