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Abstract

The Willshaw model is asymptotically the most efficient neural associative memory (NAM), but its finite version is hampered by high
retrieval errors. lterative retrieval has been proposed in a large number of different models to improve performance in auto-association tasks.
In this paper, bidirectional retrieval for the hetero-associative memory task is considered: we define information efficiency as a general
performance measure for bidirectional associative memory (BAM) and determine its asymptotic bound for the bidirectional Willshaw model.
For the finite Willshaw model, an efficient new bidirectional retrieval strategy is proposed, the appropriate combinatorial model analysis is
derived, and implications of the proposed sparse BAM for applications and brain theory are discussed. The distribution of the dendritic sum
in the finite Willshaw model given by Buckingham and Willshaw [Buckingham, J., & Willshaw, D. (1992). Performance characteristics of
associative netdNetwork 3, 407—414] allows no fast numerical evaluation. We derive a combinatorial formula with a highly reduced
evaluation time that is used in the improved error analysis of the basic model and for estimation of the retrieval error in the naive model
extension, where bidirectional retrieval is employed in the hetero-associative Willshaw model. The analysis rules out the naive BAM
extension as a promising improvement. A new bidirectional retrieval algorithm — called crosswise bidirectional (CB) retrieval — is
presented. The cross talk error is significantly reduced without employing more complex learning procedures or dummy augmentation in
the pattern coding, as proposed in other refined BAM models [Wang, Y. F., Cruz, J. B., & Mulligan, J. H. (1990). Two coding strategies for
bidirectional associative memorfEEE Trans. Neural Networksl(1), 81-92; Leung, C.-S., Chan, L.-W., & Lai, E. (1995). Stability,
capacity and statistical dynamics of second-order bidirectional associative mdEBE/ Trans. Syst. Man Cyber25(10), 1414-1424].

The improved performance of CB retrieval is shown by a combinatorial analysis of the first step and by simulation experiments: it allows very
efficient hetero-associative mapping, as well as auto-associative completion for sparse patterns — the experimentally achieved information
efficiency is close to the asymptotic bound. The different retrieval methods in the hetero-associative Willshaw matrix are discussed as
Boolean linear optimization problems. The improved BAM model opens interesting new perspectives, for instance, in information retrieval it
allows efficient data access providing segmentation of ambiguous user input, relevance feedback and relevance ranking. Finally, we discuss
BAM models as functional models for reciprocal cortico—cortical pathways, and the implication of this for a more flexible version of
Hebbian cell-assemblie® 1999 Elsevier Science Ltd. All rights reserved.
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conditional information in a noisy channel
with error probabilitiesx andp for a binary
event with probabilityp

index of y-pattern component (subscript)
index of x-pattern component (subscript)
index ofy-pattern component (subscript)
length of they-patterns

number of learning pattern pairs
association mapping” — y* performed by
the memory

length of thex-patterns

ratio between active and passive compo-
nents in ax-memory

binomial distribution

Po(X1,**%,,C;d) distribution of integer variabld with 0 <

P2
P1

q

d = cxq, X, additional parameter§)
descriptor of the distribution

hit probability for pattern part retrieval
probability that a memory matrix element
is one

ratio between active and passive compo-
nents in ay-memory

Qo(X, X Cid) = Y gPp(Xy,*,%n,C;d) cumulative
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distribution

index of the iteration time step

index of the iteration time step

search capacity describing bidirectional
hetero-association

set of memory pattern pairs
transinformation of a noisy channel with
error probabilitiesx and for a binary
event with probabilityp

unit usage index

conditional link betweely unitsi,| for
given patterm(r)

conditional link betweerx unitsj,k for
given patterny(r)

binary pattern of lengtim

binary pattern of lengtim

noisy version of the memony" used as
initial pattern

number of active components in pattetn
binary pattern of lengtim

binary pattern of lengtim

output pattern of the standard Willshaw
model

number of ‘miss’ bits in an initiak-pattern
retrieval ‘false alarm’ error probability in
y(r)-patterns

retrieval ‘miss’ error probability iny(r)-
patterns

retrieval ‘false alarm’ error probability in
x(r)-patterns

‘False alarm’ error probability in initial
patternsx(0)

Kronecker symbol

{(r) retrieval ‘miss’ error probability irx(r)-
patterns

¢ ‘Miss’ error probability in initial patterns
x(0)

(C1()] neural threshold of thg-units in time step

W index of memory patterns (superscript)

v index of memory patterns (superscript)

E(r) neural threshold of the-units in time step

1. Introduction

In the late fifties, Steinbuch (1961) proposed one of the
first hardware realizations of a neural associative memory
(NAM) model, his so called ‘Lernmatrix’, where binary
synapses are formed by Hebbian local learning from binary
memory patterns and hetero-associative one-step retrieval is
performed. This model is now referred to as the Willshaw
model, since Willshaw et al. (1969) first determined its
asymptoti¢ information efficiency as In[2]= 0.69 bit/
synapse. Such high efficiencies are only achieved in models
with sparse memory patterns where the ratio between active
and passive elements is far below 0.5 (Palm and Sommer,
1995), and asymptotically, the Willshaw model is the most
efficient NAM, see the model comparison in Sommer and
Dayan (1998). Unfortunately, at maximum memory load,
the finite Willshaw network retrieves with high error rates
(see Section 5). Error reduction in the Willshaw model can
only be achieved by reducing the memory load that leads to
information efficiencies far below the asymptotic value. For
the Hopfield task, namely auto-associative pattern comple-
tion (Hopfield, 1982), iterative retrieval has been introduced
in the Willshaw model (Gardner-Medwin, 1976; Gibson and
Robinson, 1992; Hirase and Recce, 1996; Schwenker et al.,
1996). For auto-association of finite sparse patterns, it is
now well understood that the original retrieval process is
the limiting bottleneck (Palm and Sommer, 1992), and what
kind of retrieval modifications are most promising in the
light of probabilistic reasoning (Sommer and Dayan, 1998).

This paper considers bidirectional retrieval in the hetero-
associative Willshaw model. Hetero-associative iterative
retrieval schemes have been proposed in bidirectional asso-
ciative memory (BAM) models for dense patterns (Kosko,
1987), where two sets of threshold units are bidirectionally
connected by a synaptic weight matrix. An improved theo-
retical analysis for the Willshaw model is derived and
applied to the straightforward BAM extension of the Will-
shaw model (Haines and Hecht-Nielsen, 1988), referred to
as standard bidirectional (SB) retrieval in the following,
where standard retrieval is performed alternatingly for the
two disjunct sets of units, the and they layers. By this
analysis, the SB model can be ruled out as a promising
model variant. Standard retrieval discriminates active
neurons by thresholding the overlap between the vector of

!i.e. for infinitely large systems.
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synaptic values and the activity pattern in the other layer. proposed new BAM model (Section 6.2). The perspectives
We propose a completely new retrieval method, crosswise of applying the CB model in information retrieval are
bidirectional (CB) retrieval, based on dynamic virtual discussed in Section 6.3. We close with some speculations
connections between units within a layer called conditional about the biological realization of BAM in reciprocal
links. The conditional link between two neurons depends on cortico—cortical pathways and the impact of such a cortex
the activity pattern in the other layer: it is defined by the model on concept formation and processing (Section 6.4).
overlap between the parts of their synaptic vectors that

receive input from active units in the other layer. By the

structure of the Hebbian synaptic matrix in the Willshaw 2. Neural associative memory (NAM) models

model, the conditional link has a probabilistic interpreta-
tion: a high value indicates a high probability that the corre-
sponding unit pair belongs to the memory pattern that

should be associated with the activity pattern in the other . Inl\(;ln(cezo:‘lthtra]flrs;iﬂempltgg computat(ljonal bralr model;(
layer. CB retrieval employs bidirectional activity propaga- ing, McCulloch and Pitts ( ) proposed a neural netwar

tion to determine the clique of units that are connected by of plnary .‘aII or none’ units and showed the 'computat|onal
the highest conditional links. CB retrieval uses dendritic universality of such SyStemS' The psychologist Hebb (1949)
sums weighted by conditional links that can be computed spec_ulated that psycr_lo_loglcal concepts could be r_epresented
in parallel — by bidirectional propagation through the by simultaneous a_ctlwty_of many nerve cells distributed
synaptic matrix. Thus, each CB update step involves evalua—throughOUt the brain, which _he called a cell-assembly: _He
tion of columns and rows as well, a fact that led to the name postulated that cgll—assemplles are formed by an amplmga-
of this retrieval strategy. The advantage of CB retrieval is tion process taking place in all synapses between active

shown by the analysis of a single step and by simulation nerve ceII; during Igarmng. Th|§ process of syn.apt!c
experiments. strengthening depending on coincident neural activity in

The paper is organized into six sections. Section 2 revisits rhe d!rectT\Qcml.ty Olf trt]e lsynap;se WaT later 9atl_led Hebbw}n
briefly the Willshaw NAM, its biological motivation and ?\le}ArR/llng. € St'an est_ C?SS Od r;eur?Hassgmelldlve_memorlﬁs
some basic definitions; it also explains the relations and( ) are mathematical models of Hebb’s idea in suc

differences between the hetero- and auto-association tasIInOdeIS’ activity pattens (of nerve cells) are stored in a

and what memory models can combine both functionalities. matrix of synapt_ic connections duriqg a ont_a-step storage
In Section 3, we define bidirectional extensions of the process employing a local synaptic leaming rule (see

model, namely SB retrieval — the classical BAM scheme, fgggonlzzilz) (Wi”ahivg et Ial., 1929; Palmb,l 1980;bHopfieI|(|j,d
and CB retrieval based on conditional links. We present two ” )- g O;N.'tng € ’ball eamne assem y canr etr%caTE
versions of CB retrieval that differ in the iteration scheme " €N0UgN OIS assembly neurons become activated. The

and in the means to limit activity in the network. The theo- corresponding recall process in a NAM is the retrieval

retical background of the proposed retrieval strategies is Process. i .
developed in Section 4. In Section 4.1, the information effi- NAM madels have been propased for efiicient searching

ciency is defined as a general performance measure for" large data-bases allowing fast, fault-tolerant access and

BAM and in Section 4.2, the asymptotic efficiency bound being particularly well-suited for parallel implementations

for the Willshaw model is determined. Section 4.3 contains (Stembgch, 1961; Kohonen, 1977; Bentz et .al., 1989)' An
a refined analysis of the finite size Willshaw model: an appropriate performance measure for NAMS is the informa-

improved combinatorial calculation of retrieval error prob- tion deff|C|e|:1c3/, the STofunt of |rt1_format|on that caén bte. st(;rrezd
abilities is derived (Proposition 4.2) that allows much faster Srahn reca Ef) per C'i ? syn:pr)].lchme?ory (;ee f?C. lon &. )-
numerical evaluation than the previously given formula e search for models with high information efficiency is

(Buckingham and Willshaw, 1993). We analyze pattern one es;ential issgetowards an applicatipn of NAM'm.oEieIs.
part retrieval (Proposition 4.3), a method using the standard Oth_er Important Issues are sparse coding _prescrlpnons for
model to extract a part of the 1-elements in the memory partlcular da_ta, (see Section 6.3), and efficient Hardware
pattern with higher accuracy. The analysis of the standard implementations of NAM (Potter, 1992; Paim et al., 1997).
model is used in Section 4.4 to estimate the retrieval error of
SB retrieval (Proposition 4.4). Section 4.5 analyzes the first
step of CB retrieval (Proposition 4.5). Section 4.6 identifies  consider the computational task where a mapping
the problem of optimal retrieval (POOR) as a Boolean linear .,v _, y" (for v = 1, M) has to be performed between
optimization problem. In this framework, we point out the binary patterns. We call the pattern pairs involved the
differences between SB and CB retrieval in Section 4.7. memory patterns, or simply the memorie€: = {(x".y"):
Section 5 presents some typical simulation results with the y» = {0,1}" y* € {0,1}™ v = 1,---,M}. The number of

CB retrieval method and compares it with the Willshaw

model. The conclusion section resumes the implications of > Nevertheless, information efficiency has also been proposed as a guide-
the presented analysis (Section 6.1) and the properties of thaine for biological modeling by Palm (1990).

2.1. Motivations for associative memory models

2.2. The Willshaw model
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active (‘one’) components in a pattern is called pattern contains no ‘miss’ errors at all. There is a trade-off between

activity: ly]: = YL, yi. The pattern symbao} is also identi- the limits on the model performance implied by the listed
fied with the set of its active components= {i:y; = 1}. conditions: for instance, if the cross talk is increased by a
Consequently, a pattesiis called part ofy if y' C y holds. higher memory loadM, fault tolerance, that is, the limit on

In the following, we use memories with constant activities, the admitted initial error level decreases. The most unplea-
i.e.[x"| = a, |y’| = b Vv. Noise in a memory is expressed by sant property of the finite Willshaw model is that loads
the two possible error types that can change a component: aallowing maximum storage capacity cannot be realized
‘miss’ error converts a 1-entry to ‘0’ and a ‘false alarm’ or with reasonable fault tolerance. In particular, the fault toler-

‘add’ error does the opposite. ance to initial patterns with ‘false alarm’ errors is very low,
During learning, the set of memories is transformed into see Figs. 4 and 5(a). Thus, in applications, the number of
the synaptic weight matrix: stored patterns has to be drastically reduced compared with
the theoretical value d*.
Cj = min(LZx{’yj”) =1-]] (1 - xi”yj”) = supx’y’
v v v 2.3. NAM models combining auto- and hetero-association
(€Y

) ) ) o Associative memories work either hetero- or auto-asso-
Note that this _Iearnlng process provides distributed ciatively. In a hetero-associative memory, a mapping,
storage, i.e. learning of one memory trace affects many penveen pairs of different memory patterns is stored. An
synapses and one synapse is in general affected from traces,io-associative memory — with the Hopfield model as
of several memories. _ _ the most prominent example (Hopfield, 1982) — is the
During retrieval, an initial pattern is mapped to its special case where an identity mapping is stored 4=
corresponding memory. The retrieval process is called an (XX x* € {0,1}" v = 1,--,M}. Note that, with auto-

fassociati_on, if the mapping ?s fault toIe_rant, in the_sens_elthat association, (i) the synaptic memory matrix formed by Eq.
its domain also contains noisy memories. For a given initial (1) is symmetrical; and (ii) the retrieval Eq. (3) performs

patternx”, one-step retrieval yields the output pattgriy pattern completion, if noisy memory patterns are used as
determining the dendritic sum in each neuron as the overlapjia| patterns. Hetero-associative retrieval provides a fault-
between the input and the synaptic vector: tolerant mapping between different subrepresentations.
[CRM); = Zcijxiﬂ ) Typically, association tasks pcpurring with applications

i are rather of the hetero-associative type.

] o Nevertheless, hetero-associative tasks can also be carried
gnd by calculating the activity value by threshold compar- 4t in an auto-associative N AM, if the memory pairs are
Ison. concatenated into larger memory patterns that are stored
9 = H(ICX"]; — O) V] 3) auto-associatively. Qsing an auto-associative memory

allows both the mapping of initial patterns to the associated

with a global threshold valu®, and H(xX) denoting the memory patterns and pattern completion on the noisy initial

Heavyside function, to be evaluated for each vector compo- patterns. However, the price for this extended functionality
nent. is a larger memory matrix that has to be represented by
In fault-tolerant NAM models with distributed storage the adjustable synapses (see Fig. 1): the weights of the hetero-
retrieval output can also contain noise. Successful retrieval, associative memory constitute one off-diagonal quadrant of

i.e. a low Hamming distance to the desired memypty the auto-associative matrix. Additionally, the two diagonal
depends on the following conditions that have to be quadrants contain weights that store auto-associations
fulfilled: within each subrepresentation and a second off-diagonal

quadrant contains the transposed hetero-associative
weights.

The combination of auto- and hetero-association in a
memory only using the hetero-associative matrix can be
achieved by introducing bidirectional iterative retrieval. In
the bidirectional associative memory (BAM) (Kosko,
1987), two pools of neurons are connected by the hetero-
associative weights in one off-diagonal quadrant of the
matrix in Fig. 1 (see Section 3.1). Thus, the introduction
of more sophisticated retrieval yields an extended func-
tionality of the memory model. Moreover, as we will

The given threshold setting we call ‘no misses’ threshold show, appropriate iterative retrieval strategies remedy
setting because dendritic sums at 1-elements will assume oithe mentioned problems of the Willshaw model for
exceed this value and therefore the retrieved patternfinite system size. Different from the auto-associative

e The stored patterns are sparse, i.e. the activities of the
memories are similar and of the order of the logarithm of
the pattern length.

e The 1-elements in the memories have even distribution
over the pattern components.

e The number of memories is below a certain lifvit, i.e.
cross talk due to the superposition of different memory
traces is kept small enough.

o The error level in the initial pattern is sufficiently low.

¢ The threshold is adjusted properly, that= > ; X‘x".
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z Yy iterative retrieval scheme is:
y(r + 1); = H[CX()]; — O(r + 1) V] (4)
Auto Hetero
g X(r + 1) = HI[CTy()]; — &(r + 1) Vi (5)

With threshold choice from Section 2.2 in Eq. (#]1)
contains the memory pattern distorted only by ‘false alarm’
errors. Because of low robustness to ‘false alarm’ errors of
the standard model, completion of the initial pattern and
reduction of retrieval errors by bidirectional iteration is
limited to the range of low memory load (see Proposition
y—z Y=y 4 in Section 4.4). With a higher memory load, iterative
retrieval using a constant threshold causes either informa-

Fig. 1. A hetero-associative relatiory) can be stored auto-associatively, tion loss or explodlng activity.

if the patterns are concatenated into larger memory patterns that are used . o .

during learning. The diagonal quadrants of the resuling memory matrix 3-2- Mechanisms of activity reduction

contain auto-associations: the upper left quadrant corresponds t the

patterns and the lower right quadrant to theatterns. The off-diagonal To avoid the problem of exploding activity, this sections

quadrants contain hetero-associations betweandy patterns: one is the presents two different methods to limit the activity in the
transposed matrix of the other. This associative processing provides natwork.

extended functionality, namely hetero-associative mapping and auto-asso-

ciative completion ok andy patterns but requires more synaptic memory. . . . .

The same functionality can be achieved by BAM retrieval schemes that use 3-2.1. Iterative retrieval with Boolean ANDing

only one offdiagonal quadrant of the synaptic memory. In a retrieval step with the ‘no misses’ threshold setting,

the Willshaw model produces only ‘false alarm’ errors, cf.
implementation, the BAM does not store the auto- Section 2.2. Further iteration steps have therefore only one
correlations within each of the neuron pools. Nevertheless, function: the reduction of ‘false alarm’ errors. Based on this
information about these auto-associations is contained inidea, a simple trick has been used by Schwenker et al.
the hetero-associative weights and can be exploited by(1996) for auto-association to prevent activity explosion.

Hetero Auto

appropriate retrieval strategies (see Section 3.3). From the second iteration step onwards, Boolean ANDing
with the previous pattern is applied:
X(r + 1) = x(r); AHCXN)]; — O(r + 1)) Vi (6)

3. Improved retrieval strategies Here we use the definition A y = xy for xy € {0,1}.

However, for bidirectional hetero-associative retrieval
starting with the initial patterrx(0), a previous pattern
version with all correct one components present is not avail-
able before the third retrieval step=£ 3). Therefore, in the

This section describes the model modifications that we
introduce in the Willshaw model. The simplest idea is the
straight-forward BAM extension which, however, turns out

as an inefficient model. The literature about BAM concen- iteration scheme Egs. (4) and (5), Boolean ANDing can only

trates on improving the learning prescription: either multi- o 50 from the third iteration step onwards, which may be
ple training schemes have to be employed (Hassoun, 1989) ., |ate to prevent activity explosion if the memory load is
or a higher number thanm weights have to be stored, for

instance, if dummy augmentation (adding subsidiary
components to the original memory patterns) or higher-

glrdelr ggg?neocj'rorr:]sog‘i;ﬁ:;is:r?s (;/c\J/Ii)r:/\g/] titeaé.ghi?i?t;elr_:z;tir:/%'et Alternatively, one can restrict the activity obtained by the
X ' ., first step, let us say to the valde< b: the corresponding

we propose more refined retrieval strategies that_enhanc_e theretrieval task is to determine< b components that agree
performance by a better employment of the information

. . . . with the highest probability with 1-elements in the
fr:g;?i)c(i Elg Erlu)e simple Hebbian second-order: correlation memory pattern using one-step retrieval. In the case of a

perfect hit, the extracted elements are a part of the memory

pattern with sizef, and therefore we call this task pattern

3.1. Standard bidirectional (SB) retrieval part retrieval. If the number of ‘false alarm’ and ‘miss’
errors in the initial pattern is denoted lgyand z, respec-

For the hetero-associative Willshaw model, the straight- tively, there are two different regimes: fgr= 0 the highest
forward iterative retrieval extension is the BAM, where possible threshold is the ‘no misses’ threshold settihg=
standard retrieval steps are performed in both directionsa — z cf. Section 2.2, leading to a retrieved pattern with
(Haines and Hecht-Nielsen, 1988). Witk0) =X, the activity larger than or equal tb. From this pattern, one has

3.2.2. Pattern part retrieval
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Fig. 2. Hitdistribution of pattern part retrieval extracting exattyements
that belong with highest probability to the memory pattern as described in
Section 3.2.2. Proposition 4.3 is applied witk 2, and the parameters=

m= 2000,a= b= 10 andM = 15 000. Thex-axis displays the activity of
the initial pattern. Activities lower thaa= 10 correspond to initial pattern
with no ‘add’ errors, i.eg = 0, activities higher thaa = 10 correspond to
‘miss’ error free initial patterns, i.ez = 0. The dotted curve displays
Ps(9,2,2;0), the dashed curves(g,z,2;1) and the solid curvBs(g,z,2;2).

to select randomly théelements. Fog > 0, there is more

freedom in the possible threshold choice; one-step retrieval

witha — z> ® = a — z + gields retrieval patterns with
reduced activity. Reducing the activity by increasing the
threshold yields a higher hit probability compared with
random selection of thé elements in the ‘no misses’
retrieval pattern, see results of Proposition 4.3 in Fig. 2.

3.3. Conditional links

The Willshaw model classifies an output neuron as active
depending on the dendritic sum Eq. (2), i.e. the overlap
between the corresponding matrix column and the input
pattern. The new retrieval methods that will be proposed
in the next section employ a more selective classification
evaluating overlaps between parts of different columns of
the clipped Hebbian matrix: for a givex(r) we call the
underlying quantities conditional links:

Wj)f(r) = ZCianX(r)i Vi, | € {1,...m} 7

The conditional linkw}™ is a nonnegative integer and
expresses the overlap between the matrix colujmausd |
conditioned on the patterr(r), that is, restricted to such
matrix rowsi where x(r); = 1. Conditional links can be
viewed as virtual lateral interactions between units in the
y-pattern.  Since W} = [x(| and [w)”| = |xr)|, if
x(r)=x1N[y =y’ =1], it is clear that a high condi-
tional link indicates a high probability that both components
in they pattern belong to one learning pattgry under the
condition thatx(r) has a high overlap with the corresponding
learning patterrx’. The diagonal interactions are equal to
the standard dendritic sums caused ), i.e. W =
[Cx(N]; as in EQ. (4).

Of course, for a bidirectional retrieval scheme, condi-

Sommer, G. Palm / Neural Networks 12 (1999) 281-297

tional links can similarly be computed in thelayer for a
given patterny(r):

Wi = 3 GGy, Vi, kE{L,...n) ®)
]

The detection of active components in a pattern can now
be achieved by finding the clique of neurons that are tied
together by the highest conditional links. This problem can
be approximately solved by different bidirectional retrieval
schemes involving computation of weighted sums with
matrix rows and columns. For this reason, retrieval with
conditional links is referred to as crosswise bidirectional
(CB) retrieval and its different variants will be explained
in the next section.

3.4. Crosswise bidirectional (CB) retrieval

Crosswise bidirectional (CB) retrieval estimates a solu-
tion of the conditional links clique problem by auto-asso-
ciative retrieval using the virtual feedback network with
interaction matrixw and threshold neurons.

The dendritic sum of CB retrieval can be expressed as:
[Wy(Hl)X(r)]i — Zw?lk(Hl)Xk —

k

> Glexny 9

JEY(r +1)

In Eq. (9), Cx(r)]; is the dendritic sum of the Willshaw
model Eg. (2) that is propagated back through the synaptic
weights. It has to be emphasized that Eq. (9) is not just the
linear transformatiorC™C: the signal flow is gated by
y(r + 1) allowing only feedback of dendritic sums at active
neurons in this pattern. Thus, the RHS of Eqg. (9) gives a
parallel scheme for fast computation of the dendritic sums
during CB retrieval.

There are two CB retrieval schemes how a fixed point
pattern pair can be approached either by a sequence of auto-
associative fixed point retrieval processes (variant I) or by
direct hetero-associative iteration to the fixed point (variant
II). Both variants have been tested experimentally, see
Section 5. In the dendritic sum Eq. (9) of CB retrieval an
integer valued vectoigx(r)]; y;(r + 1) has to be propagated
through the synaptic weights.

3.4.1. Variant |

The initial patternx(0) is used in a pattern part retrieval
step, cf. Section 3.2.2, to estimate one component of/the
pattern. The resulting pattern pair is put &0),y( — 1)] in
Eq. (10) of the following iterative scheme to obtajifl).

Using the pattern pai[r),y(r — 1)], the patterry(r + 1)
is the fixed point after iteration of:
ys+ 1) = H{wys)), — O + D} Vi (10)
starting withy(0) = y(r — 1).

Using the pattern paiy[r),x(r — 1)], the patternx(r + 1)



F.T. Sommer, G. Palm / Neural Networks 12 (1999) 281-297

is the fixed point after iteration of:
XS+ 1) = H{[wy(”x(s)]i — E(s+ 1)} Vi (1)
starting withx(0) = x(r — 1).

3.4.1.1. Threshold strategy.For pattern part retrieval the

287

‘false alarm’ and ‘miss’ errors, the following notation will
be used:For odd:

a(r) = piy(n; = 1)y = 0]

B(r) == ply(r); = Oy = 1]

highest possible threshold is chosen that yields nonzeroForr even:

activity. In Eqgs. (10) and (11), fixed points are traced at
threshold values|x(r)| andaly(r)|, respectively.

3.4.2. Variant Il

This variant includes also Boolean ANDing from Section
3.2.1. Starting again from(0) with a standard retrieval step
Eqg. (4), the resulting pattern pair is used g®],y(1)] in a
single step of Eq. (11) to determing€2). Forr > 2, the
update is performed by the iterative retrieval equations:

YT+ 2 =y A H{W T ym - e + 21 v 12

X + 2); = X(); A H{[wy”“)x(r)]i - Er+ 2)} Vi o (13

Unlike in variant | in Egs. (12) and (13), only one auto-

y(r) == pIx(r); = ¥ = 0]

{r) = pIx(r); = O = 1]

In this notationy = 0 plays a unique roley': = v(0) and
¢'": = £(0) describe the initial errors, i.e. the error levels in
the initial patternx(0). It has to be kept in mind that the error
probabilities at time depend on the initial errors as well as
on the threshold values. For instance, for otfdwe have:

a(r) =f[Or), O — 2), -,
O6), 5(r — 1), B(r — 3),+, 5(2), 7. '] (14)

A NAM model works efficiently, if the set of retrieved
patterns contains as much information as possible about the

associative step is performed, and no iteration takes placememories, and as few as possible synaptic memory have

until the fixed point, as in variant I.

3.4.2.1. Threshold strategy.Forr = 1, a standard retrieval
step is performed with threshold as chosen in Section 2.2
yielding a pattern witHy(1) = b. For initial patterns with
IX(0)| < a, ther = 2 update step Eq. (13) is carried out
without Boolean ANDing. In this iteration step, the
threshold=(2) = |x(0)||y(1)| is used, yielding a result with
[x(2)| = [x(0)].

Subsequently, and in the case of initial patterns with
[X(0)| = a already forr = 2, the threshold&(r) and O(r)
are adjusted in order to obtain resulting activities which are

as close as possible to prescribed values. During the itera-i(p o B) = ﬁi(

tion, these values are chosen as follows:

Er+1:xr+1 =xn -1
Or+1):|yr+1|=hb

The iteration is stopped [k(r)| = a is reached.

4. Model analysis

4.1. Definitions

been used: the information efficiency of a memory model
is defined as the dimensionless ratio between the informa-
tion contained in the retrieved patterns and in the synaptic
'memory matrix, respectively. The information about a
memory pattern that is contained in a noisy version of this

PB

pattern can be calculated for each component in terms of the
transinformatiort(p,a,B): = i(p) — i(p,«,B). Here,i(p): =
— plogy[p] — (1 — p)log,[1 — p]is the Shannon information
in a pattern component (Shannon and Weaver, 1949). The
conditional information describes the amount of informa-
tion necessary to correct the errors:
) (%)
5 A= 7 5 15

with p:=p(l - B) + (1 - p)e.

Depending on the considered memory task, the net infor-
mation provided by the retrieval about the memory patterns
has to account for the effect of retrieval errors, and the
information already contained in the initial patterns.
Usually, this net information divided by the weight matrix
sizenm s called memory capacity and used as a perfor-
mance measure for NAM. The information efficiency is
then simply the memory capacity divided by the number
of bits needed to specify a synaptic value — and, of course,

In the following, we assume that the memory patterns are for NAM with binary synapses, both quantities coincide.

randomly generated, i.e. each component inxhand y-
patterns has been set to ‘one’ with probabifity= a/n and
g: = b/mrespectively. 4, b, m, andn as defined in Section
2.2).

We consider the retrieval with an initial pattex{®) = %+
which is the noisy version of thg pattern in a learning
pattern pair X", y*). For the occurrence probabilities of

For a hetero-associative mapping task, we define the output
capacity as:

A:=Mm t(q, a(r), B(r))/mn (16)

for larger(r — o). The maximum output capacity will be
expected, if no fault tolerance has to be provided, that is,
with noiseless initial patterns. For an auto-associative
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completion task acting on distortegpatterns, the comple- that a c-subcolumn containgl ‘one’ entries P(c;d): =

tion capacity is the information balance defined by: PiexoCj = d]. For a matrix where the elements are
| ) generated independently with: = p[C; = 1]Vi,, the

C == Mn[t(p, ¥(r), {(r) — t(p, ¥, £HIn 10 integerd is binomially distributed witfPg(py,c;d).

for large r(r — o). For the BAM situation, when the The binomial distribution is defined as

memory should complete the input pattern and, at the C\ 4 c—d

same time, map to the output pattern we define the searchPB(p’ c.d)= (d)p A=-p" "

capacity:S = C + A. The search capacity that equals the

information efficiency for BAM models with binary

synapses will be used to evaluate and compare the differentf €\ c

models considered in this paper. d/ \dc-d

denotes the binomial coefficient, a special case of the multi-
nomial coefficient that will be used later:

where

4.2. Asymptotic information efficiency of the Willshaw BAM

Former theoretical results can be used to derive asympto- c n! K
tic values for the information efficiency of BAM: (a) for the (d d ) - dyldy!-d ! V{dy, -+ dg: Zdi =c}.
case of error-free address, thatys,= 0 and{' = 0, since ok = .
C(0,0) = 0, the search capacity is limited by the Willshaw For discrete dlstrlbuthns we use consistently the notation
capacity:5(0,0) = A(0,0) = In[2] bit/synapse (Willshaw et Ppo(X," X, C;d): 'Fhe variablal can assume th_e vaIuesQ,c,
al., 1969); (b) addresses wit = 0 and¢' = 0.5 achieve X1~ are gdd|_t|c_)n_al parameters, and_I_D is a descriptor of
asymptotically the maximum completion capacity with an the distribution, if |t.|s not uniquely s_pecn‘led by the numb.er
asymptotic value ofC(0,0.5) = In[2]/4 bit/synapse. With of'pargm.eter.s, for instance, subgcrlipt B stands for the ll)l.no—
the same input noise the asymptotic output capacity is mial _dlstr|but|on, anql S for the distribution of the _dendntlc
given by A(0,0.5) = In[2)/2 bit/synapse (Palm, 1988). sum in s_tandard retn_eval. For the c_urr_lulaﬂmrlia discrete
Thus, the asymptotic search capacity for bidirectional retrie- distribution,  we - will “use ~a  similar - nomenclature:
val is §0,0.5)= (3In[2])/4 = 0.52 bit/synapse. Qo (X1, s X, G d) = Zi,:d Po (X1, %, C; d,)' For the sake

A universal upper bound on the search capacity can be_Of brevity, dependgnmes a4, n, m, p, g will be suppressed
obtained by analyzing a process where the memory recog-" the parameter lists. _ _
nizes stored patterns in the whole space of sparse initial N the first analysis of the Willshaw model (Willshaw et
patterns: an initial pattern is classified as known if it is @ 1969), the binomial distribution has been used with the
reproduced after a bidirectional retrieval cycle. The infor- €stimation:
mation capacity of this recognition process is an upper py =1—(1— pg)™ (18
bound of the completion capacity, and has been determined
as In[2])/2 (Palm and Sommer, 1992), which is achieved as
well with the parameter sé¥l,p,q providing A = In[2]/2.

Since, even with random patterns, Eq. (1) does not inde-
pendently generate the matrix elements, the analysis should

. . be refined. Proposition 4.1 gives the distribution of 1-
Thus, the asymptotic search capadi9,0.5) is bounded by elements in a column (or row) in the synaptic weight matrix

In[2] bit/synapse. Indeed, it can be shown that this bound after storage of random patterns. It is a prerequisite for the

cannot be exceeded by any choice of parameter values. e L .
Again, the Willshaw capacity (Willshaw et al., 1969) three subsequent propositions: Proposition 4.2 derives the

S : retrieval errors in the first retrieval step, i.e.= 1. All
turns out as an invincible bound for retrieval from the . : . ) .
. . : . iterative retrieval methods we have considered deviate
binary-valued synaptic weights. From the finite auto-

associative model, we know that iterative retrieval methods only from the second retrieval step onwards. Proposition 4.3

are able to reach and even slightly surpass the capacityanalyzes the pattern part retrieval and Proposition 4.4 yields

values calculated for the infinite model (Schwenker et al., lower bounds for the retrieval errors with SB retrieval
1996). In fact, only iterative retrieval provides the retrieval
error reduction necessary to exploit the high capacity of
the model. The error probabilities of one-step retrieval
become negligible only for system sizes far beyond
realization.

paca) = ()3 -2e( ° [1-afr-a-pe}]"
4.3. Refined combinatorial analysis for the Willshaw model s d/) <5 s

19

Proposition 4.1.(Willshaw model: distribution of dendritic
sum.) After learning according to Eq. (1), the probability
that a synaptic esubcolumn contains exactly € ¢ one
entries is:

For a retrieval error analysis of the Willshaw model, we
ha\_/e to consider the rOWS‘m e?Ch synaptic m'atrlx qugmn, 3 For convenience, we do not use the standard definition of cumulation:
which Corre5p0nd to the ‘one components In the 'm_“al with our definitionQ(c;d) = 1V d = 0, whereas in the usual definition the
patternx(0). If c = [x(0)|, one has to calculate the probability  sum runs over the lower interval, i©/(c;d) = 1V d = c.
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Proof. Eqg. (19) can be derived from the formula given by with the cumulative distribution:
Buckingham and Willshaw (1992), rewritten in the follow- c\ 6-1 _
ing as Eq. (20). The dependencies between matrix elements(c; @) = 1 + ( ) Z (—1)°
caused by the clipped Hebbian learning process are taken
into account by introducing the unit usage, i.e. the number P
of memory patterns that have changed the matrix column of ( )
a particular neural unit. For random patterns, the unit usage i
is a binomially distributed quantity. In Eqg. (20), the 1- Proof. The distribution of the dendritic sum of standard
density in a synaptic subcolumn for a fixed valueuois retrieval Eq. (19) given in Proposition 4.1 has to be
averaged over all its possible values: cumulated for all values larger than the threshold to calculate
" the ‘false alarm’ error probability Eqg. (21). The terms in the
) Uad ure—d resulting double sum can be relabeled in order to avoid multi-
Z Pa(c,M: W) w (=P ple terms with the same factorfda{1 — (1 — p)’}] . Beyond
( d) o (d the basic relations for binomial coefficients, the key transfor-
=> )( DA-p*® mations to obtain the cumulative distribution Eq. (23) are:

wolw w_t/w w -1
d /d Z( )(—1>V:6W,o Z( )(—N‘“V:( )
Z( )(‘1)5(1—q)M AN =0 AV t -1

O i-ot-a-p}" @3

c—i

Ps(c; d)

So\s (249
M with 8,,, the Kronecker symbol. An invaluable source for
X Z ( )[_(1 p)°~ d+5] (20) combinatorial identities is Riordan (1968): relations of Eq.
u—1 (24) can be found on pages 4 and 34. In our calculation, they
h N y g are applied fow = ¢ — i andt = ® — i. The ‘miss’ error
:[1+ 1 g q(lfp)c’d*s] -1 probability also requires cumulation of Eq. (19) of Proposition

4.1 and can be computed similarly using Eq. (23).

In the parameter range considered in our simulation
experiments, the numerical evaluation at a reasonable
speed is only possible using Propositions 4.1 and 4.2. Eq.
(21) has been compared with the formula obtained by cumu-
lating the distribution [Eq. (20)] in terms of evaluation time.
In addition to the shorter sumin Eq. (19), in (21) the double
sum is reduced to a summation over a single variable. With
Mathematicd’, the evaluation time for a single value is
reduced from minutes to the fraction of a second. Eq. (19)
generalizes an old result that had been derived for the
special casec = d (and exactly equal activities of the
memories) by Palm (1980). We will now use Propositions
4.1 and 4.2 to analyze the pattern part retrieval.

The derivation of Eq. (19) from Eqg. (20) employs a twofold
application of the binomial theorem as highlighted by the
underbracings.

Proposition 4.1 provides a big difference in numerical
evaluation time for the parameter range where the Willshaw
model has high information capacity: in Eq. (28),terms
have to be added with typicall oc n?/(In[n])?, while in Eq.
(19), the sum is only conducted oveterms with typically
d o In[n] (for the determination of typical values, see Palm
and Sommer, 1995).

Proposition 4.2 (Willshaw model: retrieval errorslf the
initial pattern contains g ‘false alarm’ and z ‘miss’ errors
and the threshold is set t®@(1) = O, the retrieval error

probabilities are: Proposition 4.3. (Willshaw model: hit distribution of

pattern part retrieval. Employing pattern part retrieval,
as(0,2 @) = Qs@a+g—z 0) 21) ‘de.scr,lpeq. in Section 3.2.2 Wlt.h' g ‘false alarm’ and z
miss’ initial errors, the probability that a pattern part
with size f< b contains e< f elements that belong to the

Bs(0,2z0)=1-Qs(g; O — (a—2) (22 learning pattern is:
g 9 — e
PH(mbfe)Z f AQ,za—z+i) g>0
j=0
Pe(pr(2.f; € g=0

4 To evaluate the binomial sums it is important to use a programming
language where the computation precision can be increased arbitrarily.
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with 2(9z20) = [1 Bs(9,20)][1 as(9,z 0))
[2s(9.20)Bs(9,20)], (2 = dlq + as0.za - 2],
a5(0,2,0) and Bs(g,z,®) from Proposition 4.2, and with
the hypergeometrical distribution

20000

15000

b\/m-b m
Pu(mb,f;e) = ( / ) 10000
e/)\f—e f
Proof. The wanted distribution can be calculated as 5000 | J
conditional probability:Ps(g, z f; €) = p[e|f]. Forg > 0, it
is plef] = Yeplef®lp[O)/p[f,0], with plefd] =
0 1 1 1 ] 1 1 1 1

plel®]plw = f — €l®]p[®] and p[f,0] = p[f|O]p[©®]. The
conditional distribution of correct ones is given pjg®] =
Ps[l — Bs(0,20),b;e], the conditional distribution of
wrong ones byp[w|®] = Pglas(g9,z0),m — b;w], and

10

Fig. 3. Maximum number of pattermé.,, for which bidirectional iteration
of standard retrieval can be expected to improve the retrieval results. In this
calculation, we use again the parametersm= 2000 anch= b= 10. The

plf|@] = cho plel@lplw = f — €/@]. Forg = 0, one-step
retrieval is performed with the highest possible threshold:
® = a — z From the resulting pattern, ti®ne components

x-axis displays the numberof ‘false alarm’ errors in the initial pattern. The
initial ‘miss’ errors are set to zero, i.e= 0, thus the initial activities vary
in the range 11 |x(0)| = 20.

have to be chosen randomly, leading to a hit probability for

a single component qh(2). For a given initial ‘add’ noise levely' = g/(n — a), a

necessary condition for decreasing noise can be derived

4.4. Error analysis of SB retrieval from Proposition 4.3, yielding the fixed point equation:

Proposition 4.4.(SB retrieval errors: lower boundsihe
‘false alarm’ error probabilities after the first step, i.e= 1
satisfy:

g=(Mn-aQs@a+ga (29

whereQs(c;®) is given by Proposition 4.2. Solving Eq. (29)

y(r) = Qs(ly(r — 1)|; &(r)) Vr even (26) for each number of initial errorg,> 0 gives an upper bound
on the number of possible stored patterns with standard
a(r) = Qg(jx(r — 1)|; O(r)) Vr odd 27 bidirectional retrieval. Beyond that bound, which is

displayed in Fig. 3, an improvement by iteration of retrieval
steps has to be excluded. As a consequence, the number of
. stored patterns has to stay below that curve. Since the bound
Proof. In the second step of SB retrieval, we have 10 gecreases rapidly with a growing number of initial errors,

consider two different cases in the update process: all siandard bidirectional retrieval cannot improve the memory
neurons not belonging to the seét U x(0) can be described performance.

with Eq. (19) as in the first retrieval step, since all synapses
ending at such neurons have not been involved to obtain
y(1). Neurons in the set* U x(0) will behave differently
because of the statistical dependencies betwéBrand the
matrix elements. Since the synapses corresponding to this Since the analysis CB retrieval is more intricate, the
set have been selected by the threshold criterion during theproposition in this section will neglect the mutual depen-
first retrieval step, the ‘false alarm’ error probability of these dencies between different elements in the Hebbian matrix.
units will be strictly increased. Thus, the cumulative distri-
bution from Proposition 4.2 provides a lower bound on the Proposition 4.5. (CB retrieval: errors after first step of
error probability in the second step. This argument for the variant I.) The initial pattern contains g ‘false alarm’ and
second step can be extended to subsequent iteration stepg. ‘miss’ errors. Consider the first step of variant |, i.e. Eq.
Hence, the one-step error is always a lower error bound.  (10) for s= 0. Assume that y(0) computed by pattern part
As pointed out in Section 2.2, the most urgent demand on retrieval has activity f= 1 and contains e= f correct 1-
modified retrieval strategies is the improved ability to €lements. The error probabilities of the first update step of
process initial patterns with ‘false alarm’ errors. We now CB retrieval are given by:
consider initial patterns without ‘miss’ errors, i@= 0. For

with the definitions of gic; ®) from Proposition 4.2.

4.5. Error analysis of CB retrieval

this case and with our assumption that thandy patterns ace(9,2f,e 0) = Qcg(e,(a—z+ g)f; O) (30)
have the same dimension and activity, bidirectional iteration

of standard retrieval is useful, if the noise is decreasing 5

during iteration, ie.: BCB(Q, Z,f, €, Q) =1- QCB(e’ (a —z+ g)f’ @) (31)

Y > al) > p2) > - (28 where the distributions of the dendritic potentials that have



F.T. Sommer, G. Palm / Neural Networks 12 (1999) 281-297

to be cumulated are:
Ptg(e (a—z+ g)f; 0)

min[(a— 2f,0]

, (32
P& (@ — 2f;)Psri(gf; © — i)

i=max0,0 — gf]

with p = «,B. The first factor in the convolution sum Eq.
(32) is:

Psri(e df; ©)

) _aaf (33
NI (L S
1
P2 (e df; ©
SR|(e9 s )
) o (3%
=<1 P1p ) [(1 pepl) ] 7Pl — ef.e 0.d]
—p e

where Z* and Z# can be calculated recursively:

Zp[f7 f*7 e’ @’ d]

f* —e i
Flgff] f

T Z°f —1,f%,e,0 — (f + e)i,d—i]

i=0
with initial values:
Z°[0,f", e 0,d] = H[d —

X
E

_ pl)f*fl

015 d
reneiloe)

ild_@/e

d 1
O/e ) (O/d)!

Similarly, the second factor in Eq. (32) can be calculated
recursively:

e—1

ZB[O,f*,e,@,d]zés_@d(
9,

P1
1-p;

) 1
Paa(df: 0) = (124 ) [puct — po' 'zt 1. 6.0

f* |
FI[6/f] (f )
ZIif, 1, 0,d1= > ——

i I

Z[f —1,f,0 —fi,d — ]

dy .
Z[Lf*,0,d] = H[d — @]( @)(f*)@

:|d—@

x[1+ o
pi(l—pp~ T
(35
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where p is the density of one entry in matrix Eq. (18), and
FI[x] is the greatest integer less or equal to x

Proof. The dendritic sum at each neuron is composed of two
contributionsr; andr,, corresponding to addressed matrix
rows either agreeing with one components inxttraemory
pattern or not. Each contribution is a sum over discrete
random variables. For;, the sum containgl = a — z
random integers that have at on-neurons the distribution:

PEie.f:)) = Pa(pyf;ji — © (36)
and at off-neurons the distribution:
. PPe(p.fsj—€) esj=f
&ﬂ(e,f;J):{ _ 37
1-p; j=0

For r,, the sum containgl = g random integers with
distribution:

o<j=f
j=0

P1Pe(p1, f:])
1—pi[1— Pg(ps,f;0

Asumr = Zidzl v; over independent random integ®ys=
{0,1,---,f} has the distribution:

d |
P (df;]) = 805 ( ) P (1Y (39
SridfiD = > So3yy ot J_|:0|[ ri(f:1% (39

u € Uy 7

Pri(f;)) = { (38

whereUy ={u &€ NfFL. ij:o u; = d}is the set of vectors
generating all possible configurations of the sum by
r= Z};Ojuj, and the multinomial coefficien([qu_d__’ul) as
defined in Section 4.3. The recursive formulae Egs. (33)—
(35) are obtained by insertion of Egs. (36)—(38) in Eq. (39)
and considerable algebra. The distribution of the sum of
andr, is given by the convolution of their distributions
leading to Eq. (30).

Finally, using the results of Propositions 4.3 and 4.5, we
can estimate the error probabilities of the first update step of
variant I, i.e. Eq. (10) withs = 0, with the patterny(0)
generated by pattern part retrieval. Corresponding to the
‘no misses’ threshold setting in simple retrieval we consider
a ‘minimal misses’ threshold setting for CB retrieval that
avoids miss errors whenever possible, namely in all cases
wherey(0) contains any hitse > 0. Fore= 0 we assume the
worst case, i.eacg = Bcg = 1. The error probabilities are
then:

acg(g. 2 )
f
= Ps(@.2;0) + > Ps(9,2f;:0)acs(@. 2T, (a — 2€)
e=1
(40)

Bce(@.2 ) = Ps(g,2f;0)

Fig. 4 shows the improvement of CB retrieval in three
stages: after the first update step; after the first auto-
associative cycle; and after the complete procedure. As

(41)
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. a) with an x or ay initial pattern and for error-free initial
' ‘ patterns, i.ey' = 0 or{' = 0, requirement Eq. (28) demands
30 - . that learning pattern pairs are fixed points of the synaptic
25 b N matrix:
A ES ES ES ES
20 : y' =H(CX]~ @); X" =H(CTy'] - &) (42)
A

151 7 We call *,y*) in Eqg. (42) a ©,E)-fixed point of the
10k N i synaptic matrixC. (|x*|,ly*|)-fixed points we call simply
sk : N the fixed points of the synaptic matri®, denoted byZ.

3 Whant o x X XS X A necessary condition, that the associative memory at least

X KX A e ‘ H ’ .
07 x it 2 > 30 recognizes’ all learned patterns, is:
S CF (43
b) Q)
35 T LI B — On the other hand, no pattern different from the learning
0 "7 7 patterns, often denoted as spurious state, should fulfill the
25 i Z ] fixed point condition:
20 h ! T
5 i o4 - FCS (44
“ . ~1Il 3 'I T . . . e
10 || ' AR o If condition Eq. (44) is violated, the set of initial patterns
‘\ L7 1 1}F M from which the retrieval dynamics cannot move to the near-
S e T o G E P s est learning pattern is nonempty. Combining both condi-

5 10 15 20 25 30 5 10 15 20 25 30 . .

3 tions, Eq. (43) and (44), yields:
Fig. 4. Comparison of the expected number of retrieval errors irythe F = (45)
patterns for the different methods. The paramatgrsa,b,M and thex-axes T

Iqbellng by the initial actl_wty has been chosen as in Flg. 2. Points in which is a necessary condition that individual learning
diagram (a) display experimental errors for standard retriebglapd the

first auto-associative cycle of CB retrieval Gndx for add and miss errors, patterns can be retr!eved 'n an effe(_:t've and falj"t'ml?rant
respectively). Standard retrieval uses ‘no misses’ threshold setting and cBWay from the synaptic matrix. The Willshaw matrix fuffills
retrieval variant | was performed to the fixed point of the first auto-asso- Eq. (45), if the memory load is below the point where super-
ciative iteration of Eq. (10). The startingpattern of CB retrieval was positions of traces form completely filled ‘subrectangles’.
determined by pattern-part retrieval, with= 3, cf. Section 3.2.2. The Given that the matrix fulfills Eq. (45) what can be Opti-
lines in diagram (a) correspond to theoretical values, the dotted line . ’ 2Th

displays add errors for standard retrieval [Eq. (21)], the solid and the dashedma"y eXpeCted from a retr'?val_procedu_re_' _e answer can
lines represent add and miss errors, respectively, produced by the first c80€ formulated as the following linear optimization problem:
update step using the ‘minimal misses’ strategy explained in Section 4.5,

and calculated by Eq. (40) and Eq. (41). The theory confirms that already ~ Problem of optimal retrieval (POOR): given a binary
the first update step outperforms standard retrieval. Note that the results  matrix, Cij, with the fixed points set¥, and an initial

after the first cycle are even better. Diagram (b) and (c) compare add and pattern X(O) find a pattern pairx(‘ y*) with:
miss errors, respectively, for the different retrieval strategies. The dotted e '

line represents results with standard retrieval, dashed lines with the first (X*, x(0)) = Max! (46)
iteration cycle of CB retrieval and solid lines with complete CB retrieval.
Clearly the fully iterated (complete) CB retrieval yields the lowest retrieval which satisfies the constraints| = a, |y*| = b, and

errors. (x*,y*) is a fixed point ofC.

o . In POOR, the maximization guarantees thatis the
can be observed in Fig. 4(a), the theory predicts lower errors ¢|psest fixed point, i.e. with maximum overlap to the initial
of the first CB update step compared with standard retrieval. pattern x(0). The normalizations and the fixed point

Experimental results indicate that errors of the first CB constraints implied by Eq. (42) lead tm 2 2 conditions,
retrieval cycle are below these of a single CB update step, that are linear equations/inequations.

(c) yield by far the lowest retrieval errors. graph bipartitioning problem, we conjecture that POOR is
also anNP-hard problem. An exact (brute force) solving
4.6. The problem of optimal retrieval (POOR) strategy for POOR is to extract all point pairs satisfying

the constraints, and then to select the pair which maximizes
Since all bidirectional retrieval strategies start with an Eq. (46). This fixed point extraction referred to in Section
ordinary threshold retrieval step, as analyzed by Proposition4.2 as the recognition process has been analyzed by Palm
4.2, condition Eqg. (28) is a universal prerequisite for and Sommer (1992) to estimate the asymptotic information
successful retrieval for initial patterns without miss errors. capacity bound of the optimal retrieval procedure. Of
If b=aandm = n, it should not matter whether you start course, as a retrieval method this exact solution of POOR
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is computationally exhaustive, since it requires retrieval to 10 T T T T T I
be performed on all possiblg)) initial patterns with the

wanted activity a. Fast algorithms, like the retrieval 8

processes proposed in this paper, can only yield approxima-

tive solutions. 6

4.7. Approximative solutions of POOR

A possible approximative solving strategy of POOR
consists of two phases. In a first phase the normalization 2 {
constraints are released in order to find a pattern pair
(X,Y) which contains the solution, i.e* C X andy* C Y. 0
In a second phase only subsets XfY) are considered and () 8 10 12 14 16 18
the solution ¥*,y*) is extracted by tightening the activity
constraints.

The SB and the CB variant Il retrieval strategies
described in this paper follow this type of strategy. After
the second retrieval step they have finished the first phase.
The second phase has exclusively to eliminate wrong active
components, and corresponds to the onset of the Boolean
AND operation. With SB retrieval, the activity values in the
pattern pair X,Y) will be very high at high memory load and
the second phase will often get stuck before reaching the
desired low activity. The reason for the high activity 9Y)
is that standard retrieval uses only half of the constraints
implied by the fixed point condition Eq. (42) for the discri-
mination of active neurons — either row or column
constraints. For high memory load, this discrimination can
be too rough: even with the highest possible threshold —
guaranteeingx(r)] = a — no activity reduction can be 0.48
achieved. CB retrieval checks both row and column
constraints in each retrieval step by forming the dendritic
sum using the conditional links (see Section 3.3). This  0.44(
allows an activity reduction in cases where SB retrieval

already fails to work. 042

0.4

5. Experiments 0.38
5.1. Retrieval errors and capacity 0.36™— ! : : : :
(©) 8 10 12 14 16 18

Both versions of CB retrieval have been tested in simula- Fig. 5. Results of CB variant I{) and the Willshaw modek¥) with M =
tion experiments with random patterns, and compared with 20 000, but the other parameter setting andxtages labeled as in Fig. 2.
the standard retrieval model. Here. we show results for Diagram (a) compares the expected number of ‘false alarm’ retrieval errors

. . - . in the y-patterns. Diagram (b) displays the information efficiency. Due to
variant Il with a parameter setting that has not been parti retrieval errors, the capacity of the Willshaw model drops down very

CUlarly optimized to mQXimUm capacity. For more detailed rapidly with increasing initial noise. For CB retrieval, diagram (c) displays
experimental results with variant I, see Sommer and Palm output capacity and search capacity: efficiency) in bit/synapse by )

(1998b) and Sommer et al. (1998)_ SB retrieval is not inves- and (), respectively. The difference between both curves is the contribu-
tigated experimentally, because it can be ruled out as ation due tox'-patte'rn' .completion', the completion capadlylt is zero for
promising modification by the arguments in Section 4.4 MOl = 10.if the initial pattern is error free.

for the parameter range we used.

Fig. 5(a) displays the experimental error rates in the such a high memory load. CB retrieval permits completion
retrieved y-patterns. For this parameter set, the synaptic of thex-patterns with comparable quality. The total number
matrix is filled with p, = 0.38. One-step retrieval produces of iteration steps depends on the initial pattern and with the
unacceptably high mean errors as soon as initial noise isproposed threshold strategy; it lies in a range between five
present, while CB retrieval achieves low error rates in the and 50. The CB capacity values in Fig. 5(b) are close to the
y-pattern and is much more robust to initial noise, even with theoretical expectations given in Section 4.2. The capacity
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increases with slight distortions of the initial pattern due to is based on the search capacity, but also takes into account
the completion capacity contribution. It stays at a high level the required synaptic depth. For memories with binary
even if in the initial pattern every second active component synapses both quantities coincide. We calculate the asymp-
is a ‘false alarm’ error. The one-step retrieval capacity is totic efficiency of the BAM Willshaw model in different
rapidly decreasing with initial errors. Because of the explod- cases of initial noise:§0,0) = 0.69 bit/synapse and
ing retrieval errors of one-step retrieval [see Fig. 5(a)], its §0,0.5)= 0.52 bit/synapse. F&0,0.5), we derive a theo-
theoretical capacity cannot be fully exploited; in applica- retical bound of In[2]= 0.69, which is the universal effi-
tions, the number of stored patterns has to be drastically ciency bound of the BAM Willshaw model, valid for all
reduced. Fig. 5(c) displays for the CB model how comple- parameter settings. This value agrees with the bound in
tion and output capacity contribute to the search capacity. the simple Willshaw model, indicating that BAM extension
For noiseless initial patterns, the pattern completion is zero does not increase the asymptotic efficiency bound.

and it assumes local maxima at certain values of ‘miss’ and We present new methods for the theoretical description of

‘add’ errors. the considered memory models for finite sizes. A finite size
. _ o theory is important because the finite model behavior is
5.2. Processing of ambiguous initial patterns entirely different from the asymptotic behavior and

approaches the latter only for sizes far beyond realization.

Retrieval ttfrom. amb|gqous |n|(;|al tpEtternsc,i Wherg onbe tFor instance, iterative retrieval schemes do improve finite
memory patiern 1S superimposed not by rahdom NOISe bl gqeig pyt are not required at all asymptotically (see

by parts from one or a few other memory patterns, is a very Schwenker et al., 1996). The finite model cannot be

likely scenario in nature as well as in many applications. d ; ; ; ; ;
! escribed by simple elegant expressions as in the asymptotic
T_?ust,_ a NAM model should be able to cope with such a case. The derived combinatorial formulae and recursive
siuation. . computation schemes expose their appeal not at first sight,
. _F_’arts of several memory pat_terns can form an ambl_guousbut they allow easy and fast evaluation in a high level
initial pattern by two different kinds of su_perposmo_n; elt_her programming language like Mathematica. Our formula for
by Soolean ANDt olr byttthe ORtho%eranon. ghg ft'rSt kind the distribution of the dendritic sum of the Willshaw model
produces an initial pattern wi ecreased but nonzero (Proposition 4.1) is mathematically equivalent to a combi-
ac_:t|V|ty only in the special case of correla_Lted patterns ~ natorial expression given by Buckingham and Willshaw
v.vlth.nonzero overlap. The' more general k!nd of SUPErposi- (1992), but in the interesting range of parameters the numer-
fuon IS t_he_second type, Wh'Ch produces an mcreaseql aCtIV'tyical evaluation is much simpler. The improved error analy-
in the initial pattern. This case turned out as particularly sis of the Willshaw model (Proposition 4.2) serves two

ha\r/sltfrc])rctge stt:_anda}r(_jt model._bl i initial patt purposes: (a) Proposition 4.3 derives the hit distribution of
! retneval, 11s possible fo process initial patterns pattern part retrieval — a retrieval strategy in the original

containing an OR-superposition of several parts of ;torgd Willshaw model leading to an output pattern with limited
patterns (see Sommer and Palm, 1998b). The predomlnatlr‘gactivity, which is part of the proposed CB retrieval; and (b)

Earé\’\l""t bc? _sw;gle_d '(t)'u: flrsttt. Its tactlvte_ comtrr)]onentf ha\:e t(()j Proposition 4.4 estimates the parameter range where stan-
€ deleted in the initial pattern 1o retrieve the next part and g4 pigirectional retrieval outperforms the Willshaw

S0 on. Thurslz a sggm((ajntatlon Of. thle dlfflgrenlf |n|t|_al c:)jmpo- model. By theoretical analysis, standard bidirectional retrie-
nents Is achieved, and successively, a list of retrieved tems, . can pe yuled out as a promising retrieval improvement
ordered with respect to the relevance for the given initial (Section 4.4). Moreover, we derive a combinatorial error
pattern can be obtalned_. Only, if parts 9f sev_er_a_l memory analysis of the first step of CB retrieval (Proposition 4.5)
patterns with the same size are present in the initial pattern, ot ‘corroborates its experimental superiority in the range
the §ymr_‘netry has to be broken beforg segmentation IS, e the performance of the finite Willshaw model is
pos&_ble inthe CB m_odeI: This can be ach|eved.byarandomﬂawed by high retrieval errors, i.e. when memory load is
deletion process which singles out one predominate Compo'high and activity in the initial pattern exceeds the activity of

nent in the initial pattern. the memory patterns. The mathematical essence of Proposi-
tion 4.5 is the derivation of a recursive method to calculate

6. Conclusions the distribution of a sum of random integers.
We formulate a necessary condition for all memory
6.1. Implications of the analysis patterns to be retrieved from the memory matrix and con-

sider retrieval as an optimization problem. The problem

In this paper, we have analyzed bidirectional retrieval with retrieving the appropriate memory pattern, given the
from hetero-associative memories. The search capacitymemory matrix and the initial pattern, corresponds to a
introduced in Section 4.1 describes the information balance linear programming problem (POOR). We conjecture that

of BAM, taking into account both pattern mapping and POOR isNP-hard and explain how the considered retrieval
pattern completion. As a general performance measure forstrategies can be regarded as approximative solutions of
BAM models, we propose the information efficiency which POOR and what their differences are from this perspective.
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6.2. The new BAM model 6.4 that refined iterative retrieval is suggested by the recur-
rent cortical connectivity. But also more elaborate learning

This paper suggests refined bidirectional retrieval meth- has been proposed, for example as a functional model of
ods in the hetero-associative Willshaw model, i.e. better REM sleep (Crick and Michison, 1986): in a one-step learn-
exploitation of the information stored by the simple and ing associative memory, a second learning phase provides
incremental binary Hebbian learning process. In the an unsupervised reorganization of the information gathered
Willshaw model, suppression of cross-talk noise has beenby one-step learning. This REM sleep phase was shown in
proposed by specifically adjusted individual thresholds simulations to enhance the information capacity signifi-
during one-step retrieval (Buckingham and Willshaw, cantly, and to permit simpler retrieval (van Hemmen et
1993; Graham and Willshaw, 1995). However, this retrieval al., 1990).
modification allows no completion of noisy addresses, and
the computationally expensive threshold alignment cannot 6-3. Application in information retrieval
be accelerated by parallel hardware and requires additional
information about the learning data. Our new retrieval strat-
egy — CB retrieval — reduces cross-talk errors signifi-
cantly without employing more complex learning
procedures or dummy augmentation in the pattern coding
as has been proposed to improve BAM (Wang et al., 1990;
Leung et al., 1995). The conditional links, the quantities on
which CB retrieval is essentially based, have a probabilistic
interpretation: a high value between two units expresses a
high probability that both units belong to the same memory
pattern. This information can be exploited in various itera-
tion schemes, two of which have been proposed and teste
experimentally. CB retrieval yields an information effi-
ciency of about 0.5 bit/synapse, which is close to the asymp-
totic value with low error rates even for initial patterns with
high false alarm noise. It provides hetero-associative (90 2000
mapping, and can be used to complete noisy addresses(45) :( 10 )
and to segment superimposed addresses.

While the proposed NAM uses a very simple incremental the information contained in both descriptions is practically
learning strategy and quite sophisticated optimization retrie- the same. The problem of finding appropriate sparse codings
val strategies (type A), many of the reasonably efficient is application-dependent. For text indexing, word fragments
NAM models in the literature use sophisticated optimization used in existing indexing techniques (Gebhardt, 1987) can
learning strategies combined with simple retrieval (type B). be directly used as sparse features. For image processing,
In a type B memory, it takes longer to learn one new asso- the most natural features like lines and edges are usually
ciation the higher the number of stored associations alreadysparse (Zetsche, 1990). Also a neural sparse coding model
is, because in the learning process all previously learnedusing anti-Hebbian learning has been proposedd{&k,
patterns have to be presented several times. This is timel990). Sparse patterns extracted from different data chan-
consuming and it requires all learned patterns to be avail- nels in heterogeneous data can be easily combined (by
able, either by a kind of retrieval process during training, or concatenation) and processed simultaneously in the neural
from some kind of additional pattern store. A type A memory.
memory is more flexible in terms of learning, but if the In information systems, the CB model offers an alterna-
number of stored associations grows, it will take longer to tive to inverted indices, for the task of mapping from user
retrieve a learned association. As previously proposed auto-queries to record locations in a similarity based, fault-toler-
associative models have demonstrated (Gibson and Robin-ant manner. Improving the early suggestion of sparse asso-
son, 1992; Hirase and Recce, 1996; Schwenker et al., 1996)ciative memory for information retrieval by Bentz et al.
and now the CB memory model shows for hetero-associa- (1989), our model offers the following advantages: (a) a
tive tasks, there are type A models that still retrieve effi- user query should not only provide a data record, but also
ciently and fast, since the required iteration numbers are low the completed feature description leading to the record
and operations required in an update step can be computedrelevance feedback); and (b) ambiguous queries should
in parallel. In situations where retrieval time is critical, the not only trigger a single response, but a list of relevant
iteration can also be interrupted at a preliminary result that records, ordered by their relevance (relevance ranking; see
can already be used as a reasonable approximation. TheSection 5.2). A problem for image processing with sparse
biological realization of associative memory may lie in NAM models is the low information content of sparse
between the two extremes discussed. We detail in Sectionpatterns (Zetsche, 1990). It has been proposed to store larger

Accessing records in large data bases according to user
requests is the central problem of information retrieval. The
application of the proposed NAM in information retrieval
requires a similarity preserving coding of the data into
sparse binary patterns. However, for user interaction, sparse
representations meet natural preferences. Feature encoding,
i.e. the extraction of feature sets which directly and quickly
characterize complex situations, has been classified in
cognitive psychology as one of the three basic types of
cognitive processes (Sternberg, 1977). Such feature repre-
Gsentations tend to be sparse: a description of 10 features out
of 2000 possible features will be easier for a person to
handle, compared with a description with only 90 possible
features, but where around 50% of them apply. Since
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items as sequences of sparse patterns (Kohring, 1990) whicton the situation, the recall of a learned concept may appear
can be efficiently realized in the CB model: once the first in various forms.

pattern pair has been extracted by CB retrieval, unidirec-

tional iteration of standard retrieval yields the pattern
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