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Abstract

Similarity based fault tolerant retrieval in neural associative mem-
ories (NAM) has not lead to wiedespread applications. A draw-
back of the efficient Willshaw model for sparse patterns [Ste61,
WBLH69), is that the high asymptotic information capacity is of
little practical use because of high cross talk noise arising in the
retrieval for finite sizes. Here a new bidirectional iterative retrieval
method for the Willshaw model is presented, called crosswise bidi-
rectional (CB) retrieval, providing enhanced performance. We dis-
cuss its asymptotic capacity limit, analyze the first step, and com-
pare it in experiments with the Willshaw model. Applying the very
efficient CB memory model either in information retrieval systems
or as a functional model for reciprocal cortico-cortical pathways
requires more than robustness against random noise in the input:
Our experiments show also the segmentation ability of CB-retrieval
with addresses containing the superposition of pattens, provided
even at high memory load.

1 INTRODUCTION

From a technical point of view neural associative memories (NAM) provide data
storage and retrieval. Neural models naturally imply parallel implementation of
storage and retrieval algorithms by the correspondence to synaptic modification
and neural activation. With distributed coding of the data the recall in NAM
models is fault tolerant: It is robust against noise or superposition in the addresses
and against local damage in the synaptic weight matrix. As biological models NAM
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have been proposed as general working schemes of networks of pyramidal cells in
many places of the cortex.

An important property of a NAM model is its information capacity, measuring
how efficient the synaptic weights are used. In the early sixties Steinbuch realized
under the name “Lernmatrix” a memory model with binary synapses which is now
known as Willshaw model [Ste61, WBLH69]. The great variety of NAM models
proposed since then, many triggered by Hopfield’s work [Hop82], do not reach the
high asymptotic information capacity of the Willshaw model.

For finite network size, the Willshaw model does not optimally retrieve the
stored information, since the inner product between matrix colum and input
pattern determines the activity for each output neuron independently. For au-
toassociative pattern completion iterative retrieval can reduce cross talk noise
[GM76, GR92, PS92, SSP96]. A simple bidirectional iteration — as in bidirectional
associative memory (BAM) [Kos87] — can, however, not improve heteroassociative
pattern mapping. For this task we propose CB-retrieval where each retrieval step
forms the resulting activity pattern in an autoassociative process that uses the con-
nectivity matrix twice before thresholding, thereby exploiting the stored information
more efliciently.

2 WILLSHAW MODEL AND CB EXTENSION

Here pattern mapping tasks ¥ — y* are considered for a set of memory patterns:
{(z*,y") : ¥ € {0,1}™,y* € {0,1}™,v = 1, ..., M}. The number of 1-components
in a pattern is called pattern activity. The Willshaw model works efficiently, if
the memories are sparse, i.e., if the memory patterns have the same activities:
|z¥| = Yi,2f = a,|[y"| = Y yY = bV v with a << n and b << m. During
learning the set of memory patterns is transformed to the weight matrix by

Cij = min(1, Z:L';Jy;) = sup z;y; -
14
14

For a given initial pattern Z* the retrieval yields the output pattern §* by forming
in each neuron the dendritic sum [Cz#]; = ~. C; &} and by calculating the activity
value by threshold comparison

gy = H([C3"]; - 0) v, (1
with the global threshold value 8 and H(z) denoting the Heaviside function.
For finite sizes and with high memory load, i.e., 0 << P; := Prob[Cij = 1] (< 0.5),
the Willshaw model provides no tolerance with respect to errors in the address, see
Fig. 1 and 2. A bidirectional iteration of standard simple retrieval (1), as proposed in

BAM models [Ko0s87], can therefore be ruled out for further retrieval error reduction
[SP97]. In the energy function of the Willshaw BAM

—ZCij(Eiyj + @'in + @Zyj
i : j

we now indroduce a factor accounting for the magnitudes of dendritic potentials at
activated neurons

C’ i ,
E(z,y) = ZC”:CZ v y] +b[C-’EJ +0 sz+ezyj )
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Differentiating the energy function (2) yields the gradient descent equations
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As new terms in (3) and (4) sums over pattern components weighted with the
quantities w};, and wj; occur. w}, is the overlap between the matrix columns j and
k conditioned by the pattern z, which we call a conditioned link between y-units.
Restriction on the conditioned link terms yields a new iterative retrieval scheme
which we denote as crosswise bidirectional (CB) retrieval

y(r+1); = H(Y_ CylCTy(r-1)i - 0) (5)
icz(r)

z(r+1); = H(Y_ Cy;[Cx(r-1)); — ") (6)
Jj€y(r)

For r = 0 pattern y(r—1) has to be replaced by H([Cz(0)] — 6), for r > 2 Boolean
ANDing with results from timestep r — 1 can be applied which has been shown to
improve iterative retrieval in the Willshaw model for autoassociation [SSP96].

3 MODEL EVALUATION

Two possible retrieval error types can be distinguished: a “miss” error converts a
l-entry in y* to ‘0’ and a “add” error does the opposite.
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Figure 1: Mean retrieval error rates for n = 2000, M = 15000, a = b = 10
corresponding to a memory load of P, = 0.3. The z-axes display the address
activity: |Z#| = 10 corresponds to a errorfree learning pattern, lower activities are
due to miss errors, higher activities due to add errors. Left: Theory — Add errors
for simple retrieval, eq. (7) (upper curve) and lower bound for the first step of
CB-retrieval, eq. (9). Right: Simulations — Errors for simple and CB retrieval.

The analysis of simple retrieval from the address z" yields with optimal threshold
setting 6 = k the add error rate, i.e, the expectation of spurious ones:

& = (m — b)Prob [r > I}] , (7
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with the binomial random variable Prob[r=I] = B(|z*|, P)i, where B(n,p); :=
(7)P'(1 — p)™~'. @ denotes the add error rate and k = |##| — & the number of
correct 1-s in the address.

For the first step of CB-retrieval a lower bound of the add error rate a(1) can be
derived by the analysis of CB-retrieval with fixed address z(0) = Z* and the perfect
learning pattern y* as starting patterns in the y-layer. In this case the add error
rate is: _

a = (m — b)Prob [7'1 +79 > kb] , (8)

where the random variables r; and r; have the distributions:
Prob[ry = 1/b] = B(k, P,), and Prob[r; = I] = B(ab, (P;)?),. Thus,

k
a(1) > (m - b)Y B(k, P)sBS [, (P)?, (k - s)b] , (9)

s=0
where BS [n,p,t] := >_,—, B(n,p); is the binomial sum.

In Fig. 1 the analytic results for the first step (7) and (9) can be compared with
simulations (left versus right diagram). In the experiments simple retrieval is per-
formed with threshold § = k. CB-retrieval is iterated in the y-layer (with fixed
address Z) starting with three randomly chosen 1-s from the simple retrieval result
y*. The iteration is stopped, if a stable pattern at threshold ©® = bk is reached.

The memory capacity can be calculated per pattern component under the assump-
tion that in the memory patterns each component is independent, i.e., the proba-
bilities for a 1 are p = a/n or ¢ = b/m respectively, and the probabilities of an add
and a miss error are simply the renormalized rates denoted by o/, 8’ and &', 8’ for
z-patterns and by 7', §' for y-patterns. The information about the stored pattern
contained in noisy initial or retrieved patterns is then given by the transinforma-
tion t(p, o', 8") := i(p) — i(p,a’, B'), where i(p) is the Shannon information, and
i(p, o', B') the conditional information. The heteroassociative mapping is evaluated
by the output capacity: A(&',5') := Mm t(q,7',6")/mn (in units bit/synapse). It
depends on the initial noise since the performance drops with growing initial errors
and assumes the maximum, if no fault tolerance is provided, that is, with noiseless
initial patterns, see Fig. 2. Autoassociative completion of a distorted z-pattern is
evaluated by the completion capacity: C(&', ") := Mn{t(p, o', ") —t(p, &, B")/mn.
A BAM maps and completes at the same time and should be therefore evaluated
by the search capacity S := C + A.

The asymptotic capacity of the Willshaw model is strikingly high: The completion
capacity (for autoassociation) is Ct = In[2] /4, the mapping capacity (for heteroas-
sociation with input noise) is AT = In{2] /2 bit/syn [Pal91], leading to a value for
the search capacity of (3 In[2]) /4 = 0.52 bit/syn. To estimate S for general retrieval
procedures one can consider a recognition process of stored patterns in the whole
space of sparse initial patterns; an initial pattern is “recognized”, if it is invari-
ant under a bidirectional retrieval cycle. The so-called recognition capacity of this
process is an upper bound of the completion capacity and it had been determined
as In[2]/2, see [PS92]. This is achieved again with parameters M, p,q providing
A = In[2] /2 yielding In[2] bit/syn as upper bound of the asymptotic search capac-
ity. In summary, we know about the asymptotic search capacity of the CB-model:
0.52 < 8% < 0.69 bit/syn. For experimental results, see Fig. 4.
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4 EXPERIMENTAL RESULTS

The CB model has been tested in simulations and compared with the Willshaw
model (simple retrieval) for addresses with random noise (Fig. 2) and for addresses
composed by two learning patterns (Fig. 3). In Fig. 2 the widely enlarged range of
high qualtity retrieval in the CB-model is demonstrated for different system sizes.
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Fig. 2: Retrieval from addresses with random Fig. 3: Retrieval from addresses
noise. The z-axis labeling is as in Fig. 1. Small composed by two learning pat-
system with n = 100, M = 35 (left), system size terns. Parameters as in right col-
as in Fig. 1, two trials (right). Output activities umn of Fig. 2, explanation of left
adjusted near |y| = k by threshold setting. and right column, see text.

In Fig. 3 the address contains one learning pattern and 1-components of a second
learning pattern successively added with increasing abscissae. On the right end
of each diagram both patterns are completely superimposed. Diagrams in the left
column show errors and transinformation, if retrieval results are compared with
the learning pattern which is for |##| < 20 dominantly addressed. Simple retrieval
errors behave similiar as for random noise in the address (Fig. 2) while the error
level of CB-retrieval raises faster if more than 7 adds from the second pattern are
present. Diagrams in the right column show the same quantities, if the retrieval
result is compared with the closest of the two learning patterns. It can be observed
i) that a learning pattern is retrieved even if the address is a complete superposi-
tion and ii) if the second pattern is almost complete in the address the retrieved
pattern corresponds in some cases to the second pattern. However, in all cases CB-
retrieval yields one of the learning pattern pairs and it could be used to generate
a good address for further retrieval of the other by deletion of the corresponding
1-components in the original address.
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Fig. 4: Output and search capacity of CB retrieval in
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The search capacity of the CB model in Fig. 4 is close to the theoretical expectations
from Sect. 3, increasing with input noise due to the address completion.

5 SPARSE CODING

To apply the proposed NAM model, for instance, in information retrieval, a coding
of the data to be accessed into sparse binary patterns is required. A useful extraction
of sparse features should take account of statistical data properties and the way the
user is acting on them. There is evidence from cognitive psychology that such a
coding is typically quite easy to find. The feature encoding, where a person is
extracting feature sets to characterize complex situations by a few present features,
is one of the three basic classes of cognitive processes defined by Sternberg [Ste77].
Similarities in the data are represented by feature patterns having a large number
of present features in common, that is a high overlap: o(z,z’) := Y. z;z';. For text
retrieval word fragments used in existing indexing techniques can be directly taken
as sparse binary features [Geb87]. For image processing sparse coding strategies
[Zet90], and neural models for sparse feature extraction by anti-Hebbian learning
[F5190] have been proposed. Sparse patterns extracted from different data channels
in heterogeneous data can simply be concatenated and processed simultaneously in
NAM. If parts of the original data should be held in a conventional memory, also
these addresses have to be represented by distributed and sparse patterns in order
to exploit the high performance of the proposed NAM.

6 CONCLUSION

A new bidirectional retrieval method (CB-retrieval) has been presented for the Will-
shaw neural associative memory model. Our analysis of the first CB-retrieval step
indicates a high potential for error reduction and increased input fault tolerance.
The asymptotic capacity for bidirectional retrieval in the binary Willshaw matrix
has been determined between 0.52 and 0.69 bit/syn. In experiments CB-retrieval
showed significantly increased input fault tolerance with respect to the standard
model leading to a practical information capacity in the order of the theoretical
expectations (0.5 bit/syn). Also the segmentation ability of CB-retrieval with am-
biguous addresses has been shown. Even at high memory load such input pat-
terns can be decomposed and corresponding memory entries returned individually.
The model improvement does not require sophisticated individual threshold setting
[GW95], strategies proposed for BAM like more complex learning procedures, or
“dummy augmentation” in the pattern coding [WCM90, LCL95].

The demonstrated performance of the CB-model encourages applications as mas-
sively parallel search strategies in Information Retrieval. The sparse coding re-
quirement has been briefly discussed regarding technical strategies and psycholog-
ical plausibility. Biologically plausible variants of CB-retrieval contribute to more
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refined cell assembly theories, see [SWP98].
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