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Abstract

Recent experimental evidence for temporal coding of cortical cell populations (Riehle, Griin,
Diesmann, Aertsen, Science 278 (1997) 573-578, Donoghue, Sanes, Hatsopoulos, Gaal,
J. Nuerophysiol. 79 (1998) 159-173). recurs to Hebb’s classical cell assembly notion. Here the
properties of columnar cell assemblies are estimated, using the assumptions about biological
parameters of Wickens and Miller, Biol. Cybernet. 77 (1997) 351-358, but extending and
correcting their predictions: Not the combinatorical constraint as they assume, but synaptic
saturation and the requirement of low activation outside the assembly limit assembly size and
number. As will be shown, (i) columnar assembly processing can be still information theoret-
ically efficient, and (ii) at efficient parameter settings several assemblies can be ignited in
a column at the same time. Feature (ii) allows faster and more flexible access to the information
contained in the set of stored cell assemblies. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The cortical representation of psychological concepts, situations and actions by
population coding is an old idea [4]. Hebb [3] postulated the representation of
concepts by coactivation in cell assemblies, and suggested a simple local synaptic
mechanism how the brain could learn concepts. Recent experiments [7,1] support the
so-called temporal coding assumption, that is, population coding through coincident
single spike events, rather than coding through firing rates [2]. In this, picture cortical
y-oscillations can be interpreted as sequences of (spacially coded) cell assemblies:
simulations with compartment neurons have shown that cell assemblies stored by
Hebbian learning can be recalled as synchronious spike patterns at high information
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capacity and with maximum readout frequencies lying in the y-band [8]. This paper
investigates possible spacial properties of cell assemblies within a cortical column.
Extending previous works [5,6,9] we determine analytically possible operation ranges
of cell assembly processing from the known anatomical and electrophysiological
parameters. Finally, multi-assembly ignition will be examined: a parameter range
where several activated assemblies can coexist allows for a richer repertoire of
memory access, in particular, sequential recall in the y-band, given the typical
low-time constants of integration effects involved.

2. Model assumptions and parameter estimation

Hebb [3] postulated that cells in assemblies have a strong mutual connectivity
providing that activation of a whole assembly is self-sustaining, and can be stimulated
from a subset of cells. The following analysis will examine the possible properties of
intracolumnar cell assemblies using the assumptions from an earlier paper [9]: the
activation of a columnar neuron is described by x; = H() ; Ci;x; — 0), where x; = 1 or
x; = 0 means an action potential/silence of the neuron, C is the synaptic connectivity,
0 the excitation threshold, and H(x) the Heaviside function. The cell assemblies are
assumed as random choices of k cells in the column, and the synaptic storage is
described by binary clipped Hebbian learning, where for M learned assemblies
P =1 —(1 — k*/n®™ gives the synaptic modification probability. The anatomical con-
nection density is modeled by an independent variable Z;; with Py = P[Z;; = 1].
Thus, synaptic values are given by C;; = Z;;sup,—1, . uX;x; with P[C;; = 1] = P,P.
Ignition of an assembly will be considered using initial stimulation at a subset kf of
assembly neurons, 0 < f < 1 is called the initial fraction. As model parameters esti-
mated from biological data we choose the values in Table 1, taken over from [9].

Our analysis will derive possible (and efficient) cell assembly parameters, like
assembly size (k), the number of assemblies (M) and ignition fraction (f).

3. Analysis of assembly learning and assembly ignition

What are the conditions that local cell assemblies can be learned and recalled? The
condition on the learning process is that the resulting synaptic structure has to reflect

Table 1

Properties of excitatory neurons in a column. The lower three lines
yield the excitation threshold of a neuron in terms of excitatory
postsynaptic potentials (EPSP): 0 = 5-50

Volume of cortical column 1 mm?
Excitatory neurons in volume n = 90000
Anatomical connectivity P, =0.1
Resting membrane potential —74+5mV
Cell firing threshold — 50 mV

Unitary EPSP size (typical range) 0.5-2 mV
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properties of the cell assemblies. For P = 0.5 optimal learning is provided, i.e., the
Shannon information in the synapses becomes maximal. Increasing the load, for
P > 1 — 1/(n*P,) synaptic saturation is reached, i.e., the expectation on the number
of synapses that remain unchanged drops below one, and the synaptic structure
just corresponds to the anatomically precent synapses but contains no inform-
ation about the assemblies. The opimal learning condition and the synaptic satu-
ration bound are given by M°(k,n) = — log[2]/log[1 — k*/n*] and M*(k,n) =
M°(k,n)log[ Pyn*]/log [2].

Further conditions have to ensure the success of assembly recall by the ignition
process. Combinatorical restriction: 1If the initial fraction fis large enough to ignite the
assembly it will also ignite all other assemblies that contain the initial fraction too.
Thus, the number of stored assemblies has to be restricted in order to keep
the probability of high mutual overlaps between assemblies (larger or equal to f,i, k)
small. In [9] the expectation number of high mutual overlaps was required to
stay below one. We use this condition and denote the resulting bound M° as the
combinatorical bound

Tank (kN (m = I\ M\ T\ M(M® — 1)
(R O )

Safe assembly ignition: Excitation of a neuron depends on the former network activity.
If a;, neurons are active in assemblies where the neuron is member and a,,, neurons
outside, the excitation probability is

0—1 r
Pex(aimaout) =1- Z z B(aimsa Ps)B(aoutar - S, PSP) (1)
r=0 s=0
with the Binomial distribution B(n,r, p) = (F)p"(1 — p)" .

We consider assembly ignition from an initial fraction f. If [ assemblies with average
mutual overlap are stimulated simultaneously with initial fractions f the initial activity
is almost Ifk (I = 1 describes ignition of a single assembly, as usually considered).
Using (1) the probability of excitation of a neuron is P;,(f,k,1) = P (fk,(I — 1)fk)
within ignited assemblies and P (f, k,I) = P (0, Ifk) outside. The assembly will be
ignited safely, if (i) the initial activity is larger than

Jmin(k, 1) = min { Py (£, k,1) > f}
’

cf. [9], and if (ii) ignition can be kept inside ignited assemblies, i.e., the outside/inside
excitation ratio e(k,l) stays below a small bound 7. The second condition defines
another bound on the the number of assemblies in the volume, the safe ignition bound

(n - k)Poul(fmina k7 l)
kfmin ’

Note that P, and for [ > 1 also f,;, depend over P on the parameter M.

MSi(fmins ka lrf) = max {@(k, l) < T}a e(k’ l) =
M



520 F.T. Sommer | Neurocomputing 32-33 (2000) 517-522
4. Results

In the following diagrams solid lines show the quantities marked on the individual
y-axis as functions of the logarithmic assembly size k. The parameter values for n and
P taken from Table 1.

4.1. Ignition of one cell assembly (I = 1)

Figs. 1-3 display results for four different neuronal excitation thresholds. The
curves are labeled in Fig. 1 (left) and can be identified in the other diagrams by the
onset points that are in the same order from left to right.

Fig. 1 specifies initial patterns providing assembly ignition: they lie above the solid
curves and below f= 1, displayed in the right diagram by the dashed line. The
minimal ignition activity slightly diminishes with assembly size because of the de-
crease of the relative threshold.

Fig. 2 (left) shows the safe ignition bounds. For small assembly sizes they stay below
the optimum learning condition, for large sizes they exeed it, but clearly, they are more
restrictive than the synaptic saturation bound. Fig. 2 (right) shows the combinatorical
bounds. They become only relevant for very large assembly sizes and taking into

Frmin 0=20 0550 600 k fmin /

o 0=10 500 I"I \
0.6 400 ’/I
0.4 0=5 300 :l/

e log[k] —

loglk] = 200} .~ elk]
0.2 L
ao T —

2.5 3 3.5 4 2 2.5 3 3.5 4

Fig. 1. Minimal ignition fraction (left) and initial activity (right).
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Fig. 2. Safe ignition bounds for r = 0.1 (left) and combinatorical bounds (right). Long dashes: M°!, short
dashes: M**.
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Fig. 3. Columnar information capacity and corresponding synaptic modification probabilities (right) for
7 = 0.1. Long dashes: P°!, short dashes: P*.

account them only wrongly predicts operation ranges far beyond synaptic saturation,
like the parameter constellation M = n at assembly sizes k = 1400 described in
Ref. [9].

Fig. 3 (left) shows the information capacity achieved with safe ignition in bits per
synapse using C = MI,/(n*P,) where I, is the mean information gain per assembly
provided by the ignition process [8]. The parameter constellations at the information
maxima are given in Table 2. Note in Fig. 3 (right) that in general maximum capacity
does not coincide with optimal learning.

The overall information capacity maximum is of the order of magnitude of the
theoretical optimum In[2]/4 — about half of it.

4.2. Multi assembly ignition

Fig. 4 (left) shows the effects of mutual excitation for multi assembly ignition: the
minimal overall initial activity scales sublinearly in [, and the safe ignition constraint
drops with the number of ignited assemblies [. Fig. 4 (right) indicates that for fewer and
larger assemblies multi assembly ignition is possible with reasonable high information
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Fig. 4. Minimal ignition activity and information capacity for multi assembly ignition with [ =1,2,5
assemblies at an excitation threshold 6§ = 10 and again 7 = 0.1.
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Table 2

Efficient parameter sets. The optimal assembly size and number varies
for different neuronal excitation threshold values but variation of the best
ignition fraction f'is moderate. The overall capacity optimum is reached for an
excitation threshold near 6 = 10

0 5 10 20 50

k 120 250 500 1200
M 64000 40000 16000 8000
f 0.3 0.34 0.38 0.48
kf 36 87 190 460
C 0.071 0.082 0.068 0.04

capacity: For [ = 5, efficient parameters are k = 800 and M = 10000 where during
ideal ignition the activity spreads from 100 to 4000 cells. At final activity the average
input at an outside neuron is kIPP, ~ 16. Thus, uncontrolled activity spread has to be
prevented by a dynamical threshold alignment, for instance, through inhibitory cells.

5. Conclusions

Estimations on cell assembly properties in a cortical column (in particular, the size
and number, see Table 2) have been derived from biological constraints (Table 2).
Further, the analysis predicts the possibility of multi-assembly ignition, an extended
mode to access the synaptically stored information in the cortex.
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