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Abstract

To what extent does thalamo-cortical connectivity in/uence global patterns of macroscopical
activity spread in cat cortex? We address this question by simulation of activity /ow in a
network model representing cortical areas and thalamic nuclei as nodes with all or none activity.
The connectivity schemes employed are based on data from anatomical tracer studies. For two
networks, with and without thalamic nuclei, we investigate how well physiological experiments
from strychnine neuronography can be reproduced. Our results indicate that thalamic interaction
does in/uence cortical activity spread. However, while the relation between physiological activity
spread and anatomy of the cortico–cortical connectivity is signi5cant, the relation between activity
spread and the anatomy of cortico–thalamic connections is not.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The systematic collation of data from in vivo tracer techniques [3] reveals networks
between cortical areas as well as between cortical areas and thalamic nuclei of the
cat cerebral hemisphere. In an earlier study we used information about the cortico–
cortical networks in a simulation study to reveal mechanisms of cortical activity spread
[1]. Here we extend our earlier approach by including thalamic nuclei. Our question
is how the addition of the thalamo–cortical loops in/uences the cortical spread of

∗ Corresponding author.
E-mail address: volker.schmitt@medizin.uni-ulm.de (V. Schmitt).

0925-2312/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0925-2312(02)00837-8

mailto:volker.schmitt@medizin.uni-ulm.de


920 V. Schmitt et al. / Neurocomputing 52–54 (2003) 919–924

activity. To this end we examined the spread of activity by simulation experiments in
two diEerent networks. One network contained cortical areas and thalamic nuclei, the
other contained just the cortical areas. We compared simulation outcomes to electro-
physiologically ascertain topographic activation patterns that were induced by stimula-
tion of the corresponding cortical regions.

2. Empirical data

2.1. The connectivity data

We used a collation of 823 connections between 53 cortical areas (called C) and
651 connections between the cortical areas and 42 thalamic nuclei (called C–T) [3].
The connection strengths were graded. Connections reported as dense or strong were
given a weighting of 3. Connections of intermediate strength or for which no strength
information was available were weighted as 2. Connections reported as weak or sparse
were weighted as 1. Connections to thalamic nuclei were assumed to be reciprocal and
of symmetric weight.

2.2. The electrophysiological data

To assess eEects of connectivity on the global activity spread we compared the
simulation results with relevant physiological 5ndings. We used data from strychnine
sulfate neuronographic analysis in cat [2]. Saturated strychnine sulfate was applied to
small patches of cortex and induced stable and reproducible patterns of cortical activity.
These patterns were recorded with bipolar electrodes in a total of 18 anesthetized cats.
The activity resulting from stimulation of a single cortical area was mapped topographi-
cally marking active and silent areas. The remainder of the areas had not been explored
or showed variable activity. In [2] 15 diEerent areas have been strychninized. Due to
diGculties with transfering areas in the parcellation of [3] we used 11 experiments out
of 15.

3. The simulation model

We devised a minimal model for describing activation of cortical areas and thala-
mic nuclei. Each model unit describes the activity of one area or nucleus as “active”
or “silent” by a binary variable. Thus, activity was represented by a binary pattern
x∈{0; 1}n with the number of areas and nuclei n = 53 or 95 depending on which
connectivity model was used. A connection from area i to area j is denoted sij. The
model prescribed that an area or nucleus was active in the next time step (t + 1) if
the sum of its activating inputs exceeded a certain threshold �.

x(t + 1)j = H

[
n∑
i=1

wijx(t)i −�
]
; (1)
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where � is the activation threshold of a unit and H [x] is the Heaviside function, wij
denotes the coupling strength from unit i to j and x(t)i is the activity of the respective
aEerent unit. Simulation started with an initial activity pattern x(0) containing the
strychninized area of the corresponding experiment described in [2] as a single active
unit. The coupling strength was aligned to the anatomical connection strength:

wij = (sij)�; (2)

� and the values wii=wD for excitatory self-feedback were adjusted for the best results
on average over all experiments. The threshold was controlled in a way that activity
in the network spread as fast as possible from the single stimulated area to a set of a
activated areas/nuclei, where a is chosen according to the individual experiment, i.e.

�(t + 1) = max{�: min{|x(t + 1) − a|}}: (3)

After activity a is reached the iteration is continued until a 5xed point or cycle is
reached. Possible error types are “miss” errors if the simulation results in silent areas
that have been reported to be active, and “add” errors if activity is found in areas
reported to be silent. Areas with unknown or variable activity were ignored in the
error statistics.

To judge the in/uence of a systematic connectivity structure like traced connectivity
on the experimental outcome, we need to compare simulations based on the systematic
connectivity with those based on random connectivity with same density and grading
distributions. Therefore, we studied random connectivity models, for each comparison
we run simulations with 20 random matrices. In the following the random model
corresponding to the cortex is denoted rnd(C), and the random model corresponding
to the cortico–thalamic network rnd(C–T). In a third random model, called C-rnd(T),
we studied the in/uence of a randomization of thalamic connections only. To this end
20 matrices where generated with experimentally observed cortico–cortical connections
but random connections to thalamic nuclei.

4. Results

The parameters � and wD in our model were adjusted for smallest errors on average
over the 11 simulated experiments corresponding to diEerent stimulation sites. Table 1
shows the optimized values and the resulting average errors.

The error percentages achieved by the two connectivity models for each stimulated
area is shown in Fig. 1(a).

Table 1
Average errors of models with experimentally traced connections and optimized parameters

Model !ii � add % miss % error %

C 25 2.9 10.59 14.49 12.54
C–T 23 2.9 10.71 8.71 9.71
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Fig. 1. (a) -◦- C–T; · · ∗ · · C, (b) -◦- C–T; -∗- C-rnd(T); · · + · · s.d. Errors obtained in simulations of
activity spread using diEerent connectivity models (s:d: = ±1 standard deviation).

In four experiments the error percentages were lower with thalamic nuclei and in
three without connections to the thalamus. However, on average across all experiments
the model including cortico–thalamic connections performed better. We controlled sim-
ulations for chance results. The random models rnd(C) and rnd(C–T) produced larger
mean errors in replicating the electrophysical experiments than the “real” topographies,
but had smaller standard deviations. Some “real” model simulation results were within
the standard deviation range of “random” model results. Simple counting shows that
the model without connections from and to thalamus has three such stimulated areas
whereas the model with cortico–thalamic connections has only one result in standard
deviation range (see Fig. 2a and b).

The C-rnd(T) “real/random” model produced mean errors of an order comparable
to the “real” models (see Fig. 1b). We assessed mean errors obtained with “real”
and “random” topographies by t-tests for equal or unequal variances depending on the
outcome of an f-test. Each corresponding pair of “real” and “random” topographies
showed signi5cantly diEerent mean errors, both “real” models compared to the mixed
“real/random” C-rnd(T) model did not show these diEerences (Tables 2 and 3).
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Fig. 2. (a) -◦- C; -∗- rnd(C); · · + · · s. d. (b) -◦- C–T; -∗- rnd(C–T); · · + · · s.d. Errors obtained
in simulations of activity spread using the experimentally traced connectivity models and 20 models with
random connectivities of the same density and grading (s:d: = ±1 standard deviation).

Table 2
Mean percentages and standard deviation of errors averaged across 11 experiments using diEerent connectivity
topologies

Model Mean s.d.

C 12.54 12.23
C–T 9.71 9.39
rnd(C) 28.08 9.32
rnd(C–T) 26.02 7.19
C-rnd(T) 12.44 10.41

Table 3
Signi5cance level for diEerent mean errors between the “real” and “random” topographies. In column 2 the
5rst row was tested against rnd(C), the second against rnd(C–T)

signi5cance level p rnd(C)/rnd(C–T) C-rnd(T)

C 0.003 0.984
C–T 0.000 0.526
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5. Summary

We presented a simulation study to investigate the in/uence of thalamo–cortical pro-
jections on global pattern of activity spread in cortex. The simulation model was based
on cortico–cortical and cortico–thalamic connectivity data from neuranatomical studies.
We compared two connectivity models, a cortex network and a cortico–thalamic net-
work. Both network models reproduced neuronographic experiments with good overall
mean errors, the isolated cortex network with 12.5%, the cortico–thalamic network
even better, with 9.7%. Systematic cortical connections always performed signi5cantly
better than random topologies with real densities, leading to errors of roughly 27%.
The thalamo–cortical connections, however, do not act nearly as speci5cally: Networks
with “real” cortico–cortical connections but random projections to thalamus perform
almost as well as with the cortico–thalamic projections taken from the neuronanatomi-
cal database. Thus, our simulation experiments suggest that thalamic interactions only
mildly in/uence the results of neuronography. The experimentally observed activity
patterns are mostly determined by the cortico–cortical networks. The speci5c anatomy
of thalamo–cortical connections has only a weak impact on activity propagation. In
agreement with Scannell’s analysis thalamo–cortical connections do not seem to mod-
ify the cortico–cortical organisation when tested in a simulated activity propagation
paradigm.
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