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Abstract. A new a m  to the asymptotic analysis of autoassociation properties in 
recurrent McCulloch-Pitts networks in the range of low activity is proposed. Using 
information theory, this method examines the sialic S l N C t U T e  of stable states imprinted 
by a Hebbian storing process. In addition to the definition of cfitical pattern capacity 
usually considered in the analysis of the Hopfield model. we introduce the definition of 
information capacity which guarantees content adressability and is a stricter upper hound 
of the information really accessible in an autoassociation process. We calculate these 
two types of capacities faor two types of local learning rules which are very effective for 
sparsely coded patterns: the Hebb rule and the clipped Hebb rule. It tums out that for 
both rules the information capacity is exactly half the pattern capacity. 

1. Introduction 

How many patterns can be stored in a large associative memory? The answer is given 
by the critical pattern capacity a, (in patterns per neuron). How much information 
can be stored with autoassociation in a large recurrent associative memory? The 
answer is given by the memory capacity C (in bits per synapse). While the first 
question is well treated in the literature, there are no answers at all yet to the second 
question. However, it is the second question which is relevant for applications of 
associative memory in information r e t r i e d  

This paper provides answers to the two questions for networks of binary 
McCulloch-Pitts neurons where the stored patterns are sparse (low average activ- 
ity p ) .  The number of storable patterns per neuron cyc diverges for p + 0, but 
their information content I ( p )  tends to zero ( p  is the probability that a neuron is 
active in a pattern, I( p )  is the Shannon information). This divergence is removed by 
defining the critical pattern capacity as P := a,l(p). But P is still different from 
the information capacity C as defined in section 2. 

We propose a method of calculating information capacities considering the dis- 
crepancy between the set of memory states S and the set of h e d  points F of the 
network dynamics, where the synaptic connectivity matrix is formed by a specified 
learning rule. Our method reveals the structure of these sets in the state space of 
the system by examining a retrieval procedure which checks the membership of each 
state to the set F and disregards the transient behaviour of states not belonging to 
F. Although vve concentrate on a model with parallel update the results are valid 
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for sequential update as well, since the classification of fured points is independent of 
whether the considered dynamics is sequential or parallel. 

This treatment takes into a m u n t  the effccts of spurious states on the pattern 
completion property of the memory which yields new asymptotic estimates for the 
information capacity. These values may serve as stricter upper bounds to the infor- 
mation practically retrievable with more realistic iterative retrieval procedures than 
the critical pattern capacity values considered in the literature. 

Our method also reproduces the critical pattern capacity results; in this case it is 
equivalent to the noise-to-signal treatment of Palm [l] and Nadal and 'blouse [2] 
for fixed activity of the memory states. 

In section 2 we give the definitions of the two types of capacity in the framework 
of this method mentioned at the beginning. Section 3 outlines the calculation ansatz. 
Section 4 leads to the explicit results for the two learning rules considered. A detailed 
discussion situating our results in relation to other approaches using noise-to-signal 
calculations 11, 2, 31 or methods of statistical physics [4, 5, 6] is given in section 5. 

1.1. The model 

As storing process we consider two types of local learning rules. Let { O , l } " '  
be the space of neural activity states. We choose a set of randomly generated 
memory states with tixed activity S := { ( p  E M k  : p = 1, ..., M }  with M ,  := 
(x E {O, l}"  : 111 = k} to generate the memory matrix e,, via the learning rule. 
A$ the learning rules we treat 
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The Hebb rule 

and the clipped Hebb rule 

H 1x1 is the Heaviside function. 
In the retrieval process we consider iteration of a parallel update step which 

is defined as the mapping T -, I' with xc = H [E, - 01 V j , where 
I 0 denotes a global threshold. If we restrict the retrieval to x E M ,  the global 

threshold can be chosen tixed during the iteration process in order to preserve the 
mean activity. 

2. Capacities and retrieval quality criteria 

We focus on the channel capacity of the information channel consisting of the local 
storing process and a certain retrieval procedure. In this retrieval procedure the 
subset 3 := {I E M k  : I = x') of tixed points of c,, is obtained by checking for 
every T E M ,  the tixed point condition x = 2'. 

Any definition of information capacity is combined with a quality criterion restrict- 
ing the errors which are tolerated in the retrieval process. The error in our retrieval 
procedure can be expressed as the correction information necessary to obtain S from 
the retrieved 3 and is written as 
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I,, and I,, are the contributions from the two types of errors which can be expressed 
in t e r m  of the error probabilities: 

p,,  := p [ I  6 F I I E SI 
P,, := P E I I SI the probability of a spurious state. 

The explicit expressions for I,, and I,. are given in section 3. 

the probability of an unstable memory state 

With the retrieval quality criterion which requires 

as n-cc (2.2) 
1 

n2 
-I(S IF) + 0 

we define the information capacity as the information channel capacity measured in 
bit$/.q;pqe: 

( 2 3 )  
1 

na 
C := - { I ( S )  - I ( S  I F)} = I ( S ) / n z  

where I ( S )  := t M k I ( p [ z  E SI) is the information content in S and I ( p )  the Shan- 
non information (see section 3). With p = p [ z  E SI = A4/flMk we obtain 

C = M I ( p ) / n .  (2.4) 

Inserting the maximal number Mi of memory states for which the criterion (2.2) is 
fulfilled we obtain in (2.3) the information capacity. 

The crilicnlpattem cnpacity is usually defined in the physical literature [4, 5, 6] as 
P := M 2 1 ( p ) / n  where now Mz is the maximal number of memory states satisfying 
the so-called embedding condition (for K = 0). This quality criterion is equivalent to 
the requirement that S & F and can be expressed in our terms as 

Because (2.2) is more restrictive than (2.5) the information capacity should remain 
below the critical pattern capacity . The critical pattern capacity is no channel capacity 
for any storage and retrieval procedure. It is a measure of the information content of 
S and its quality criterion does not guarantee at all that this information is accessible 
with autoassociative retrieval. 

3. Explicit quality criteria 

For the prescribed retrieval procedure we derive explicit expressions for the two 
contributions in formula (2.1) describing the information loss due to the occurance 
of spurious states and to unstable memory states respectively. 

Defining the Shannon information as usual as I ( p )  = - p  I d [ p ] - ( 1 - p )  I d [ l  - p ]  
one can formulate explicitly the conditions on the error probabilities defined in section 
2 which are necessary for the fulfillment of the quality criteria ( 2 2 )  and (25). 
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The quality criterion (25) demanded by the definition of the critical pattern 
capacity considers only: 

Using the fact that is, fi3 < flMk we arrive at 

Thus criterion (2.5) holds if the error probability pum fulfils 

asn-cu.  k Id [n] M 
n2 Pum - 0  

Since for both rules the order of M is less than n2, with U := (i)p,,/n2 we can 
estimate 

which vanishes only for U -+ 0 as n -+ w. Thus the quality criterion (22) holds if 
p,,  satisfies (3.3) and 

a s n - c o .  ( 3 4  



Recurrent McCulloch-Pit&s nehvorks 181 

4. Calculation of pattern and information capacities 

We use the conditions on the error probabilities (3.1) and (3.2), which are necessary 
for satisfaction of the quality criteria, to obtain the upper capacity bounds for the 
two examined learning rules in the following subsections . 

First we calculate the error probabilities for the described retrieval process in 
general. We have to assume asymptotic statistical independence of different synaptical 
v a i m  c i j .  in the case of the ciipped Hebb ruie the asymptotic hdependence is shown 
in appendix 1. Since in one retrieval step it is decided whether any input state t E M k  
is a fixed point or not we obtain the defined error probabilities from the treatment 
of the one-step retrieval process. In the one-step case, if a memory state is entered 
as input, e,, and elo are defined as the error probabilities for a single off-output 
neuron and on-output neuron respectively. Without loss of generality we may assume 
thzt r (1, 1, ,.., c,c, .,.I, rpt 1 s  &$zap thp pc,mb&i!i!$s fig hnnt i r t i ~ l t ~ r  r-- ------.-" 
all of its on output neurons 

for memory states Q,, := p [ e  cij 2 0 for j = 1, ..., k 1 2 E S . (4.2) 
k l  1 

Since ci3 is symmetric for local learning rules, there are statistical dependencies of 
the threshold problems of the fist k columns and the single-neuron error probabilities 
only yield lower bounds Q, 2 e& and Q,, 2 (1 - elo)k. 

For the error probabiiities we obtain 

1 k 
p ,  = Q,, p [ c c i j  < 0 for j = k+ 1, ..., n I s 

i=l 

becau! the threshold problems for the columns j = k + 1, ..., n can 
independent and 

(4.3) 

regarded as 

Similarly 
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4.1. The clipped Hebb rule 

The memory matrix is generated by (1.2). For this rule which is treated in the 
one-step retrieval case [7, 81 we know: p := k / n  , cij E {O, l} ,  p(cij = 1) = 

the learning process reaches its optimum. If the threshold is set equal to 0 = k the 
error probabilities are eol = 2-k,  e,, = 0 and the number of memory States k 
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1 - (1 - p') M -. -. q . In [7] it is shown that for q = 1 /2  the channel capacity of 

(4.5) 

It is straightfonvard to see that Q,, = 2 - k z / Z  and Q,, = 1. To achieve high capacity 
one has to use sparse-coded patterns, i.e. 

k = a In[n] (4.6) 

with a a positive constant. 
If we put (4.5) and (4.6) into (3.1) the following condition results 

as n -t CO. w1 - Id[nl P,, = p , , / a  0 
k 

With (4.4) we obtain as necessary condition for the quality criterion (2.5) 

n eol - 0 as n i m  (4.7) 

which is equivalent to a low noise-to-signal criterion in the one-step retrieval process 
called in [lo] the / I $  condition. If we put the error behaviour for the clipped rule in 
(4.7) the requirement: a > l / l n [2 ]  on the constant a in (4.6) is demanded. Using 
this constraint on a in the equation (2.4) with (4.5) we obtain the critical parrem 
capacity 

P = ln [2] .  (4.8) 

In this range of sparseness from (4.3) the error probability can be written as 

This expression is inserted into (3.2) for the second quality criterion to be satisfied. In 
this condition the leading exponent is a( lr1[n])~[1 - a ln[2] /2]. Negative exponent 
requires the stronger condition on the constant in (4.6): a > 2/ln[2]. With this 
constraint as in (4.8) we find for the information capacity 

C =  + l n [ 2 ] .  (4.9) 
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4.2. The unclipped Hebb rule 
In this case the matrix c i j  is generated in the storing process according to (1.1). For 
the unclipped Hebb rule the error probabilities for one-step retrieval are approxi- 
mately [2, 9, 111 

(G(r) being the Gauss integral, 0 < ff 6 1 the normalized threshold, see [9]). 
Low errors can only be expected in the range of high signal-to-noise ratio: T := 
n / a  + m. Then the large-n behaviour of the error probabilities is given by 

(see proposition 1 in appendix 1). 
If we put 

M = b n2/(k ln[n]) (4.10) 
with b a positive constant the condition (3.1) reduces to p , ,  -+ 0 as in the clipped 
case. Again the condition (4.7) has to be satisfied. If we insert the error behaviour of 
the unclipped Hebb rulc we obtain the condition on the constant in (4.10) b < @/2. 
Using this in (2.4) it leads with 9 i 1 to the criticalparrem capaciry 

(4.11) 
. .  

In proposition 2 of appendix 1 we show that the error probability p , ,  behaves like 

psscxexp [ --n :L 21 a s n - m .  

Inserting this into (3.2) we obtain for the leading exponent: 
ff? 

4 M  
k ln[n] - -n2 + 0 

which becomes negative for b < ff '14. "his yields the information capacily 

(4.12) 

5. Discussion 

Our iterative retrieval procedure just extracts the set F of fixed points of the system. 
The capacity of the information channel consisting of the storing process and our 
retrieval process (the information capacity) can be treated using noise-to-signal calcu- 
lations for one-step retrieval. The quality criterion of the information capacity is that 
the learned patterns are recognized as known and all other patterns are classified as 
unknown. 

In our framework it is also possible to define a quality criterion associated with 
the critical pattern capacity (see section 2) that has been investigated in the literature 
before by several methods. In this quality criterion one only requires that the learned 
patterns are recognized; the requirement that unlearned patterns should be classified 
as unknown is dropped. The two quality criteria lk a range of the memory load M 
in which the mean number of spurious states varies between the maximum (pss i 1) 
for the critical pattern capacity and zero (ps s  - 0) for the information capaciQ. 
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S.1. Critical patlem capaciry results 

Our evaluation is essentially equivalent to the calculation in the work of Palm [9] 
and Nadal and Tbulouse 121 (in their so-called 'low-error-regime') albeit both works 
consider the case of hetero association. The new aspect of our results is the possible 
extension of the treatment to memory states that are not restricted to M k  but have 
a low average density p = k / n  of ones, see [12], which keeps the results unchanged. 
Therefore we can compare our results to works treating memory states with low 
average activity with methods of statistical physics. 

Our value for the Hebb rule (4.11) is a confirmation of the result of 'ISodyks 
and Feigelman [4] calculated with mean Eeld theory b la Amit er al [13]. They use 
a learning rule which approaches the Hebb rule for vanishing p .  The result also 
coincides with the Gardner bound [5] also obtained applying techniques of statistical 
physics. It is an upper bound on the pattern capacity for any storing processes. 

The fact that the critical pattern capacity for the clipped Hebb rule exceeds the 
Gardner bound of 0.29 calculated by Gutfreund and Stein [6] led to a discussion 
started in [6] and [3]. Nadal [3] explained this inconsistcncy with the fixed activity 
level in the Willshaw calculation. Because of our results for fluctuating activity of the 
mcmory states [12], we believe that the Gutfreund and Stein value is so low, because 
the the error constraint in the Gardner calculation requires exactly zcro error instead 
of asymptotically vanishing average error. 

The values (4.11) and (4.8) can be reproduced in computer simulations with 
reasonable accuracy: see [14] and [15]. 

5.2. Information capaciry resulrs 

For the Hebb rule our estimate of the information capacity (4.12) turns out to reach 
the local learning bound defined in [16]. Also for the clipped Hebb rule our result 
(4.9) coincides with the channel capacity of an optimal but non-constructive iterative 
retrieval process as calculated in [SI. Thus the retrieval procedure considered here 
is very idealistic and our treatment could not describe the more realistic iterative 
retrieval process, where one starts with an initial adress pattern and gradually updates 
it to find the closest f m d  point. It does not regard the transient behaviour of states 
which are not Iixed points; in real iterative retrieval there will occur effects like 
confusion due to irregular shapes of the basins of individual memory states and the 
existence of initial states whose dynamics ends outside M k  or in cycles. Up to now, 
however, no other measure can be found in the literature that considers these cffects. 
Our information capacity value is in fact a better upper bound on the information 
which can effectively be retrieved with autoassociation using any realistic iterative 
retrieval process than the critical pattern capacity. 

Since fixed point retrieval turns out to yield twice the values of one-step autoasso- 
ciation (see [9]), the information capacity for practical iterative retrieval procedures 
should be betwcen C/2 and C. 
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Appendix 1 

In the following we present some calculations, which are necessary for the treatment 
of the Hebb rule. 
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Proposition 1. 

( ~ n p ) - ' / 2 e - " / 2  (1 - t") < ~ ( - t )  = 1 - ~ ( t )  (2pt2)-'/ze-t1/2 

proof. Since x 2  = t 2  + (r - .t)2 + 2 t ( x  - t ) ,  we have 

e - ~ 2 / a  dx = e- t ' /z  e-za/ze-zt dx, 1- L- 
From this and with e-='/' < 1 we obtain the second inequality directly (since 
J," e-zt d z  = 1 / t  ) and the 6rst one after partial integration (since J," le-=* d r  = 

Proposition 2. With the definitions of section 4 for the Hebb rule, it holds that 

1 /9 0 

Proof. Again x = (1, 1, ..., O,O, ...), so in the following we consider only the left 
upper IC2 block of c i j .  

since E(s) = k 2 M p 2 / 2 ,  d ( s )  = E ( s )  and 0 = k M p 2  + ke  (see proposition 1). 

(ii) Let INij : i = 1, ..., k/l} be a partition of each column j with 1iVijI = 1. T 
denotes the smallest set of N i j  which covers the left lower triangle completely. We 
have 

The last estimate follows from proposition 1. 
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