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Abstract Periodic neural activity not locked to the stimulus
or to motor responses is usually ignored. Here, we present
new tools for modeling and quantifying the information trans-
mission based on periodic neural activity that occurs with
quasi-random phase relative to the stimulus. We propose
a model to reproduce characteristic features of oscillatory
spike trains, such as histograms of inter-spike intervals and
phase locking of spikes to an oscillatory influence. The pro-
posed model is based on an inhomogeneous Gamma process
governed by a density function that is a product of the usual
stimulus-dependent rate and a quasi-periodic function. Fur-
ther, we present an analysis method generalizing the direct
method (Rieke et al. in Spikes: exploring the neural code.
MIT Press, Cambridge, 1999; Brenner et al. in Neural Com-
put 12(7):1531–1552, 2000) to assess the information content
in such data. We demonstrate these tools on recordings from
relay cells in the lateral geniculate nucleus of the cat.

1 Introduction

Oscillatory activity is ubiquitous in the brain, manifesting
itself on a macroscopic level in EEG and MEG recordings as
“brain waves” and on the level of single neurons in micro-
electrode recordings as periodic spike patterns. There are dif-
ferent forms of oscillations. Traditionally one distinguishes
oscillations that co-occur with a behavioral condition such
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as sensory stimulation from ongoing oscillations that are
spontaneous, that is, present independently of the behavioral
condition. When co-occurring with stimulation, two different
types of oscillations have been discerned: Stimulus-evoked
oscillations are phase-locked to the stimulus, that is, the phase
of the periodicity in neural activity can be reproduced by
repeating the same stimulus. In contrast, in stimulus-induced
oscillations the phase is variable with respect to the stimulus
and cannot be predicted from one stimulus trial to the next.

In various sensory systems, it has been shown that neural
oscillations that co-occur with stimulation play an impor-
tant role for the coding of sensory information. Examples
are the olfactory system in species ranging from insects to
mammals (Adrian 1942; Freeman 1972; Gelperin and Tank
1990; Laurent and Davidowitz 1994), the whisker system
in rats (Szwed et al. 2003) and the somatosensory system
in primates (Ahissar and Vaadia 1990). The motivation for
our present study is the question whether oscillations that
are spontaneous or not phase-locked to the stimulus can
have roles in information coding and transmission. This is
conceivable since ongoing or non-stimulus-locked oscilla-
tions could still be influenced by the stimulus and thereby
carry stimulus information. However, to date, this question
has not been satisfactory addressed. For example, consider
the visual system. Over the last four decades, numerous stu-
dies of various vertebrate species have reported oscillatory
activity in the early visual system (Heiss and Bornschein
1966; Laufer and Verzeano 1967; Rodieck 1967; Neuen-
schwander and Singer 1996; Castelo-Branco et al. 1998;
Ishikane et al. 2005; Montemurro et al. 2008). These oscilla-
tions are sometimes stimulus-evoked but often spontaneous.
The question of whether they are systematically influenced
by the visual stimulus and what their functional role could
be, has been subject of controversy and is still not resol-
ved. One difficulty with addressing this question is the lack
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of applicable models and analysis tools. To fill this gap, we
propose two new theoretical tools for studying the function of
oscillatory activity: a spiking neuron model that reproduces
the characteristic statistical properties of oscillatory neurons
and a method to quantify the information of oscillatory spike
trains even in the absence of stimulus-locking.

One possibility how ongoing oscillations can be used to
convey stimulus information is in phase coding schemes,
in which relative phases encode information. A prominent
example is phase coding of spatial location by place cells
in rat hippocampus. The spike phase relative to theta oscil-
lations in the EEG encodes additional information about
the location of the rat (OKeefe and Recce 1993). Another
example for phase coding was reported in the visual system.
(Neuenschwander and Singer 1996) have found that spatially
extended light stimuli can synchronize the ongoing oscilla-
tory activities in retinal ganglion cells and that this synchroni-
zation is transmitted by LGN neurons. Information encoded
in phases of ongoing oscillations in synaptic input could be
used by neurons in various ways: it could be recoded, trans-
formed, or, like in the LGN cells mentioned, it could simply
be preserved in the spike train and thus be used to transmit
information to the next processing stage downstream. Here
we concentrate on investigating the role of ongoing oscilla-
tions in information transmission by asking how a neuron’s
spike train can capture the phase of an oscillatory trend in
its synaptic input. The methods we will describe are gene-
ral in that they examine a necessary condition that observed
ongoing oscillations can have a role in transmitting informa-
tion, independent of the coding scheme and of knowing what
information is transmitted.

Specifically, our aim is to model and measure how infor-
mation in oscillation phases can be transmitted by a single
neuron and how this transmission can coexist with informa-
tion transmission utilizing spike rate. As will be shown in
a model, the two information channels do not interfere and
can be used to multiplex information if the oscillations are
on a faster time scale than the rate modulations. Further, we
introduce a method to quantify the additional information
encoded in the second channel. If this additional informa-
tion is insignificant, the role in information transmission can
be ruled out. Importantly, however, a positive result hints
at a functional role of the ongoing oscillations and encou-
rages further investigations addressing what specific coding
scheme is employed and what stimulus information is enco-
ded. Thus, our method is a first step in assessing the functio-
nal significance of ongoing oscillations and it can be applied,
even if it is unknown what kind of information is encoded.

We applied our new tools to recordings from relay cells
in the lateral geniculate nucleus (LGN) of cat from the lab of
Judith Hirsch, USC. Whole-cell recordings in vivo were used
to record retinal excitatory postsynaptic potentials (EPSPs)
and the spikes they evoke in response to naturalistic stimuli

(movie sequences of 30 s length). Cluster analysis of the
intracellular signal allowed us to label excitatory synaptic
inputs (EPSPs) in the intracellular signal and to separate
these from spikes (for detailed methods of experiments and
clustering, see Wang et al. (2007) and Koepsell et al. (2008)).
Thus, the data we use in this paper consist of pairs of spike
trains for each geniculate relay cell, the train of spikes produ-
ced by the relay cell and the train of presynaptic spikes pro-
duced in the retinal ganglion cell(s) projecting to the relay
cell. Our method reveals additional information that is not
captured in the classical rate-coding paradigm. Remarkably,
the amount of additional information is commensurate with
the rate-coded information and can in some cases even sur-
mount it.

The paper is outlined as follows: To make the text self-
contained, Sect. 2 briefly revisits point process models for
spike trains. In Sect. 3, a model is presented for reproducing
the periodicity observed in measured neural spike trains. In
Sect. 4, an information theoretical approach is described to
measure information in oscillatory activity. In Sect. 5, we fit
the parameters of the model to reliably reproduce the proper-
ties of periodic spike trains from cells recorded in LGN. Fur-
thermore, we quantify the information rates in spike trains
with oscillations. Finally, in Section 6 we discuss possible
interpretations of the results from the information theoretic
analysis regarding potential computational functions of the
oscillations in retina and LGN.

2 Point process models for spike trains

In this section, we review the use of point processes in order
to model a sequence of action potentials or spikes. Each spike
is an impulse of about one millisecond duration with a ste-
reotyped shape (Hodgkin and Huxley 1952). Thus, we can
characterize the activity of a neuron by its spike train, the set
of time points {t1, t2, . . . , tn} at which the spikes occur.

2.1 Homogeneous point processes

The simplest case is when spikes are described as homoge-
neous Poisson processes, that is, point processes that occur
independently with a probability density or rate λ that is
constant in time. If the time axis is divided into small bins
dt , the probability of a spike in any of the time bins is λdt .
The observation of an inter-event interval τi = ti − ti−1
relies on the conjunction of a spike occurring in the time
bin at ti and the “survival” of a preceding empty interval of
length τi . The survival probability of the spike-free interval
is given by the joint probability that neither of its τi/dt − 1
time bins contains a spike. Thus, the probability of an inter-
spike interval is given by the product of probabilities of
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τi/dt independent events, which can be approximated by the
exponential distribution

p(τi )dt = λdt (1 − λdt)τi /dt−1 ≈ λe−λτi dt . (1)

This approximation is valid for λdt # 1 and τi/dt $ 1 and
becomes exact for dt → 0.

One can also compute the interval distribution between
event pairs in a train of independent spikes that are not directly
consecutive but have k−1 spikes in between, which leads to
the Gamma distribution with shape parameter k

p(τ )dt = λdt
(λτ )k−1

(k − 1)! (1 − λdt)τ/dt−k ≈ λkτ k−1e−λτ

#(k)
dt,

(2)

where #(k) is the Gamma function. If the shape factor in the
Gamma distribution is an integer, it is an Erlang distribution.
Note that the Gamma distribution describes the interval den-
sity in a subsampled Poisson process consisting of every k-th
spike. Therefore, the Gamma distribution for k = 1 reduces
to the exponential distribution. However, as k becomes larger
than one, the shape of the distribution changes qualitatively:
Whereas the exponential distribution decreases monotoni-
cally with increasing interval size, the Gamma distribution
for k >1 is maximal for a certain intermediate interval length.

It has been known for some time that the Gamma dis-
tribution matches inter-spike-interval (ISI) distributions of
real spike trains in response to stationary stimuli much better
than a exponential distribution (Kuffler et al. 1957; Perkel
et al. 1967). Further, it has been shown that the Erlang pro-
bability density describes the ISI distribution of a non-leaky
stochastic integrate and fire model with a fixed threshold
that is driven by excitatory Poisson inputs with constant rate
(Tuckwell 1988). However, one should add that the absence
of short intervals in real spike trains is caused by the neu-
ronal refractory period, a short-lived history effect that pre-
vents a spike from being generated briefly after another spike.
For the sake of simplicity we will resort in the reminder to
the use of Gamma distributions although explicit modeling
of the refractory period should yield subtle differences. For
example, the Gamma process eliminates leading and trai-
ling spikes of short intervals with equal probability whereas
modeling the refractory period should preferentially remove,
or suppress, the trailing spike.

2.2 Inhomogeneous Gamma process

Whereas the spike rate of the homogeneous point process is
constant, the firing rate of a neuron is generally a function
of time, λ(t). Changes in firing rate reflect changes in the
stimulus, as well as other time dependent influences on the
neuron. Rate changes that are systematic and reproducible
are informative for understanding what the neuronal activity

is encoding. Equation (2) can be generalized to describe the
probability density of the inhomogeneous Gamma process
(Barbieri et al. 2001)

pt (τ ) = kλ(t + τ )

#(k)



k

t+τ∫

t

λ(u)du




k−1

× exp



−k

t+τ∫

t

λ(u)du



, (3)

where pt (τ ) is the probability of a spike interval τ given that
the last spike was at time t . To model an actual spike train,
the function λ(t) has to be estimated. In principle, this can
be done by low-pass filtering of the raw spike train. Howe-
ver, on single spike trains this estimate is noisy and thus it
is hard to separate systematic rate changes from estimation
errors and noise fluctuations. In the next section we describe
experimental designs and methods for using Eq. (3) to model
spike trains that are not only influenced by a time-dependent
stimulus but also by an oscillatory trend.

3 Modeling systematic structure in spike trains

Here, we model two different types of systematic structure in
spike trains, stimulus-locked rate changes and autocorrelative
structure such as periodicities in the firing rate. Both struc-
tures can be superimposed in inhomogeneous spike trains,
and both can potentially contribute to the neural code.

3.1 Modeling spike trains with stimulus-dependent rate
modulation

To track systematic rate changes λs(t) that are locked to the
stimulus s(t), one typically chooses experimental designs
with repetitions of the same stimulus. Then one can average
the spike train over stimulus repeats to form the post-stimulus
time histogram (PSTH), r(t). Using optimization techniques,
such as adaptive kernel estimation (Richmond et al. 1990),
one can find the best parameters for the low-pass filter to
estimate λs(t) from the PSTH r(t). For a given number of
repeats, the power of λs(t) and the inter-trial variability can
be estimated as described in Sahani and Linden (2003).

To model a spike train with stimulus-locked rate modu-
lation one first has to estimate the trial-averaged rate λs(t)
from the PSTH and the mean rate λ̄s = 1/T

∫ T
0 λs(u)du.

Next, the time is rescaled with

t ′ = λ̄−1
s

t∫

0

λs(u)du (4)

in order to obtain a constant rate λ = 1 (Brown et al. 2002).
Finally, the rescaled distribution of inter-spike intervals from
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Fig. 1 Spike interval
distribution, autocorrelation
histogram and spike power
spectrum for an oscillatory LGN
cell. a Inter-spike-interval (ISI)
distribution (top panel) and
autocorrelation histogram
(bottom panel) of one example
LGN cell ( f = 56.6 Hz,
O S = 39.3). b Spectral power
for spikes (continuous line) and
EPSPs (dashed line) of an
example cell (same cell as in a)

A B

Fig. 2 Timing of
retinogeniculate EPSPs and
thalamic spikes recorded
intracellularly from a single
relay cell during the
presentation of natural movies.
a Rasters of timings of EPSPs
for 7 repeats of a natural movie
clip. Inset: Morlet wavelet used
to compute the analytical signal
in b. b Real part of the
analytical signal computed by
band-pass filtering of the EPSP
train (blue curve) and timings of
LGN spikes (red markers)

A

B

the experiment can be fitted by a homogeneous Gamma
distribution (2) with fixed rate λ = 1 (Kuffler et al. 1957). The
shape parameter k is determined from the moments (mean
τ̄ and variance σ 2

τ ) of the empirical rescaled ISI distribution
as: k = τ̄/σ 2

τ , see Barlow et al. (1957) and Barbieri et al.
(2001).

3.2 Modeling oscillatory rate modulation

Stimulus-locked oscillatory structure is preserved by trial
averaging and therefore directly reflected in the PSTH. Thus,
the oscillatory spike rate can be obtained from trial averaging
and used to model the spike train, just as described in the pre-
vious subsection. However, neural oscillations that are not
stimulus-locked have to be modeled differently since they
average out across multiple stimulus repetitions and are the-
refore not captured in the PSTH. In the reminder we describe
how to detect and quantify such oscillations and ultimately,
how to model the spike trains.

3.2.1 Detecting and quantifying oscillations

Neural oscillations have been assessed in the time domain
based on autocorrelograms and ISI histograms. If stable oscil-
lations are present, a modulated autocorrelogram reflects
the periodic structure and also the ISI histogram becomes

multi-peaked (Heiss and Bornschein 1966; Ogawa et al. 1966;
Munemori et al. 1984; Castelo-Branco et al. 1998). Alterna-
tively, spectral methods have been developed. Because spec-
tral power estimates based on the plain Fourier transform of
spike trains are quite noisy, multi-taper methods have been
applied to improve the accuracy of detecting and characte-
rizing peaks in the power spectrum (Jarvis and Mitra 2001).
Recently, the oscillation score (OS) has been proposed which
exploits structure in time and frequency domain (Muresan
et al. 2008). To compute the oscillation score, the autocorre-
logram is first filtered and the central peak is removed (since
it is not indicative of oscillatory structure). Next, the result
is Fourier transformed and the peak frequency is detected
in the spectrum. Finally, the oscillation score is defined as
the ratio between peak height and baseline in the spectrum.
The oscillation score is a reliable indicator for oscillatory
trends because it is insensitive to confounding factors, such
as refractory effects and bursts.

Figure 1 displays autocorrelograms and ISI histograms for
relay cells of the lateral geniculate nucleus of the cat during
visual stimulation with natural stimuli. As one can see, for
this cell the oscillations are prominent according to either of
the described criteria. The timings of synaptic inputs (EPSPs)
of this cell are shown in Fig. 2a together with the spikes they
evoke (Fig. 2b). The cell belongs to a subset of relay cells in
the LGN with oscillatory spike trains that otherwise behave
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Fig. 3 Phase distribution of spikes and ISI distributions after time
rescaling. a Phase distribution of spikes with respect to oscillation
extracted from the EPSP train (top panel) and Shift predictor–phase
distribution of spikes with respect to oscillation extracted from EPSP

train from other trial (bottom panel). b ISI distribution rescaled by
stimulus-influenced rate λs (top panel) and ISI distribution rescaled by
the modulated rate used in the QPG model (11) (bottom panel)

quite regularly, having the usual center-surround receptive
fields and refractory periods of about one millisecond (see
upper panels), see Koepsell et al. (2008) for more details.

3.2.2 Estimating oscillation amplitude and phase

To model the periodic structure of the spike train induced
by afferent inputs to the neuron, the instantaneous oscilla-
tion phase in the input has to be estimated for each point in
time (see Fig. 2). For LGN cells it known that the synap-
tic inputs can exhibit periodicity originating from the retina
(Heiss and Bornschein 1966; Ogawa et al. 1966; Rodieck
1967; Castelo-Branco et al. 1998). The LGN recordings we
analyze here are in vivo whole-cell recordings and we can
extract the train of EPSPs—the input spike train—from the
measured membrane potential.

To determine the instantaneous phase of the input oscilla-
tion of an LGN cell we compute the complex analytic signal
of the input spike train (EPSPs)

A(t) = A0(t)exp(iφ(t)) (5)

by convolving the EPSP train with a complex Morlet wavelet
(inset of Fig. 2a)

w(t, f ) = Ce2π i f t e−t2/2σ 2
t (6)

centered at a frequency f with temporal width σt and nor-
malization factor C. The amplitude A0 of the analytic signal
corresponds to the local power in the frequency band cente-
red at f with bandwidth σ f = 1/(2πσt ).

The angle φ(t) of the analytic signal defines the instanta-
neous phase of the input oscillation. To assess the influence
of the input oscillation on the LGN spike train, we measure
how the spikes are distributed over the phase of the input
oscillation (see Fig. 2b). The top panel in Fig. 3a shows that

the resulting phase histogram is peaked, that is, the spikes
are more likely to occur at a certain phase in the input oscil-
lation. If one uses the input phase from another trial to form
the phase histogram of spikes (shift predictor), the resulting
histogram shown in the bottom panel of Fig. 3a is flat, indi-
cating that the input oscillation is not locked to the stimulus.
To determine the optimal frequency for this analysis we used
the frequency determined from the oscillation score measu-
rement (see Sect. 3.2.1). To quantify the spike locking to
the input oscillation, the phase histogram is fitted with a von
Mises (or cyclic Gaussian) distribution

M(φ|κ, µ) = eκcos(φ−µ)/(2π I0(κ)). (7)

The mean phase µ is computed from circular mean of the
spike phase distribution

〈eiφ〉 = 1
N

N∑

n=1

eiφ(tn) = reiµ. (8)

The concentration parameter κ is obtained by numerical solu-
tion of the equation

I1(κ)/I0(κ) = r, (9)

where I0 and I1 are the modified Bessel functions of zeroth
and first order. The concentration parameter κ is a measure
of phase locking; the phase distribution becomes uniform for
κ → 0 and approaches a Gaussian distribution with variance
σ 2 = 1/κ for large κ , see inset in Fig. 3a. The phase concen-
tration is often characterized by the circular variance

var(φ) := 〈|eiφ |2〉 − |〈eiφ〉|2 (10)

which assumes values between zero and one. The circular
variance is related to the concentration parameter κ by
var(φ) = 1 − I1(κ)2/I0(κ)2. The von Mises Distribution
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Fig. 4 Quasi-periodic Gamma
(QPG) model and simulated
data. a Schematics of
quasi-periodic gamma model.
b ISI distribution (top panel)
and autocorrelation histogram
(bottom panel). c Phase
histogram of spikes with respect
to oscillatory trend. The
simulations of b and c use
parameters fitted to the cell
shown in Figs. 1 and 3

Receptive
Field

Network
Oscillations

Gamma
Point Process

Spike Train

A

B C

M(φ|κ, µ) is the maximum entropy distribution for a given
circular mean and variance.

3.2.3 The quasi-periodic gamma model

To understand the effect of the combination of stimulus-
dependent rate modulation and the influence of input oscilla-
tions that are not locked to the stimulus, we devised a simple
model to include both effects, the quasi-periodic gamma
(QPG) model (Fig. 4a). It describes spike generation by an
inhomogeneous Gamma process (3) with a factorial instan-
taneous rate λ(t) given by the product

λ(t) = 2πλs(t)M(φ(t)|κ, µ). (11)

The first factor λs(t) is the stimulus-locked rate determined
as described in Sect. 3.1. The second factor is a von Mises
distribution M(φ(t)|κ, µ) describing the periodic modula-
tion that can be fit to data as described in Sect. 3.2.2. In order
to get independent estimates of stimulus-locked and periodic
modulations, it is important that the oscillations have a higher
frequency than the frequency content of the stimulus-locked
modulation. For LGN cells in cat these two frequency bands
are well separated, since the stimulus signal rolls off at fre-
quencies well below the ones of the observed oscillations in
the gamma frequency band (40–80 Hz). In the following, we

use the phase of a random band-pass signal with frequency
f ±σ f . In total, the QPG model has the five free parameters:
k, κ, µ, f, σ f . In general, however, the instantaneous phase
φ(t) of the periodic activity may be a function of the sti-
mulus. The relations between the described QPG model and
previous models will be considered in the Sect. 6.

4 Information in oscillatory spike trains

In this section we describe how the information content in
oscillatory spike trains can be estimated. Various methods
have been developed for estimating information rates of neu-
ral responses, e.g., Eckhorn and Popel (1975) and Rieke et al.
(1999), for an overview, see Borst and Theunissen (1999).
Most of these methods depend on certain properties of the
statistics of signal and noise in the stimulus as well as in the
neural response, for example many models assume Gaus-
sianity. Here, we apply the direct method which is appli-
cable to signals with arbitrary statistics to the QPG model of
Sect. 3.2.3.

4.1 Direct method

The direct method (Rieke et al. 1999; Brenner et al. 2000)
estimates the mutual information between an event E in the
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Fig. 5 Information rates for
experimental data (natural
stimulus with 20 repeats).
a Information rate as a function
of the size of the time bin
(circles). Linear extrapolation to
zero bin width yields 0.50
bit/spike (dashed line).
b Information rate as a function
of the inverse number of repeats
(circles). Linear extrapolation to
infinite number of trials yields
0.45 bit/spike (dashed line)

A B

neural response and a time-varying stimulus s(t). If the infor-
mation is conveyed by single occurrences of event E (and not
temporal patterns), the information per event is given by

I (E; s) = S[E] − S[E |s] bit/event. (12)

If the distribution of event E is uniform during the trial t ∈
(0, T ), that is, p(t) = 1/T , the unconditional entropy is
simply S[E] = log2 T . S[E |s] is the conditional entropy of
the event E , given a time-varying stimulus s(t)

S[E |s] =
∑

s∈{s}
p(s)

T∫

0

dt p(t |s) log2 (p(t |s))

=
T∫

0

dt p(t |s) log2 (p(t |s)) (13)

If the stimulus is rich enough, the ensemble average over
stimuli and the time average over the stimulus are equivalent
(Brenner et al. 2000) and thus the former can be omitted in
Eq. (13).

The conditional distribution of spikes can be estimated
empirically by recording neural responses to repeats of the
stimulus s(t) and forming the PSTH r(t) (see Sect. 3.1). The
conditional distribution is then given as p(spike at t |s) =
r(t)/(T r̄). Thus, each spike transmits the information
(Brenner et al. 2000)

I (spike; s) = 1
T

T∫

0

dt
r(t)

r̄
log2

(
r(t)

r̄

)
bit/spike. (14)

The accuracy of the information rate estimated for finite data
depends on the bin width (t used to compute the integral in
Eq. (14). The estimate converges to the true entropy only
asymptotically (limit of zero bin width and infinite num-
ber of trials). More specifically, narrow bin sizes with finite
data lead to a pronounced overestimation of the amount of
information transmitted. The circles in Fig. 5a show how for
a data set with 20 trials the information is overestimated as
the bin size decreases. The estimate is improved, however,

by a linear extrapolation ((t → 0) of the values for lar-
ger bin size, Fig. 5a, dashed line. The resulting value is 0.50
bit/spike, see (see Brenner et al. 2000). Extrapolating this
result in addition to larger numbers of trials (N) also with a
line ((t, 1/N → 0) yielded 0.46 bit/spike (Fig. 5b, dashed
curve).

4.2 The multiconditional direct method

In the following, we apply the direct method to the case of
oscillations that are not locked to the stimulus. If an oscilla-
tion is present, the spike train contains information not only
about the stimulus signal s(t) but also about the phase φ(t)
of the oscillatory trend. To quantify the contribution of the
oscillation to the information rate, the two cases described in
Sect. 1 have to be treated differently; stimulus-locked oscil-
lations and oscillations that are not locked to the stimulus.
Stimulus-locked oscillations are conveyed in the PSTH and
therefore Eq. (14) can be used directly to estimate the mutual
information in single spikes exerted by the stimulus and the
oscillatory trend.

Oscillatory trends that are not locked to the stimulus are
averaged out in the PSTH. Therefore the additional informa-
tion about the oscillation cannot be measured by Eq. (14). 1

Here, we describe the multiconditional direct method that can
measure information in oscillatory activity, even if not locked
to the stimulus. We quantify the information I (spike; s,φ)

that a spike conveys about both the stimulus s(t) and the
phase φ(t) of an oscillatory trend. Note that this is different
from quantifying the stimulus information conveyed by a
spike in a phase coding scheme, which would be I (spike,
φ; s) (see Sect. 6).

The periodic trend function can be described by an
instantaneous phaseφ(t)which increases monotonically with
wrap-around condition φ = φ + 2π . The phase φ(t) is a
quasi-periodic function in time with period P(t): φ(t) =

1 But note that Eq. (14) can still be used to estimate the information in
stimulus-locked rate modulation.

123



Biol Cybern

φ(t+P(t)). The probability of a spike occurring at time t now
depends on both influences, the stimulus and the oscillatory
trend function. At any moment in time t , the joint influence
is fully described by the stimulus s(t) and the current phase
of the oscillatory trend φ(t). The conditional entropy that
includes both influences can then be written

S
[

p(spike at t |s,φ)
]

=
∑

s,φ

p(s,φ)

T∫

0

dt p(t |s,φ) log2 (p(t |s,φ))

=
∑

s

p(s)
∑

φ

p(φ|s)
T∫

0

dt p(t |s,φ) log2 (p(t |s,φ))

=
P∫

0

dφ

T∫

0

dt p(t |s,φ) log2 (p(t |s,φ)) (15)

Here the same argument applies for dropping the ensemble
average over the stimuli as in Eq. (13). In addition, we use the
fact that the oscillations are not stimulus locked and therefore
the instantaneous phase does not depend on the stimulus and
all phases occur equally often: p(φ|s) = 1/(2π).

As before, the conditional distribution p(t |s,φ) can be
acquired empirically by recording neural responses during
multiple repetitions of the stimulus s(t). The response varies
not only with the stimulus but also with the instantaneous
oscillation phase φ(t). To capture both dependencies, an
extended response histogram has to be collected. The stimu-
lus can be parameterized by the relative stimulus time, just
as in the standard PSTH. But because the oscillations are
not stimulus-locked, the histogram requires a second dimen-
sion to represent the instantaneous phase φ(t). The extended
response histogram r(t,φ) contains the response binned by
relative stimulus time t ∈ [0, T ] and instantaneous phase
φ ∈ [0, 2π ]. With proper normalization the conditional pro-
bability is given by: p(t |s,φ) = r(t,φ)/(T r̄). The uncon-
ditional probability of a spike at time t is p(t) = 1/T with
entropy S[p(t)] = log2 T as before.

Using Eq. (12) the multiconditional direct method can be
formulated: The information per spike is given as

I (spike; s,φ)

= 1
2πT

2π∫

0

dφ

T∫

0

dt
r(t,φ)

r̄
log2

(
r(t,φ)

r̄

)
bit/spike (16)

One might ask, what the maximal amount of information
is that could be encoded in the spike train this way. If the
stimulus-locked rate and the periodic oscillations would
encode information independently, which would be optimal,
their respective contribution to the right hand side of formula
(16) would be additive. The contributions from the oscilla-

tions is bounded by the negative entropy of the von Mises
distribution

S [M(φ|κ, µ)] = log2

(
exp(κ I1(κ)/I0(κ))

2π I0(κ)

)
. (17)

Thus, the upper bound of the total information rate of single
spikes in oscillatory spike trains is given by

I (spike; s,φ) ≤ I (spike; s) − S [M(φ|κ, µ)] (18)

with the first term on the RHS obtained from (14) and the
second term from (17). A deviation from this upper bound
indicates mutual information between the phase and the rate
signal which might be utilized for redundant encoding of
information (see Sect. 6).

4.2.1 The phase de-jittering method

An alternative option to determine the information is a
de-jittering method, proposed in Koepsell et al. (2008), in
order to measure the information carried by single spikes in
trials with different values for the instantaneous phase φ(t)
of the oscillation in the inputs. Here, we shift the spikes by an
amount corresponding to their oscillation phase−φ(t)/(2π f )

in order to correct for the effect of different state of the input
oscillation and subsequently measure the single-spike infor-
mation using the direct method (14). This amounts to an
oscillation-dependent rescaling of the time axis and effecti-
vely de-jitters the spike train.

This method relies on the fact that the stimulus-locked
spike rate does not change on the time scale of the oscilla-
tions and therefore is not affected by the de-jittering. Even
though this is only an approximation, the de-jittering method
gives comparable estimates to the multiconditional direct
method (16) and it has the advantage that it requires much
less data to be feasible.

Note that the described method of de-jittering differs from
those that use the stimulus (Aldworth et al. 2005) or the spike
train itself (Richmond et al. 1990).

5 Model fitting and simulation experiments

In this section, we describe how to fit the QPG model to
measured data and apply it to intracellular recordings of tha-
lamic relay cells in cat LGN. We then use the QPG model
to generate different types of surrogate data for testing and
comparing the information theoretic measures described in
Sect. 4.

5.1 Fitting the QPG model to LGN recordings

We fitted the five free parameters (k, κ, µ, f, σ f ) of the model
to match the data of the cell shown in Fig. 1a. Specifically,
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frequency and bandwidth of the oscillatory component was
fitted to the oscillations measured in the input (train of
EPSPs), the concentration and mean of the spike phases was
fitted to the experimental phase histograms and the shape
factor of the Gamma distribution was optimized to match the
output spike train. The center frequency of the oscillation
was set to the frequency determined by the oscillation score
method (see Muresan et al. (2008) and Sect. 3.2.1) and for the
bandwidth we chose σ f = 2Hz, corresponding to the width
of the peak in the power spectrum (Fig. 1b) and a temporal
width of σt = 80ms. To generate the oscillatory component, a
bandpass filter with these parameters was applied to a white-
noise signal throughout the entire recording length, irrespec-
tive of stimulus onsets. Thus, the resulting phase distribution
across trials was flat, as in the experimental data (Fig. 3b).
The concentration parameter κ and the mean phase µ were
determined by fitting the von Mises distribution to the phase
distribution of the spikes using Eqs. (8) and (9). Finally, the
shape parameter k of the Gamma process was determined
by using time rescaling (Brown et al. 2002) as described in
Sect. 3.1 (see Fig. 3b).

The QPG model reproduces the characteristics of the real
data quite well. The simulated ISI histogram and autocor-
relogram in Fig. 4b is very similar to the histograms from
the data in Fig. 1b and also the histograms of spike phases
are similar: simulated data shown in Fig. 4c and real data in
Fig. 3a. Another indication that the QPG model captures the
measured spike train very well is the good match between the
time-rescaled ISI histogram using Eq. (11) and the Gamma
distribution, compare histogram and solid line in Fig. 3b (bot-
tom panel). As a control we rescaled the ISI histogram just
by λs , ignoring the oscillations. The resulting histogram is
clearly not well described by a Gamma distribution, Fig. 3b
(top panel).

5.2 Estimation of information rates

The fitted QPG model was used to create three different types
of simulated data. The surrogate data reflected the entire
structure of the fitted experimental data, as well as the QPG
model permitted. The spike trains in the surrogate data exhi-
bited stimulus-locked modulation and an oscillatory trend
that was not locked to the stimulus. Since it is very difficult
to conduct in vivo recordings over long periods of time, the
number of stimulus repetitions available in the real data is
very limited, in our case to 20 trials. The surrogate data can
be made arbitrarily large and thus they allow to study effects
of data limitation. Further, surrogate data allow to estimate
information measures even though the original data set would
be much too small to achieve a reliable estimation.

For the purpose of comparison we also generated data sets
with the QPG model that had systematic differences from the
real data. The second type of simulated data used all the fit
parameters reflecting the stimulus modulation and the oscil-
lation strength of the experimental data. However, unlike in
the data the oscillatory trend in the model was aligned over
repeats, that is, this data set contained stimulus-locked oscil-
lations. The third type of simulated data reflected only the
stimulus modulation observed in the data but no oscillatory
structure.

First we asked how the results with the standard direct
method depends on the amount of data. We computed infor-
mation rates with Eq. (14) for 20 trials (same number of trials
as in the data) and for 500 trials from the surrogate data. Fig. 6
shows the information rates for the surrogate data in the same
format as Fig. 5. The results for 20 trials (circles in Fig. 6a)
exhibit a similarly strong bias for bin sizes smaller than 30 ms
as is also observed for the experimental data (Fig. 5a). Using
the linear extrapolation from larger bin sizes to estimate the

A B

Fig. 6 Information rates for simulated data using the direct method.
a Information rate using Eq. (14) on 20 trials as a function of the size
of the time bin (circles). Linear extrapolation to zero bin width yields
0.50 bit/spike (dashed line). Information estimates for simulated data
without modulation gives identical results (crosses). Estimates diverge

for bin sizes below about 30ms due to limited data. Information esti-
mates using 500 trials give reliable results for smaller bin sizes (crosses).
b Information rate using Eq. (14) on 20 trials as a function of the inverse
number of repeats (circles). Linear extrapolation to infinite number of
trials yields 0.46 bit/spike (dashed line)

123



Biol Cybern

A B

Fig. 7 Information rates for simulated data using the multiconditional
direct method. a Circles mark the information rate on 500 trials as a
function of the size of the time bin for stimulus-locked oscillations
computed with equation (14). Note the additional information com-
pared to A below 30ms bin size. Diamonds mark the information
rate for non-stimulus-locked oscillations using equation (16). b Infor-
mation rate using equation (16) as a function of the inverse number
of trials. Circles mark the rates obtained with Eq. (14) for stimulus-

locked oscillations. Other symbols denote results obtained with (16) for
non-stimulus-locked oscillations for different numbers of phase bins:
5 phase bins (crosses), 10 phase bins (diamonds), and 20 phase bins
(pluses). Dashed lines are the linear extrapolations. Both methods give
comparable results around 1.5 bit/spike. The red triangle marks the
maximal achievable amount of information rate of 2.13 bit/s computed
by assuming independence of oscillatory and rate-encoded information,
see Eq. 18

information rate as in Fig. 5, the results for the surrogate
data are very similar to the results on the real data in Fig. 5:
0.50 bit/spike for extrapolation to small time bins ((t → 0)
Fig. 6a; and 0.45 bit/spike for extrapolation to small time
bins and large numbers of trials ((t, 1/N → 0), Fig. 6b.
In addition, the surrogate data allow to verify the validity of
the linear extrapolation. The information estimates for 500
trials (crosses in Fig. 6a) lie slightly lower than the ones for
20 trials, as expected, but follow the linear trend to much
smaller bin sizes.

Next, we used Eq. (16) on the surrogate data to assess
the contribution of the not stimulus-locked oscillations to
the information rate of the spike trains generated by the
QPG model. For comparison, we studied also the effect of
stimulus-locked oscillations by applying the standard for-
mula for direct information (14) to the simulated data with
the oscillations aligned across trials. In both cases we used
500 simulated trials. Figure 7 depicts the resulting infor-
mation rates. For the stimulus-locked oscillations (circles)
the additional information due to the oscillations is visible
only at small bin sizes in Fig. 7a and therefore can easily be
overlooked with limited data. In contrast, the result of non-
stimulus-locked oscillations (diamonds) can be extrapolated
from larger bin sizes. But note that the information rate of
not stimulus-locked oscillations relies on an extended res-
ponse histogram (in time and phase) and therefore the requi-
red amount of data is not smaller than for stimulus-locked
oscillations. Therefore, both methods we use in Fig. 7 to esti-
mate the information rates rely on boosting the amount of
data with the QPG model, the extrapolations to zero bin size
could not have been done directly on the experimental data
with only 20 repeats. In the right panel (Fig. 7b) the obtained

estimates for the information rates are extrapolated to infi-
nite number of trials using different numbers of phase bins
in the extended response histogram. Three observations with
the resulting asymptotic information rates should be empha-
sized. First, oscillations contribute a significant amount of
information. They add about 1 bit/spike for this cell, more
than twice the information contained in stimulus-locked rate
modulations alone (cf. Fig. 6a, b). Second, the information
rates have a similar value, around 1.5 bit/spike, whether or not
the oscillations are locked to the stimulus. Note that the rates
for not stimulus-locked oscillations converge to 1.5 bit/spike
for 10 or more phase bins. Third, the measured informa-
tion rates reach about 70% of the value one would expect,
if stimulus-locked and oscillatory modulation were entirely
independent. The upper bound (18) for this cell that was best
fitted with κ = 2.44 is 2.13 bit/spike, as marked by the red
triangle in Fig. 7b.

We have investigated whether the de-jittering method in
Sect. 4.2.1 gives comparable results to the multiconditio-
nal method to estimate the information in oscillatory spike
trains. The de-jittering method has been used in Koepsell
et al. (2008) to estimate information rates. However, since
the limited amount of experimental data, the information
of the de-jittered spike train has been estimated using the
signal-to-noise ratio and the assumption of a Gaussian infor-
mation channel. Here, we de-jittered the simulated data as
described in Sect. 4.2.1 and applied equation (14) to deter-
mine the information rate in single spikes. Figure 8a, b shows
that the information rate estimation using de-jittering agrees
quite well with the results obtained by the more rigorous
treatment described in this paper. This comparison confirms
that the de-jittering method is a viable method to estimate
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A B

Fig. 8 Estimating Information rate using spike de-jittering method.
a Information rate as a function of bin width for single spikes obtai-
ned by formula (14) after spike de-jittering (circles): Using a reference
oscillation φ0(t) = f · t , individual spikes have been shifted by the

phase-dependent amount φ0 − φ(t)/(2π f ). The obtained information
rate is comparable to the one obtained by the multiconditional method
(diamonds). b Extrapolation of the information estimate in A to infinite
number of trials

the information in oscillatory activity on limited amounts of
data without explicitly modeling the data.

6 Discussion

6.1 Phase transmission versus phase coding

The phenomenon we have focused on in this paper is phase
coupling of oscillatory neural activity between input and out-
put of a neuron that also responds to an externally defined
stimulus. Specifically, we proposed a model and a method
to measure information transmission rates if the oscillations
are not locked to the stimulus. In the phase transmission we
consider, each spike provides information about the external
stimulus and about the phase of the input oscillation. The
appropriate measure for the information rate in this trans-
mission process is I (spike; s,φ).

It is important to emphasize how phase transmission is
different from a traditional spike phase code and how both
schemes are related. In a spike phase code, such as in place
fields of the hippocampus, information is encoded by rela-
tive shifts of spikes with respect to a reference oscillation
(theta waves). To read off the relative phases, the receiver
has also to have independent access to the oscillatory refe-
rence signal. Accordingly, the transmitted information rate
should be measured by I (spike,φ; s), where φ are the rela-
tive phases between spikes and reference signal. Once oscil-
lations are used to phase-encode information, one can ask
how neurons downstream can pick up phase structure in the
spike trains, carrying either phase encoded information or
the reference signal, and reliably reproduce (or transmit)
it in their output. This type of phase transmission we have
investigated in oscillatory LGN cells.

Two recent studies provide evidence for additional phase-
coded information in the visual system, however with respect

to stimulus-locked oscillations: Montemurro et al. (2008)
have shown that the spike phase relative to slow (<12 Hz)
oscillations in the local field potential of V1 which are locked
to the stimulus carries additional stimulus information. Masse
and Cook (2008) have shown that the spike phase in MT rela-
tive to oscillations which are driven by the stimulus frame
refresh carries additional information. It has been an open
question whether spike phases relative to spontaneous oscil-
lations that are not locked to the stimulus encode additional
information. For the LGN data we have provided evidence
that phase information is reliably transmitted. However, what
type of phase code is employed and what information is enco-
ded has not been addressed in this paper.

6.2 Potential artifacts and sources of bias in parameter
estimation

Oscillatory artifacts due to line noise or due to frame and
refresh rates in the monitor are of concern in all studies
involving oscillations in neural responses to visual stimuli.
Therefore, controls have to be conducted. To control for line
noise one can search for spectral peaks centered at the line
frequency of 60 Hz. Weak line noise artifacts were visible
in some of the raw membrane recordings, however, never in
the spike or EPSP trains we extracted. Further, artifacts in
the membrane voltage were always easy to discern from true
spectral peaks by their narrow width. To control for moni-
tor artifacts one can use the monitor refresh signal in the
phase locking analysis described in Sect. 3.2.2. The resul-
ting phase distributions were flat. Furthermore, we observed
that the oscillations persisted in spontaneous spiking activity
when the eye was closed (data not shown).

Further, one has to exclude that the procedure described
in Sect. 3.2.2 for estimating an oscillation phase from intra-
cellular recordings introduces “false” phase locking between
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inputs and outputs of the LGN cells. The phase estimation
can in fact become noisy if the event rates become low and
errors in the event detection can introduce biases. In our case,
however, the event rates where quite high, above 30 spikes/s
on average (see Fig. 2a). Furthermore, the main imperfec-
tion in the event detection (to miss input events near spikes)
would weaken the phase locking effect and not introduce
false ones.

If the information rate is estimated with limited data it is
possible that the oscillations are not fully averaged out in the
PSTH. If the frequency bands of oscillations and stimulus-
locked modulation are separated, the standard practice of
using low-pass filtering in computing the PSTH (Sect. 3.1)
reduces this effect already significantly. Potential residual
oscillations in the PSTH lead to overestimation of the infor-
mation in the stimulus-dependent rate modulation. Note that
this potential bias does not introduce an artifactual informa-
tion gain due to oscillations. Actually, it would work against
finding a significant gain in information through the oscilla-
tory activity because the overestimated quantity is subtracted.

6.3 Relations between our methods and earlier work

The QPG model we devised to describe phase locking of
neural responses to an oscillatory input is related to some
earlier models. In the limit of zero bandwidth, the oscilla-
tion phase becomes φ(t) = f t and the QPG model (with
constant visual input) degenerates to a modulated Gamma
process with a cyclic trend (Berman 1981). Koyama and
Shinomoto (2005) have proposed a model for oscillatory
spike trains that uses 1 + σ cos(φ) instead of the von Mises
function as the factor to convey an oscillatory trend. We chose
the von Mises distribution to model phase modulations since
it is the highest entropy distribution for a given phase concen-
tration and is able to model arbitrary phase concentrations. In
contrast, the Koyama and Shinomoto (KS) model is limited
to describing phase concentrations below κ = 1.2 corres-
ponding to a circular variance of var(φ) = 0.75, even for
maximal modulation σ . This limitation of the KS model can
be easily verified using Eqs. (8)–(10).

We have derived the multiconditional information rate
(16) to measure the information rate through single spikes
in a neuron that experiences two simultaneous influences, a
stimulus-locked rate modulation and a periodic rate modu-
lation that is not locked to the stimulus. This method is an
extension of the direct method applied to single-spike events
(14) (Rieke et al. 1999; Brenner et al. 2000).

6.4 Functional roles of spontaneous oscillations

If the observed oscillations are ongoing and contain no
stimulus-dependent modulation, the QPG model performs
an operation similar to amplitude modulation (AM) in a radio

broadcast signal: The stimulus-dependent rateλs corresponds
to the modulation signal, the oscillations correspond to the
high-frequency carrier in an AM signal. Analogous to broad-
cast transmission, the stimulus signal is modulated into the
high-frequency band. However, unlike in a radio signal, the
low frequency signal is still present in the spike train (because
the multiplication is between two positive rate functions in
the QPG model and therefore the resulting signal has no sym-
metric amplitude envelope). Thus, the spike train contains the
stimulus signal twice, it can either be decoded by low pass
filtering (usual method of rate decoding) or by band pass fil-
tering. If the frequencies of the stimulus and the frequency
of the ongoing oscillations are well separated, they can be
transmitted and read out independently from each other. Fur-
thermore, the low-pass and the band-pass signal are robust
to different types of noise. Therefore, this redundant coding
scheme could be used to achieve a more reliable readout of
the stimulus signal downstream. For example, band pass filte-
ring could be realized by tuned intrinsic subthreshold oscil-
lations (Nowak 1997; Hutcheon and Yarom 2000; Fellous
et al. 2001; Tiesinga et al. 2008).

In addition to robustness, oscillatory structure of the
afferent input into cortex could subserve various other func-
tions. First, it can support time-windowing in the readout for
reducing crosstalk from all other neural activity (that does
not share the oscillation). Second, common oscillations in
different cells can produce synchrony between LGN spikes
which has been shown to improve the success rate to acti-
vate cortical cells (Usrey et al. 2000; Bruno and Sakmann
2006), for a model, see Kenyon et al. (2004). Third, it can
enable oscillatory top-down attentional mechanisms to select
between specific input streams (Fries et al. 2007).

6.5 Roles and coding mechanisms of stimulus-influenced
oscillations

If the oscillations are stimulus-influenced, although not
stimulus-locked, they carry information about the stimulus. If
this information were overlapping or identical with the infor-
mation in λs , this redundancy could serve similar functions
as described for stimulus-independent ongoing oscillations.
However, if the information carried in the oscillations would
represent stimulus properties not conveyed by λs , the oscil-
lations would enable a multiplexing in spike trains, that is,
two different signals could be carried by one spike train as
seen, e.g., in the olfactory system (Stopfer et al. 2003). The
multiplex scheme could employ a number of different enco-
ding schemes. For example, the coherence of a spike train
could be modulated or the phase of neural oscillations or of
spikes relative to these oscillations could encode additional
stimulus information (Gray et al. 1989; Neuenschwander and
Singer 1996; Samonds et al. 2006; Montemurro et al. 2008;
Masse and Cook 2008).
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The QPG model does not explicitly model how additio-
nal stimulus properties are encoded in the oscillatory signal.
Nevertheless, we can use the QPG model to estimate the
information that can be submitted using the oscillations as
an additional information channel. Using a simple back-of-
an-envelope calculation we can estimate the information in
a phase code that synchronizes the oscillations (and thus the
spikes) of two cells (Gray et al. 1989; Neuenschwander and
Singer 1996; Samonds et al. 2006) in a population of neurons.
Since the oscillations in the fitted model have a bandwidth of
σ f = 2 Hz, phase alignments cannot be instantaneous: The
maximum relative phase adjustment necessary to synchro-
nize two cells takes about 125 ms and is therefore within the
behaviorally relevant range. Even with a conservative infor-
mation estimate of 1 bit per cell in 125 ms (corresponding to
two possible phases for say figure and ground), the encoded
information would be about 8 bit/s and therefore comparable
to the rate-encoded information of 9 bit/s (0.45 bit/spike at a
typical rate of 20 spikes/s). Thus, the oscillation-based chan-
nel can encode stimulus information in the oscillation phase
that is independent from the type of information conveyed
by the rate.

If such an additional oscillation-based information chan-
nel exists in the early visual system, the most interesting ques-
tion is, of course, what properties of the stimulus the channel
conveys. So far, this question has not be answered for the
early mammal visual system. However, a recent study of the
impact of retinal oscillations on the behavior of frogs sug-
gest the intriguing possibility that retinal oscillations could
encode nonlocal information such as spatial or temporal sti-
mulus context (Ishikane et al. 2005).

7 Summary

The paper presented new theoretical tools for studying the
functional roles of oscillatory activity in the brain. To simu-
late oscillatory spike trains that are phase-locked to an oscil-
latory influence that is not stimulus-locked we described the
quasi-periodic gamma (QPG) model. This model generates
spikes using an inhomogeneous Gamma process modulated
by the product of a stimulus-influenced rate and a quasi-
periodic von Mises distribution. The QPG model can be fitted
to oscillatory recordings in the LGN of the cat and reproduces
the main characteristics of the data, such as ISI histogram,
oscillation score and spike-phase histograms. To capture the
information in the spike train about oscillations that are not
locked to the stimulus, we propose the multiconditional direct
method (16), a generalization of the direct method applied to
single-spike events (Rieke et al. 1999; Brenner et al. 2000).
We estimated information rates in oscillatory LGN cells and
discussed the possible consequences from our finding that
oscillations contribute significantly to the information car-

ried in the spike train. However, the proposed computational
methods are not confined to visual neurons, they are general
tools for investigating the transmission of oscillatory struc-
ture in neural activity in the brain.
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