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Localized changes in cortical blood oxygenation dur-
ing voluntary movements were examined with func-
tional magnetic resonance imaging (fMRI) and evalu-
ated with a new dynamical cluster analysis (DCA)
method. fMRI was performed during finger move-
ments with eight subjects on a 1.5-T scanner using
single-slice echo planar imaging with a 107-ms repeti-
tion time. Clustering based on similarity of the de-
tailed signal time courses requires besides the used
distance measure no assumptions about spatial loca-
tion and extension of activation sites or the shape of
the expected activation time course. We discuss the
basic requirements on a clustering algorithm for fMRI
data. It is shown that with respect to easy adjustment
of the quantization error and reproducibility of the
results DCA outperforms the standard k-means algo-
rithm. In contrast to currently used clustering meth-
ods for fMRI, like k-means or fuzzy k-means, DCA
extracts the appropriate number and initial shapes of
representative signal time courses from data proper-
ties during run time. With DCA we simultaneously
calculate a two-dimensional projection of cluster cen-
ters (MDS) and data points for online visualization of
the results. We describe the new DCA method and show
for the well-studied motor task that it detects cortical
activation loci and provides additional information by
discriminating different shapes and phases of hemody-
namic responses. Robustness of activity detection is
demonstrated with respect to repeated DCA runs and
effects of different data preprocessing are shown. As
an example of how DCA enables further analysis we
examined activation onset times. In areas SMA, M1,
and S1 simultaneous and sequential activation (in the
given order) was found.
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INTRODUCTION

Due to the advent of functional magnetic resonance
imaging (fMRI) regional hemodynamic changes follow-
ing neuronal activation can now be monitored in the
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brain with high spatial resolution (Ogawa et al., 1990).
But the various methods used for fMRI signal extrac-
tion in conjunction with the applied mode of cerebral
activation are still subject of an intense and contradic-
tory discussion (Bandettini et al., 1995a; Kim et al.,
1997; Ogawa et al., 1990). There are single-voxel-based
methods of activation detection like z-mapping (Le
Bihan et al., 1993; Cohen and Bookheimer, 1994),
parametric tests (i.e., t test) (Xiong et al., 1995a) and
nonparametric tests (i.e., Kolmogorov—Smirnov statis-
tics) (Crawley et al., 1995; Wu and Lewin, 1994; Xiong
et al., 1995a), or cross-correlation analysis (Bandettini
etal., 1993; Xiong et al., 1995a).

This paper proposes a new dynamical clustering
analysis (DCA) algorithm for an explorative examina-
tion of the detailed time courses of fMRI signals.
Besides the choice of an appropriate distance measure
this analysis requires no prior assumptions about the
spatial location and extension of activation or the shape
of the expected time course. DCA with the Euclidean
distance measure was applied to data from echo planar
imaging (EPI) with fast, repetitive measurements of a
single slice during voluntary finger movement. The
appropriateness of the Euclidean distance measure can
be checked by comparison to a number of other results
existing for this well-studied experimental paradigm
(Gerloff et al., 1996; Neafsey et al., 1978; Okano and
Tanji, 1987; Richter et al., 1997; Thaler et al., 1988;
Wildgruber et al., 1997). Other clustering methods that
have been applied to fMRI data were k-means analysis
(Ding et al., 1994) and fuzzy k-means analysis
(Baumgartner et al., 1997, 1998; Jarmasz and Somor-
jai, 1998; Moser et al., 1997). We have chosen a hard
clustering algorithm (like k-means) since there are
fewer free parameters to be estimated from the data
and because the membership functions of a fuzzy result
were usually thresholded and also interpreted as a
hard assignment. There are other explorative analysis
methods of time courses with few prior assumptions
like PCA and ICA that will be briefly addressed in the
discussion.

What is the goal of clustering analysis and what are
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the basic requirements on a particular algorithm?
Ideally clustering should reveal structures in the fMRI
data only based on similarities defined by the chosen
distance measure. The hard clustering result consists
of a disjunct partitioning of the data (the clusters) and a
representing cluster center for each partition (cluster)
(Duda and Hart, 1973). Each cluster contains voxels
with similar signal courses (Ding et al., 1994; Toftet al.,
1997). The set of cluster centers should be representive
for the structure in the data that is caused by what is
considered as the signals in the fMRI data. As signals
we consider here not only changes in the blood oxygen-
ation level (BOLD effect) but also other physiological
components. This goal implies assumptions on the
nature of the data which should influence the analysis
result. A clustering result can be characterized by the
quantization errors, i.e., the distances between repre-
sentants and data points, and the reduction degree, i.e.,
the number of data points divided by the number of
cluster centers k. If all data properties are considered
as signal (noiseless data) one would simply like a
vanishing mean quantization error with the highest
possible reduction degree. For noisy data this would
mainly reveal noise properties and therefore one will
adjust to a finite quantization error depending on the
assumed signal-to-noise ratio. For fMRI data at 1.5 T
the signal-to-noise ratio is less than 5%. Essential for a
clustering algorithm is how the result is influenced by
parameter settings. This relationship should fulfill the
following requirements: (i) The initial parameter set-
ting should allow an easy adjustment of a desired
quantization error. (ii) The result should be insensitive
with respect to random parameters such as seeds and
the particular random sequence in the update process
(reproducibility of results).

We used these criteria to compare the new DCA
algorithm with the standard k-means method. In the
particular case of fast fMRI data we examined the
relation between clustering and a much simpler and
faster outlier detection (OD). As an additional feature
DCA simultaneously calculates a two-dimensional visu-
alization of the cluster centers to reveal the main data
structure. The structuring by DCA allows a fast and
very efficient further analysis of the data. On the set of
cluster centers, their corresponding spatial distribu-
tion and the low-dimensional visualization, properties
become salient that are very unlikely to be detected by
a voxel-by-voxel-based analysis. Furthermore, we evalu-
ated activity maps with cross-correlation analysis on
single voxels and cluster centers to test and compare
the clustering results. Note that with finite quantiza-
tion error the activity maps obtained after clustering
will not exactly coincide with single-voxel detection.

In the following we explain the new DCA algorithm
in general and discuss the results of an application to
fMRI data from experiments examining voluntary fin-
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ger movements. The DCA activation maps resulting
from different data preprocessing procedures are com-
pared with each other and with standard cross-
correlation results. Finally the DCA was used to exam-
ine sequential activation of supplementary motor area
(SMA), primary motor cortex (M1), and sensory cortex
(S1) in the voluntary motor task.

METHODS

fMRI was performed on a 1.5-T scanner (Siemens
Vision) using a single-slice EPI sequence (TE = 43 ms,
a = 40°, FOV = 192 mm, 64 X 64 matrix, slice thick-
ness 4 mm) with a repetition time (TR) of 107 ms. In
each experiment 1024 subsequent images were ac-
quired for a time period of 110 s. Eight right-handed
healthy volunteers were instructed to press a button
repeatedly as fast as possible with the right index
finger during presence of a light signal. Four times the
light signal was switched on for 5 s after a 20-s pause
interval. For each volunteer five trials of these measure-
ments were performed. Prior to the fMRI experiment
high-resolution T1-weighted anatomical imaging was
performed to determine an appropriate slice position
that covers SMA, M1, and S1 (Rademacher et al., 1992).
To minimize movement artifacts the head was fixed by
foam rubber within the head coil and a strap was placed
over the forehead. Absence of disturbing head motion
was ensured by viewing the series of images in cine
mode. Four regions of interest (ROIs) were determined
within the acquired axial slice corresponding to the
SMA, M1, and S1 and superior sagittal sinus (SIN).
The position of cerebral sulci on the anatomical images
was used as reference for defining the motor regions
(Rademacher et al., 1992).

Before DCA the fMRI measurements acquired across
all trials for each subject were either averaged (AVG) or
concatenated (CAT): Averaging was performed across
all trials for each subject to reduce noise and interfer-
ence by physiological processes like breathing and
heart rate. Concatenation was performed after remov-
ing the initial phase of the measurement. Noise reduc-
tion and suppression of interference by physiological
processes were carried out by smoothing the data with
a low-pass filter (successive 5X and 3X TR boxcar
function). For type AVG and type CAT data voxels with
a mean signal intensity under a heuristically deter-
mined threshold of 75 (belonging to voxels outside the
brain) were excluded from further processing. Further-
more, the first 75 images (=8 s) in the time courses
were cut off to disregard onset effects of the fMRI signal
until reaching a steady state of the longitudinal magne-
tization. Each signal time course was normalized to a
mean signal intensity of zero in order to classify
different time courses independent of intensity offsets
caused by variation of EPI signal intensity of different
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brain tissues (cerebrospinal fluid (CSF) and gray and
white matter).

To test how different data preprocessing strategies
influence the results of DCA, type AVG and CAT data
were filtered in four alternative ways leading to five
distinct data sets (A—E) for each subject: The data set
(A) contained the unchanged type AVG or type CAT
data. The data set (B) contained only time courses with
an amplitude above a heuristically chosen intensity
threshold (averaged data, five intensity steps; concat-
enated data, eight intensity steps). This filter excluded
time courses with very small activity changes. Data set
(C) contained only time courses of voxels in the previ-
ously specified ROIs focusing the analysis to brain
regions that are expected to be involved in movement
preparation and execution. The data set (D) contained
only time courses satisfying the conditions of B and C.
Data set (E) consisted of the same time courses as data
set D, but the time courses were normalized to an equal
amplitude. Signal normalization was introduced to
study the partial volume effect: In voxels containing
parts of white matter and CSF the induced signal
changes might be reduced due to the smaller volume of
gray matter and not only due to a lower hemodynamic
activation level. To limit the distortion caused by
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amplification of low-amplitude noise the normalization
was applied to the data set D.

On the preprocessed fMRI data sets of each subject
an unsupervised DCA classifying the detailed time
courses with an Euclidean distance measure was ap-
plied (Duda and Hart, 1973; Schwenker et al., 1996).
The basic DCA algorithm is shown in Fig. 1. This
algorithm calculates simultaneously representative pro-
totypes of time courses (Somorjai et al., 1997; Toft et al.,
1997) and a corresponding two-dimensional (2D) visual-
ization for online visualization of the results. Different
from standard cluster analysis (k-means CA) or fuzzy
k-means CA the DCA algorithm needs no prior initial
specification on the number k and the shape of proto-
types (seeds). DCA extracts these informations from
the data employing generation and fusion processes of
clusters at run time. The dynamical process of genera-
tion and fusion is controlled by two threshold param-
eters (see Fig. 2a). For each time course the Euclidean
distance to all cluster centers is calculated and as usual
in cluster analysis the time course is assigned to the
closest center. However, if in DCA the lowest distance is
greater than the generation threshold, the time course
is introduced as a new cluster center. After each
assignment or generation process the cluster centers
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FIG. 1. The basic dynamical cluster analysis algorithm (DCA) and 2D visualization of calculated cluster centers. d( -, - ) denotes an
appropiate distance measure, argmin;(x;) calculates the index j of the minimal component of vector x, random (x) is a random value function
for real values in therange O . . . x, and merge ( - , - ) denotes a procedure for merging two clusters.
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(a) Schematic drawing of dynamical generation and fusion of cluster centers in DCA. Each cluster center (X) represents all data

points (dots) with the smallest distance to the center. If the distances between a data point and all cluster centers are greater than a specified
threshold 6, (displayed by the circular borders), then the data point is used for generation of a new cluster center. If the distance between two
cluster centers is smaller than a specified threshold 6erge the two clusters are merged to one cluster. (b) Initial values of the thresholds are
estimated by calculating a histogram of distances between the individual time courses and the mean signal time course over all voxels. For the
generation threshold a value at 90% of the accumulation peak area is taken, in this example 175. The fusion threshold is chosen at 80% of the
accumulation peak, here 160. (c) 2D visualization of cluster centers (circles) and data points (crosses). (d) Example of single-voxel time courses

within a cluster center.

are adapted to always represent the mean of all time
courses with the smallest distance to the center. If the
distance between two cluster centers drops below the
fusion threshold, the two clusters are merged into one
cluster.

For the initial threshold setting the mean signal time
course over all voxels in each data set was calculated.
In the distance histogram between individual time
courses and the general mean time course the genera-
tion threshold was set to the value of 90% of the
accumulation peak area (see Fig. 2b). The fusion thresh-
old was set to 80% of the accumulation peak area. After
an initial phase the appropriate number of cluster
centers becomes more and more stable, but sometimes
generation and fusion processes do not stop. Therefore,
the two thresholds are successively modified after each
learning epoch, i.e., one complete run through the data
set. The generation threshold is adapted to higher

values, and the fusion threshold to lower values
(f =0.99, see Fig. 1) in a manner that keeps the total
number of centers unchanged. Successively, this adjust-
ment leads to a decreasing number of generation and
fusion processes and to a transition to the standard
k-means cluster algorithm, where convergence has
been proven (Duda and Hart, 1973).

The cluster centers are projected into a 2D space by
multidimensional scaling (Jain and Dubes, 1988;
Schnell, 1994) to provide a survey about the distance
structure in the high-dimensional space of the time
courses (see Fig. 2c). A gradient descent algorithm on
the stress function is used (Palm and Schwenker, 1996;
Schwenker et al., 1996), so that the 2D distance struc-
ture of center projections and high-dimensional dis-
tance structure of corresponding cluster centers be-
come as similar as possible. 2D projection of the data
points is done by a radial basis function network
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(Haykins, 1994) with Gaussian functions, where the
means are the high-dimensional cluster centers and
the standard deviation is the ninth of the generation
threshold in DCA. The output vector sum of the radial
basis functions is normalized to 1 and used as weights
for a linear combination of the 2D cluster center
projections.

DCA yielded a set of cluster centers for each fMRI
data set of each subject. Acluster center is the represen-
tative signal time course for a subset of voxels with
similar time courses (see Fig. 2d). The members of a
cluster can be displayed as a spatial pattern in the
corresponding anatomical MRI image. We defined a
cluster to be active if the cross-correlation peak be-
tween cluster center and reference function exceeded a
heuristically determined threshold of 0.5 (see Bandet-
tini et al., 1995a). The reference function was defined,
after visual inspection of the DCA cluster centers of all
subjects, as four-step functions with 3 s off and on phase
directly before and after the external trigger (start of
light trigger). Values of the reference function outside
the off/on time intervals were undefined and not used
for cross-correlation. The chosen off/on length corre-
sponds to the minimum expected hemodynamic re-
sponse length of about 3 s and was confirmed by the
DCA results. A DCA activation map was defined as the
superimposed spatial patterns of all active clusters.
The response delay of a voxel was defined as the time
step where the cross-correlation function between the
corresponding time course and the reference function
reached its maximum. Further, the response delay of a
ROI was defined as the average response delay of all
active voxels in the ROI. The pairwise differences of the
ROI response delays were defined as time shifts of
activation between the regions.

For comparison of the DCA with other methods the
whole data set (AVG A) (see above) was additionally
analyzed with k-means CA (Duda and Hart, 1973) for
different k values. The initial cluster center seeds in
k-means CA were determinated randomly from the
analyzed data set. Activation detection was performed
analogously to DCA. For each parameter setting we
performed | = 10 runs. To quantify reproducibility of
the results of different runs of a method we considered
the mean Euclidean distance between corresponding
clusters. Corresponding clusters for different runs were
defined by the membership of the data points to the
clusters (i.e., for each data point the representing
cluster centers in the different runs were defined as
corresponding clusters). The difference between the
results of two runs was measured by the Euclidean
distance between corresponding cluster centers aver-
aged over all data points. The variability in the results
of the different runs was measured by the mean value
of the pairwise differences of the runs, i.e., by averaging
the I(1 — 1)/2 pairwise distances.
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To compare the DCA activation maps with a standard
fMRI evaluation method the data set AVG A was also
analyzed with standard cross-correlation analysis (Ban-
dettini et al., 1993; Xiong et al., 1995a). In this case we
defined a voxel as active if the cross-correlation be-
tween its time course and action function exceeded a
threshold of 0.3. In order to reduce false positives the
locations of activation were spatially filtered with a
kernel of 1 voxel (3 mm) radius, i.e., only voxels with
surrounding neighbors over the specified correlation
threshold were defined as active.

RESULTS

Reproducibility of the results has been defined in the
introduction as one of our crucial requirements for a
clustering method. Depending on the random choice of
seeds and random selection in the update order of data
points in a particular method, results of different runs
with the same parameters can vary. Therefore, we first
tested the variability of DCA results and compared it
with the k-means CA with different k values on the data
of one subject (type AVG A data) using the Euclidean
distance. While the repeated DCA runs led to almost
the same number (+=2%) of cluster centers, comparison
of the variabilities in the results of k-means CA and
DCA in Table 1 shows significantly lower values for the
DCA reflecting smaller deviations of the cluster parti-
tioning and cluster center shapes in the different runs of
DCA. Thus, cluster generation and fusion in the adaptive
phase of DCA improves the reproducibility of the results.

DCA was applied to type AVG A data of the eight
subjects with the threshold setting as described under
Methods. We kept the DCA thresholds fixed since there
is no good argument why clustering results of different
data sets should have identical k to be compared. The

TABLE 1

Variability of Cluster Center Sets Obtained
in Repeated Runs of k-Means CA and DCA

Centers Mean variability
k-means

10 17.59 (+31.31)
20 18.46 (+28.88)
31 22.16 (+27.93)
40 25.02 (+28.5)

50 26.56 (+32.33)
60 26.36 (+32.97)

DCA
31 3.12 (+13.03)

Note. Shown are the mean Euclidean distances (and standard
deviation in parentheses) between corresponding cluster centers of
10 independent analysis runs for each CA method and each number
of cluster centers.
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DCA results comprised on average 33 cluster centers
(standard deviation, 9.2). An example for the similarity
of shapes of time courses that were collated in a single
cluster by DCA with the Euclidean distance can be seen
in Fig. 2d. Figure 2c displays for one subject the
two-dimensional representation of the (high-dimen-
sional) cluster centers and single-voxel time courses,
respectively. Note first the very uneven distribution of
voxel counts over the set of cluster centers. We found a
dichotomy between a very few clusters (1-3) represent-
ing 90-95% of the data with high quantization error
and cluster centers with small membership numbers
representing their data points with low quantization
error. This finding was typical for all subjects and
qualitatively also observed with the k-means method.
Variation of the thresholds from the highest distance
between the data points to lower values showed that
the bipartition is already observable with 2—3 cluster
centers and is preserved for lower values. With lower-
ing the fusion threshold the total number of cluster
centers is increased. We compared the clustering re-
sults with a much simpler computation of such a
bipartition by OD. As outliers we defined data points
outside an Euclidean vicinity sphere around the gen-
eral mean signal time course (see Fig. 3c). Note, second,
that the low dimensionally projected cluster centers in
Fig. 2c are almost equidistant. We also checked the
distances between the high-dimensional cluster cen-
ters and found for all subjects a quite regular high-
dimensional hypertetrahedron.

In the remainder of this section we describe one
particular aspect of the clustering analysis: detecting
activated clusters. Table 2 shows properties of activity
maps obtained by applying the same correlation crite-
rion as described under Methods after DCA and k-means
CA analysis, respectively. The mean sizes of activation
spots obtained with k-means CA were smaller com-
pared to DCA, even for cases with a higher number of
cluster centers than in DCA. As expected also the
activity maps after k-means clustering were less stable
in repeated runs (deviation of activated voxels >33%)
than those obtained after DCA clustering. For many runs
the DCA activation maps were identical or deviated only in
a small percentage of voxels (deviation <7%).

Exemplary activation maps for one subject obtained
by different methods are displayed in Figs. 3a—3c.
Figure 3a gives the anatomical image with the stan-
dard activation map obtained by single-voxel cross-
correlation detection overlayed in white. Figure 3b
shows the activity map after the DCA of data set AVG A.
Inactive clusters are displayed in gray tones, and active
clusters with colors. A comparison of Fig. 3b with the
anatomy in Fig. 3a reveals that most activation de-
tected by DCA was within brain regions that were
expected to be active in the performed motor task. The
DCA-activated regions formed by all colored clusters
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agree (with the exception of some voxels in the area of
the superior sagittal sinus) very well with the cross-
correlation analysis map. However, DCA provides more
detailed information about different activation time
shapes by the additional discrimination between differ-
ent activated clusters. Figure 3c displays the result of
OD applied to the data set AVG A. For the radius of the
vicinity sphere we chose a value equal to the generation
threshold in DCA. Comparison of Figs. 3b and 3c shows
that the active voxels obtained with DCA were mostly
contained in the OD filtered pattern.

Characteristic signal time courses of cluster centers
obtained with the DCA are shown in Figs. 3d and 3e.
Figure 3d displays active cluster centers that clearly
reveal the four periods of the performed motor task, but
in addition have differences in shape and onset times
between the cluster centers, for example, the onset
time difference between the second and the third from
the bottom. The corresponding spatial pattern of the
third cluster is distributed over M1 and S1 (see Fig. 3b).
Comparable patterns of active clusters extending into
multiple ROIs were found in all subjects. Time courses
of inactive clusters are given in Fig. 3e. The upper
cluster is localized in the region of the superior sagittal
sinus and clearly reveals blood pulsations due to heart
beat and respiration. The two remaining signal courses
in Fig. 3e belong to voxels located outside the defined
ROIs. Again, comparable types of signal courses were
found for all subjects.

Figure 4 shows effects on the activity maps detected
after DCA caused by the various filtering procedures
described under Methods (AVG A-AVG E) and the OD
(colors of the active clusters correspond to the mean
onset time of the corresponding voxel time courses).
Activity maps corresponding to different filtering differ
in detail but are distributed in the same brain areas. In
general, data reduction by filtering diminished the area
of the activation, as can be seen by comparing Figs. 4b
and 4d with Fig. 4a. Combined application of two filters
further reduced the activated voxels (compare Fig. 4e
with Figs. 4b and 4d). With amplitude normalization
after twofold filtering (see Fig. 4e) the resulting activa-
tion area increased and became spatially more continu-
ous (see Fig. 4f). Cluster centers for data with ampli-
tude normalization are displayed in Fig. 5. Note that
the first three time courses of Fig. 3d now form a single
cluster. Figure 4c shows activity maps obtained after
DCA on data that were reduced by OD filtering (vicinity
sphere radius is equal to generation threshold in DCA).
A comparison with the activity map of the data set AVG
A (see Fig. 4a) exemplifies our general observation that
cluster analysis (k-means and DCA) of the fMRI data
singled out the same voxels that can be found by OD.
Figures 4g and 4h show activation maps after DCA on
concatenated data sets (CAT) where voxels with small
amplitudes have been removed (CAT B, Fig. 4g), and
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with additional restriction to the ROIs (CAT D, Fig. 4h).
Averaging or concatenating (with low-pass filtering) led
to quite similar activation maps: despite an increase of
the data dimension by concatenating DCA clustering
seems to be similar.

Table 3 summarizes the averaged time shifts over all
subjects in seconds between the examined ROIs ob-
tained by the DCA method on data set AVG A. These
results indicate sequential activation of SMA, M1, and
S1 in the given order, which has also been found in other
fMRI studies (Richter et al., 1997; Wildgruber et al., 1997).
Moreover, the delay time between SMA and M1 is in the
same range of magnitude as reported by electrophysiologi-
cal experiments (Gerloff et al., 1996; Neafsey et al., 1978;
Okano and Tanji, 1987; Thaler et al., 1988).

DISCUSSION

We proposed a new DCA method using the Euclidean
distance between detailed time courses of voxels to
reveal hemodynamic processes in the brain. This ap-
proach raises two questions:

(a) Is the chosen distance measure appropriate? To
examine this question we chose a well-known experi-
mental paradigm where the activity maps calculated
on the clustering results could be compared with data
from the literature obtained with a variety of brain
mapping techniques.

(b) What are the advantages of the new clustering
algorithm? To address this question we checked the
requirements on a clustering algorithm for fMRI analy-
sis formulated in the introduction. The new clustering
method has a much improved reproducibility: Table 1
shows that for repeated runs on the same data sets the
variability of the proposed new cluster algorithm DCA
is significantly below that of k-means. The adjustment
parameters in DCA are the initial values for the
thresholds governing cluster fusion and generation.
These parameters relate more directly to the quantiza-
tion error than the parameter k in k-means analysis
(Duda and Hart, 1973) and fuzzy k-means analysis that
directly sets the reduction degree. Our initial threshold
setting where the integral over the distance histogram
in the data set assumed 90/80% corresonds to an
analysis characteristic far away from small overall
guantization error (which would be provided by thresh-
olds at low values of the integral). The 90/80% setting
heuristic could be uniformly applied to all examined
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TABLE 2

Comparison between Activation Maps Obtained
with k-Means CA and DCA

Centers Mean active  Max. active  Active hull P (active)
k-means
10 32.4 (£7.75) 50 51 0.635 (+0.15)
20 36.8 (=13.68) 69 69 0.533 (+0.15)
31 31.7 (=12.29) 65 67 0.473 (+0.16)
40 39.1(*+17.11) 74 91 0.43 (+0.13)
50 35.4(+10.7) 56 75 0.47 (+0.13)
60 35.6 (=12.4) 59 70 0.5(*0.12)
DCA

31 71.1(*x4.73) 78 80 0.88 (*=0.06)

Note. Each line of the table expresses results after 10 repeated runs
with the same parameters. The columns of the table display the
number of cluster centers; the mean number of activated voxels; the
maximal number of activated voxels in a single run; the size of the
hull of activated voxels in all runs; i.e., the superset of activation
maps; and the mean probability that a single run classifies a voxels in
the hull as active—i.e., a low probability means a high variability in
the activation detection. Standard deviations of the mean values are
given in parentheses.

data sets. Since the tradeoff between reduction degree
and quantization error varies from data set to data set
the k value in k-means analysis must often be opti-
mized iteratively by a result driven search for each data
set (cluster validity problem).

The dynamical process of cluster generation and
fusion does not necessarily converge for fixed thresh-
olds. In a phase where the total number of cluster has
settled—what we always observed—the thresholds in
DCA are adapted so that a successive relaxation to the
k-means algorithm is performed. The termination of
DCA is therefore ensured by the provable convergence
of the k-means algorithm (Duda and Hart, 1973);
however, convergence time might vary for different
initial threshold settings. Generally, CA is a computa-
tionally expensive analysis method for fMRI data:
k-means CA takes about 1.5-2 times and DCA takes
about 5-7 times the CPU time of standard cross-
correlation analysis. Of course, this comparison does
not take into account that CA provides richer informa-
tion about the data than cross-correlation analysis.

There are a variety of ways for the further use of the
DCA results. The prototypes (cluster centers) allow a

FIG. 3. Results in one subject determined by DCA vs standard correlation and vicinity filtering. (a) The anatomical image with defined
ROIls and overlay of activation obtained with standard cross-correlation (white). (b) Distributions of voxels corresponding to the various
clusters obtained with the DCA. Gray tones display inactive and colors active clusters. (c) Spatial distribution of voxels remaining after
masking a vicinity sphere around the general mean signal time course of all voxels. (d) Representative signal time course of selected active
cluster centers. The time courses are marked with membership counts of voxels and corresponding colors in b. Small bars below the time
courses show the application phases of the external trigger. (e) The center of a cluster located in the sagittalis sinus (top) and two other centers

of cluster located outside the defined ROIs (two bottom rows).
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h)

FIG. 4. Comparison of DCA results using the different sets of filtered data of one subject. The colors code different onset times of the
hemodynamic response in active clusters. Colors from red, orange, yellow, and green to blue correspond to response times from early to late.
(a,b,d,e) DCA activation maps for the data sets AVG A-AVG D. (c) Result of the DCA after OD filtering. (f) Result of the DCA on the equal
amplitude normalized data set AVG E. (g,h) The DCA results on the concatenated data sets CAT B+CAT D.
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FI1G.5. Typical time courses of clusters obtained with amplitude normalization. (a) Time courses of active cluster centers. (b) The center of
a cluster located in the sagittalis sinus (top) and two other centers of cluster located outside the defined ROIs (two bottom rows).

valuable survey about the predominating shape charac-
teristics in the data set. Clusters with dominating
components of changes due to the BOLD effect, physi-
ological components, and sometimes also measurement
artifacts are easily recognizable (for instance, we discov-

TABLE 3

Mean Time Shifts in Seconds, and Standard Deviation
in Parentheses, between the Examined
Brain Regions in All Subjects

ASMAfMl Aersl ASLSIN ASMAfsl ASMA—MI/Sl

0.35 (+0.96) 0.12 (=0.66) 0.73 (+0.54) 0.47 (=0.36) 0.41 (0.65)

Note. ASMA-ML AMl-Sl: A51_5|N, and ASMA»SI denote the time shifts
between SMA and M1, M1 and S1, S1 and SIN, and SMA and S1,
respectively. Aspa-mys: is the time shift between activated voxels
contributing to SMA and active voxels in M1 and S1 together.

ered a signal component presumably caused by the AC
heating of the VHF transmitter tube in the Siemens
Vision). The spatial distribution of clusters can be
displayed as an overlay of the corresponding maps onto
the anatomical image. Cluster centers can be selected
with respect to interesting features salient in time
shape and spatial distribution and can be further
analyzed on a voxel-by-voxel basis. It would be highly
unlikely to find these voxel sets with single-voxel tests.

We applied our approach to analyze signal courses by
DCA with the Euclidean distance measure on the
concrete example of movement-induced hemodynamic
changes. For the well-studied voluntary movement
task, correlation analysis on the cluster centers re-
vealed the expected activation maps (Figs. 3a and 3b)
and active clusters were already visually salient in the
provided data survey (Figs. 3d and 3e). Beyond correla-
tion analysis the clustering methods are capable of



DYNAMICAL CLUSTER ANALYSIS OF fMRI DATA

discriminating between different levels of activation
(Baumgartner et al., 1997, 1998; Jarmasz and Somor-
jai, 1998; Moser et al., 1997), even if the temporal
pattern is indistinguishable. However, the interpreta-
tion of such different levels of activation is not straight-
forward because of the partial volume effect. We inves-
tigated this question by clustering after amplitude
normalization. This increased the similarity of the time
curves (Fig. 5) and led to a lower number of activated
cluster centers found by DCA. Comparison of twofold
filtering (Fig. 4e) and twofold filtering plus amplitude
normalization (Fig. 4f) showed additional activated
voxels in the neighborhood of previously activated
voxels. Comparison of Fig. 4f with Figs. 3b and 3d
shows that the additional activated voxels after ampli-
tude normalization were mostly voxels with a lower
amplitude of activation (green voxels in Fig. 3b). Be-
cause of the distribution of activated voxels with a low
amplitude (green voxels in Fig. 3b) in the neighborhood
of voxels with higher activation amplitudes (red and
orange voxels in Fig. 3b), we interpret the variation of
amplitudes as an effect of the partial volumes. How-
ever, the partial volume effect cannot be appropriately
corrected by amplitude normalization because of the
low signal-to-noise ratio in time courses with small
BOLD changes. Amplitude normalization yields only
reasonable activity maps after previous data filtering
(see Methods). In a forthcoming paper we will consider
how the partial volume effect can be reduced if the
anatomical structure and geometrical neighborship is
used for a location-dependent amplitude renormaliza-
tion. Hard clustering with DCA with such a preprocess-
ing must then be compared with methods separating
intrinsically several superimposed signal components
in single voxels like true fuzzy clustering techniques,
PCA, ICA, or the recently proposed blind separation
analysis (McKeown et al., 1998). The full exploitation of
the membership function as well as blind source separa-
tion also require additional assumptions about the
spatial distribution of activation.

The 2D visualization showed a remarkably even
distribution of the centers reflecting an almost regular
hypertetrahedron configuration of the centers (of course,
there is no exact distance preserving projection of this
configuration in fewer dimensions). The hypertetrahe-
dron configuration of the centers might be a conse-
quence of the high dimension of our data (950 for data
set AVG; 4750 for data set CAT) that is of the same
order or higher than the number of data points. It must
be emphasized that in this domain even most of the
common clustering algorithms are not well tested;
however, our results indicate that DCA can be applied.
The 2D visualization further showed that always a
high fraction of data is represented by a few clusters.
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These findings suggest that for the fMRI data interest-
ing data points like activated voxels are in small
clusters of outliers in the data. This assumption was
confirmed by our results with the simple OD filter.

Time courses of single voxels belonging to activated
clusters have been used to determine the mean re-
sponse times of the ROIs considered in the motor task.
An advantage of cluster methods is that they naturally
reveal temporal and spatial activation processes inde-
pendent from ROIs (Ding et al., 1994). We observed that
often a single activated cluster extented into different
ROIs—signifying similar time courses at different loci.
This could be an indication of functional connectivity
(Friston et al., 1993; Strother et al., 1995) between ROIls
that are responsible for movement preparation and
execution. Single cell recordings performed in monkeys
(Okano and Tanji, 1987) and cats (Neafsey et al., 1978;
Okano and Tanji, 1987) during voluntary movements
reported in each of the regions SMA and M1 cell
populations with early and late neural response times.
These results imply that there is no well-defined onset
time of the whole ROI, which might also explain the
observed high standard deviation of onset times within
the ROIs. Furthermore, the obtained time shifts might
not necessarily reflect the time delays of neuronal
activation, in particular, if hemodynamic response char-
acteristics vary in the different ROIs (Binder et al.,
1993; Buckner et al., 1996; Lee et al., 1995); however, a
recent paper of Menon et al. (1998) reports that the
relative timing between the onset of the fMRI response
in different brain areas appears to be preserved.

In summary, we have examined cluster analysis on
the time courses of (fast) fMRI data using the Euclid-
ean distance. DCA has been proposed as a new adaptive
clustering method. We have defined important require-
ments of a clustering algorithm for noisy data and have
shown that DCA meets them much better than the
k-means method. We have checked the DCA results for
different data preprocessing by comparing activated
clusters which are detected by the usual correlation
criterion and determined response delays of different
ROIls involved in the motor task. However, onset times
within clusters show a high standard deviation and
therefore alternative distance measures and preprocess-
ing might be more appropriate for this feature. These
are matters of our further investigation.
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