
i
t
a
m
m
s
t
t
d
t
t
b
d
o
r
r
o
e
r
t
c
t
t
f
a
d
n
d
e
a
e
a
g

t

i
i

NeuroImage 9, 477–489 (1999)
Article ID nimg.1999.0429, available online at http://www.idealibrary.com on
Dynamical Cluster Analysis of Cortical fMRI Activation

Axel Baune,*,† Friedrich T. Sommer,† Michael Erb,* Dirk Wildgruber,* Bernd Kardatzki,*
Günther Palm,† and Wolfgang Grodd*

*Section Experimental MR of the CNS, Department of Neuroradiology, University of Tübingen, D-72076 Tübingen, Germany;
and †Department of Neural Information Processing, University of Ulm, D-89069 Ulm, Germany

Received August 19, 1998
b
B
t
a
t
1
m
B
p
n
t
e
e

a
t
B
t
s
o
d
i
s
a
b
e
(
T
W
h
(
(
j
c
f
a
w
h
m
l
d

Localized changes in cortical blood oxygenation dur-
ng voluntary movements were examined with func-
ional magnetic resonance imaging (fMRI) and evalu-
ted with a new dynamical cluster analysis (DCA)
ethod. fMRI was performed during finger move-
ents with eight subjects on a 1.5-T scanner using

ingle-slice echo planar imaging with a 107-ms repeti-
ion time. Clustering based on similarity of the de-
ailed signal time courses requires besides the used
istance measure no assumptions about spatial loca-
ion and extension of activation sites or the shape of
he expected activation time course. We discuss the
asic requirements on a clustering algorithm for fMRI
ata. It is shown that with respect to easy adjustment
f the quantization error and reproducibility of the
esults DCA outperforms the standard k-means algo-
ithm. In contrast to currently used clustering meth-
ds for fMRI, like k-means or fuzzy k-means, DCA
xtracts the appropriate number and initial shapes of
epresentative signal time courses from data proper-
ies during run time. With DCA we simultaneously
alculate a two-dimensional projection of cluster cen-
ers (MDS) and data points for online visualization of
he results. We describe the new DCA method and show
or the well-studied motor task that it detects cortical
ctivation loci and provides additional information by
iscriminating different shapes and phases of hemody-
amic responses. Robustness of activity detection is
emonstrated with respect to repeated DCA runs and
ffects of different data preprocessing are shown. As
n example of how DCA enables further analysis we
xamined activation onset times. In areas SMA, M1,
nd S1 simultaneous and sequential activation (in the
iven order) was found. r 1999 Academic Press

Key Words: functional MRI; cluster analysis; evalua-
ion methods; motor system.

INTRODUCTION

Due to the advent of functional magnetic resonance
maging (fMRI) regional hemodynamic changes follow-

ng neuronal activation can now be monitored in the

477
rain with high spatial resolution (Ogawa et al., 1990).
ut the various methods used for fMRI signal extrac-

ion in conjunction with the applied mode of cerebral
ctivation are still subject of an intense and contradic-
ory discussion (Bandettini et al., 1995a; Kim et al.,
997; Ogawa et al., 1990). There are single-voxel-based
ethods of activation detection like z-mapping (Le
ihan et al., 1993; Cohen and Bookheimer, 1994),
arametric tests (i.e., t test) (Xiong et al., 1995a) and
onparametric tests (i.e., Kolmogorov–Smirnov statis-
ics) (Crawley et al., 1995; Wu and Lewin, 1994; Xiong
t al., 1995a), or cross-correlation analysis (Bandettini
t al., 1993; Xiong et al., 1995a).
This paper proposes a new dynamical clustering

nalysis (DCA) algorithm for an explorative examina-
ion of the detailed time courses of fMRI signals.
esides the choice of an appropriate distance measure

his analysis requires no prior assumptions about the
patial location and extension of activation or the shape
f the expected time course. DCA with the Euclidean
istance measure was applied to data from echo planar
maging (EPI) with fast, repetitive measurements of a
ingle slice during voluntary finger movement. The
ppropriateness of the Euclidean distance measure can
e checked by comparison to a number of other results
xisting for this well-studied experimental paradigm
Gerloff et al., 1996; Neafsey et al., 1978; Okano and
anji, 1987; Richter et al., 1997; Thaler et al., 1988;
ildgruber et al., 1997). Other clustering methods that

ave been applied to fMRI data were k-means analysis
Ding et al., 1994) and fuzzy k-means analysis
Baumgartner et al., 1997, 1998; Jarmasz and Somor-
ai, 1998; Moser et al., 1997). We have chosen a hard
lustering algorithm (like k-means) since there are
ewer free parameters to be estimated from the data
nd because the membership functions of a fuzzy result
ere usually thresholded and also interpreted as a
ard assignment. There are other explorative analysis
ethods of time courses with few prior assumptions

ike PCA and ICA that will be briefly addressed in the
iscussion.

What is the goal of clustering analysis and what are

1053-8119/99 $30.00
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478 BAUNE ET AL.
he basic requirements on a particular algorithm?
deally clustering should reveal structures in the fMRI
ata only based on similarities defined by the chosen
istance measure. The hard clustering result consists
f a disjunct partitioning of the data (the clusters) and a
epresenting cluster center for each partition (cluster)
Duda and Hart, 1973). Each cluster contains voxels
ith similar signal courses (Ding et al., 1994; Toft et al.,
997). The set of cluster centers should be representive
or the structure in the data that is caused by what is
onsidered as the signals in the fMRI data. As signals
e consider here not only changes in the blood oxygen-
tion level (BOLD effect) but also other physiological
omponents. This goal implies assumptions on the
ature of the data which should influence the analysis
esult. A clustering result can be characterized by the
uantization errors, i.e., the distances between repre-
entants and data points, and the reduction degree, i.e.,
he number of data points divided by the number of
luster centers k. If all data properties are considered
s signal (noiseless data) one would simply like a
anishing mean quantization error with the highest
ossible reduction degree. For noisy data this would
ainly reveal noise properties and therefore one will

djust to a finite quantization error depending on the
ssumed signal-to-noise ratio. For fMRI data at 1.5 T
he signal-to-noise ratio is less than 5%. Essential for a
lustering algorithm is how the result is influenced by
arameter settings. This relationship should fulfill the
ollowing requirements: (i) The initial parameter set-
ing should allow an easy adjustment of a desired
uantization error. (ii) The result should be insensitive
ith respect to random parameters such as seeds and

he particular random sequence in the update process
reproducibility of results).

We used these criteria to compare the new DCA
lgorithm with the standard k-means method. In the
articular case of fast fMRI data we examined the
elation between clustering and a much simpler and
aster outlier detection (OD). As an additional feature
CA simultaneously calculates a two-dimensional visu-
lization of the cluster centers to reveal the main data
tructure. The structuring by DCA allows a fast and
ery efficient further analysis of the data. On the set of
luster centers, their corresponding spatial distribu-
ion and the low-dimensional visualization, properties
ecome salient that are very unlikely to be detected by
voxel-by-voxel-based analysis. Furthermore, we evalu-
ted activity maps with cross-correlation analysis on
ingle voxels and cluster centers to test and compare
he clustering results. Note that with finite quantiza-
ion error the activity maps obtained after clustering
ill not exactly coincide with single-voxel detection.
In the following we explain the new DCA algorithm

n general and discuss the results of an application to

MRI data from experiments examining voluntary fin- c
er movements. The DCA activation maps resulting
rom different data preprocessing procedures are com-
ared with each other and with standard cross-
orrelation results. Finally the DCA was used to exam-
ne sequential activation of supplementary motor area
SMA), primary motor cortex (M1), and sensory cortex
S1) in the voluntary motor task.

METHODS

fMRI was performed on a 1.5-T scanner (Siemens
ision) using a single-slice EPI sequence (TE 5 43 ms,
5 40°, FOV 5 192 mm, 64 3 64 matrix, slice thick-
ess 4 mm) with a repetition time (TR) of 107 ms. In
ach experiment 1024 subsequent images were ac-
uired for a time period of 110 s. Eight right-handed
ealthy volunteers were instructed to press a button
epeatedly as fast as possible with the right index
nger during presence of a light signal. Four times the

ight signal was switched on for 5 s after a 20-s pause
nterval. For each volunteer five trials of these measure-

ents were performed. Prior to the fMRI experiment
igh-resolution T1-weighted anatomical imaging was
erformed to determine an appropriate slice position
hat covers SMA, M1, and S1 (Rademacher et al., 1992).
o minimize movement artifacts the head was fixed by
oam rubber within the head coil and a strap was placed
ver the forehead. Absence of disturbing head motion
as ensured by viewing the series of images in cine
ode. Four regions of interest (ROIs) were determined
ithin the acquired axial slice corresponding to the
MA, M1, and S1 and superior sagittal sinus (SIN).
he position of cerebral sulci on the anatomical images
as used as reference for defining the motor regions

Rademacher et al., 1992).
Before DCA the fMRI measurements acquired across

ll trials for each subject were either averaged (AVG) or
oncatenated (CAT): Averaging was performed across
ll trials for each subject to reduce noise and interfer-
nce by physiological processes like breathing and
eart rate. Concatenation was performed after remov-

ng the initial phase of the measurement. Noise reduc-
ion and suppression of interference by physiological
rocesses were carried out by smoothing the data with
low-pass filter (successive 53 and 33 TR boxcar

unction). For type AVG and type CAT data voxels with
mean signal intensity under a heuristically deter-
ined threshold of 75 (belonging to voxels outside the

rain) were excluded from further processing. Further-
ore, the first 75 images (;8 s) in the time courses
ere cut off to disregard onset effects of the fMRI signal
ntil reaching a steady state of the longitudinal magne-
ization. Each signal time course was normalized to a
ean signal intensity of zero in order to classify

ifferent time courses independent of intensity offsets

aused by variation of EPI signal intensity of different
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479DYNAMICAL CLUSTER ANALYSIS OF fMRI DATA
rain tissues (cerebrospinal fluid (CSF) and gray and
hite matter).
To test how different data preprocessing strategies

nfluence the results of DCA, type AVG and CAT data
ere filtered in four alternative ways leading to five
istinct data sets (A–E) for each subject: The data set
A) contained the unchanged type AVG or type CAT
ata. The data set (B) contained only time courses with
n amplitude above a heuristically chosen intensity
hreshold (averaged data, five intensity steps; concat-
nated data, eight intensity steps). This filter excluded
ime courses with very small activity changes. Data set
C) contained only time courses of voxels in the previ-
usly specified ROIs focusing the analysis to brain
egions that are expected to be involved in movement
reparation and execution. The data set (D) contained
nly time courses satisfying the conditions of B and C.
ata set (E) consisted of the same time courses as data

et D, but the time courses were normalized to an equal
mplitude. Signal normalization was introduced to
tudy the partial volume effect: In voxels containing
arts of white matter and CSF the induced signal
hanges might be reduced due to the smaller volume of
ray matter and not only due to a lower hemodynamic
ctivation level. To limit the distortion caused by

FIG. 1. The basic dynamical cluster analysis algorithm (DCA)
ppropiate distance measure, argmin j (xj ) calculates the index j of th

or real values in the range 0 . . . x, and merge ( · , · ) denotes a procedure
mplification of low-amplitude noise the normalization
as applied to the data set D.
On the preprocessed fMRI data sets of each subject

n unsupervised DCA classifying the detailed time
ourses with an Euclidean distance measure was ap-
lied (Duda and Hart, 1973; Schwenker et al., 1996).
he basic DCA algorithm is shown in Fig. 1. This
lgorithm calculates simultaneously representative pro-
otypes of time courses (Somorjai et al., 1997; Toft et al.,
997) and a corresponding two-dimensional (2D) visual-
zation for online visualization of the results. Different
rom standard cluster analysis (k-means CA) or fuzzy
-means CA the DCA algorithm needs no prior initial
pecification on the number k and the shape of proto-
ypes (seeds). DCA extracts these informations from
he data employing generation and fusion processes of
lusters at run time. The dynamical process of genera-
ion and fusion is controlled by two threshold param-
ters (see Fig. 2a). For each time course the Euclidean
istance to all cluster centers is calculated and as usual
n cluster analysis the time course is assigned to the
losest center. However, if in DCA the lowest distance is
reater than the generation threshold, the time course
s introduced as a new cluster center. After each
ssignment or generation process the cluster centers

2D visualization of calculated cluster centers. d( · , · ) denotes an
inimal component of vector x, random (x) is a random value function
and
e m
for merging two clusters.
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480 BAUNE ET AL.
re adapted to always represent the mean of all time
ourses with the smallest distance to the center. If the
istance between two cluster centers drops below the
usion threshold, the two clusters are merged into one
luster.
For the initial threshold setting the mean signal time

ourse over all voxels in each data set was calculated.
n the distance histogram between individual time
ourses and the general mean time course the genera-
ion threshold was set to the value of 90% of the
ccumulation peak area (see Fig. 2b). The fusion thresh-
ld was set to 80% of the accumulation peak area. After
n initial phase the appropriate number of cluster
enters becomes more and more stable, but sometimes
eneration and fusion processes do not stop. Therefore,
he two thresholds are successively modified after each
earning epoch, i.e., one complete run through the data

FIG. 2. (a) Schematic drawing of dynamical generation and fusio
oints (dots) with the smallest distance to the center. If the distances
hreshold unew (displayed by the circular borders), then the data point
luster centers is smaller than a specified threshold umerge the two cl
stimated by calculating a histogram of distances between the individ
eneration threshold a value at 90% of the accumulation peak area is
ccumulation peak, here 160. (c) 2D visualization of cluster centers (ci
ithin a cluster center.
et. The generation threshold is adapted to higher p
alues, and the fusion threshold to lower values
f 5 0.99, see Fig. 1) in a manner that keeps the total
umber of centers unchanged. Successively, this adjust-
ent leads to a decreasing number of generation and

usion processes and to a transition to the standard
-means cluster algorithm, where convergence has
een proven (Duda and Hart, 1973).
The cluster centers are projected into a 2D space by
ultidimensional scaling (Jain and Dubes, 1988;
chnell, 1994) to provide a survey about the distance
tructure in the high-dimensional space of the time
ourses (see Fig. 2c). A gradient descent algorithm on
he stress function is used (Palm and Schwenker, 1996;
chwenker et al., 1996), so that the 2D distance struc-
ure of center projections and high-dimensional dis-
ance structure of corresponding cluster centers be-
ome as similar as possible. 2D projection of the data

f cluster centers in DCA. Each cluster center (3) represents all data
ween a data point and all cluster centers are greater than a specified
sed for generation of a new cluster center. If the distance between two
rs are merged to one cluster. (b) Initial values of the thresholds are
time courses and the mean signal time course over all voxels. For the
en, in this example 175. The fusion threshold is chosen at 80% of the
s) and data points (crosses). (d) Example of single-voxel time courses
n o
bet
is u
uste
ual
tak
rcle
oints is done by a radial basis function network
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481DYNAMICAL CLUSTER ANALYSIS OF fMRI DATA
Haykins, 1994) with Gaussian functions, where the
eans are the high-dimensional cluster centers and

he standard deviation is the ninth of the generation
hreshold in DCA. The output vector sum of the radial
asis functions is normalized to 1 and used as weights
or a linear combination of the 2D cluster center
rojections.
DCA yielded a set of cluster centers for each fMRI

ata set of each subject. A cluster center is the represen-
ative signal time course for a subset of voxels with
imilar time courses (see Fig. 2d). The members of a
luster can be displayed as a spatial pattern in the
orresponding anatomical MRI image. We defined a
luster to be active if the cross-correlation peak be-
ween cluster center and reference function exceeded a
euristically determined threshold of 0.5 (see Bandet-
ini et al., 1995a). The reference function was defined,
fter visual inspection of the DCA cluster centers of all
ubjects, as four-step functions with 3 s off and on phase
irectly before and after the external trigger (start of
ight trigger). Values of the reference function outside
he off/on time intervals were undefined and not used
or cross-correlation. The chosen off/on length corre-
ponds to the minimum expected hemodynamic re-
ponse length of about 3 s and was confirmed by the
CA results. A DCA activation map was defined as the

uperimposed spatial patterns of all active clusters.
he response delay of a voxel was defined as the time
tep where the cross-correlation function between the
orresponding time course and the reference function
eached its maximum. Further, the response delay of a
OI was defined as the average response delay of all
ctive voxels in the ROI. The pairwise differences of the
OI response delays were defined as time shifts of
ctivation between the regions.
For comparison of the DCA with other methods the
hole data set (AVG A) (see above) was additionally
nalyzed with k-means CA (Duda and Hart, 1973) for
ifferent k values. The initial cluster center seeds in
-means CA were determinated randomly from the
nalyzed data set. Activation detection was performed
nalogously to DCA. For each parameter setting we
erformed l 5 10 runs. To quantify reproducibility of
he results of different runs of a method we considered
he mean Euclidean distance between corresponding
lusters. Corresponding clusters for different runs were
efined by the membership of the data points to the
lusters (i.e., for each data point the representing
luster centers in the different runs were defined as
orresponding clusters). The difference between the
esults of two runs was measured by the Euclidean
istance between corresponding cluster centers aver-
ged over all data points. The variability in the results
f the different runs was measured by the mean value
f the pairwise differences of the runs, i.e., by averaging

he l(l 2 1)/2 pairwise distances. o
To compare the DCA activation maps with a standard
MRI evaluation method the data set AVG A was also
nalyzed with standard cross-correlation analysis (Ban-
ettini et al., 1993; Xiong et al., 1995a). In this case we
efined a voxel as active if the cross-correlation be-
ween its time course and action function exceeded a
hreshold of 0.3. In order to reduce false positives the
ocations of activation were spatially filtered with a
ernel of 1 voxel (3 mm) radius, i.e., only voxels with
urrounding neighbors over the specified correlation
hreshold were defined as active.

RESULTS

Reproducibility of the results has been defined in the
ntroduction as one of our crucial requirements for a
lustering method. Depending on the random choice of
eeds and random selection in the update order of data
oints in a particular method, results of different runs
ith the same parameters can vary. Therefore, we first

ested the variability of DCA results and compared it
ith the k-means CA with different k values on the data

f one subject (type AVG A data) using the Euclidean
istance. While the repeated DCA runs led to almost
he same number (62%) of cluster centers, comparison
f the variabilities in the results of k-means CA and
CA in Table 1 shows significantly lower values for the
CA reflecting smaller deviations of the cluster parti-

ioning and cluster center shapes in the different runs of
CA. Thus, cluster generation and fusion in the adaptive
hase of DCAimproves the reproducibility of the results.
DCA was applied to type AVG A data of the eight

ubjects with the threshold setting as described under
ethods. We kept the DCA thresholds fixed since there

s no good argument why clustering results of different
ata sets should have identical k to be compared. The

TABLE 1

Variability of Cluster Center Sets Obtained
in Repeated Runs of k-Means CA and DCA

enters Mean variability

k-means

10 17.59 (631.31)
20 18.46 (628.88)
31 22.16 (627.93)
40 25.02 (628.5)
50 26.56 (632.33)
60 26.36 (632.97)

DCA

31 3.12 (613.03)

Note. Shown are the mean Euclidean distances (and standard
eviation in parentheses) between corresponding cluster centers of
0 independent analysis runs for each CA method and each number

f cluster centers.
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482 BAUNE ET AL.
CA results comprised on average 33 cluster centers
standard deviation, 9.2). An example for the similarity
f shapes of time courses that were collated in a single
luster by DCA with the Euclidean distance can be seen
n Fig. 2d. Figure 2c displays for one subject the
wo-dimensional representation of the (high-dimen-
ional) cluster centers and single-voxel time courses,
espectively. Note first the very uneven distribution of
oxel counts over the set of cluster centers. We found a
ichotomy between a very few clusters (1–3) represent-
ng 90–95% of the data with high quantization error
nd cluster centers with small membership numbers
epresenting their data points with low quantization
rror. This finding was typical for all subjects and
ualitatively also observed with the k-means method.
ariation of the thresholds from the highest distance
etween the data points to lower values showed that
he bipartition is already observable with 2–3 cluster
enters and is preserved for lower values. With lower-
ng the fusion threshold the total number of cluster
enters is increased. We compared the clustering re-
ults with a much simpler computation of such a
ipartition by OD. As outliers we defined data points
utside an Euclidean vicinity sphere around the gen-
ral mean signal time course (see Fig. 3c). Note, second,
hat the low dimensionally projected cluster centers in
ig. 2c are almost equidistant. We also checked the
istances between the high-dimensional cluster cen-
ers and found for all subjects a quite regular high-
imensional hypertetrahedron.
In the remainder of this section we describe one

articular aspect of the clustering analysis: detecting
ctivated clusters. Table 2 shows properties of activity
aps obtained by applying the same correlation crite-

ion as described under Methods after DCAand k-means
A analysis, respectively. The mean sizes of activation
pots obtained with k-means CA were smaller com-
ared to DCA, even for cases with a higher number of
luster centers than in DCA. As expected also the
ctivity maps after k-means clustering were less stable
n repeated runs (deviation of activated voxels .33%)
han those obtained after DCA clustering. For many runs
he DCAactivation maps were identical or deviated only in
small percentage of voxels (deviation ,7%).
Exemplary activation maps for one subject obtained

y different methods are displayed in Figs. 3a–3c.
igure 3a gives the anatomical image with the stan-
ard activation map obtained by single-voxel cross-
orrelation detection overlayed in white. Figure 3b
hows the activity map after the DCA of data set AVG A.
nactive clusters are displayed in gray tones, and active
lusters with colors. A comparison of Fig. 3b with the
natomy in Fig. 3a reveals that most activation de-
ected by DCA was within brain regions that were
xpected to be active in the performed motor task. The

CA-activated regions formed by all colored clusters a
gree (with the exception of some voxels in the area of
he superior sagittal sinus) very well with the cross-
orrelation analysis map. However, DCA provides more
etailed information about different activation time
hapes by the additional discrimination between differ-
nt activated clusters. Figure 3c displays the result of
D applied to the data set AVG A. For the radius of the
icinity sphere we chose a value equal to the generation
hreshold in DCA. Comparison of Figs. 3b and 3c shows
hat the active voxels obtained with DCA were mostly
ontained in the OD filtered pattern.
Characteristic signal time courses of cluster centers

btained with the DCA are shown in Figs. 3d and 3e.
igure 3d displays active cluster centers that clearly
eveal the four periods of the performed motor task, but
n addition have differences in shape and onset times
etween the cluster centers, for example, the onset
ime difference between the second and the third from
he bottom. The corresponding spatial pattern of the
hird cluster is distributed over M1 and S1 (see Fig. 3b).
omparable patterns of active clusters extending into
ultiple ROIs were found in all subjects. Time courses

f inactive clusters are given in Fig. 3e. The upper
luster is localized in the region of the superior sagittal
inus and clearly reveals blood pulsations due to heart
eat and respiration. The two remaining signal courses
n Fig. 3e belong to voxels located outside the defined
OIs. Again, comparable types of signal courses were

ound for all subjects.
Figure 4 shows effects on the activity maps detected

fter DCA caused by the various filtering procedures
escribed under Methods (AVG A-AVG E) and the OD
colors of the active clusters correspond to the mean
nset time of the corresponding voxel time courses).
ctivity maps corresponding to different filtering differ

n detail but are distributed in the same brain areas. In
eneral, data reduction by filtering diminished the area
f the activation, as can be seen by comparing Figs. 4b
nd 4d with Fig. 4a. Combined application of two filters
urther reduced the activated voxels (compare Fig. 4e
ith Figs. 4b and 4d). With amplitude normalization
fter twofold filtering (see Fig. 4e) the resulting activa-
ion area increased and became spatially more continu-
us (see Fig. 4f). Cluster centers for data with ampli-
ude normalization are displayed in Fig. 5. Note that
he first three time courses of Fig. 3d now form a single
luster. Figure 4c shows activity maps obtained after
CA on data that were reduced by OD filtering (vicinity

phere radius is equal to generation threshold in DCA).
comparison with the activity map of the data set AVG
(see Fig. 4a) exemplifies our general observation that

luster analysis (k-means and DCA) of the fMRI data
ingled out the same voxels that can be found by OD.
igures 4g and 4h show activation maps after DCA on
oncatenated data sets (CAT) where voxels with small

mplitudes have been removed (CAT B, Fig. 4g), and
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483DYNAMICAL CLUSTER ANALYSIS OF fMRI DATA
ith additional restriction to the ROIs (CAT D, Fig. 4h).
veraging or concatenating (with low-pass filtering) led
o quite similar activation maps: despite an increase of
he data dimension by concatenating DCA clustering
eems to be similar.
Table 3 summarizes the averaged time shifts over all

ubjects in seconds between the examined ROIs ob-
ained by the DCA method on data set AVG A. These
esults indicate sequential activation of SMA, M1, and
1 in the given order, which has also been found in other

MRI studies (Richter et al., 1997; Wildgruber et al., 1997).
oreover, the delay time between SMA and M1 is in the

ame range of magnitude as reported by electrophysiologi-
al experiments (Gerloff et al., 1996; Neafsey et al., 1978;
kano and Tanji, 1987; Thaler et al., 1988).

DISCUSSION

We proposed a new DCA method using the Euclidean
istance between detailed time courses of voxels to
eveal hemodynamic processes in the brain. This ap-
roach raises two questions:
(a) Is the chosen distance measure appropriate? To

xamine this question we chose a well-known experi-
ental paradigm where the activity maps calculated

n the clustering results could be compared with data
rom the literature obtained with a variety of brain
apping techniques.
(b) What are the advantages of the new clustering

lgorithm? To address this question we checked the
equirements on a clustering algorithm for fMRI analy-
is formulated in the introduction. The new clustering
ethod has a much improved reproducibility: Table 1

hows that for repeated runs on the same data sets the
ariability of the proposed new cluster algorithm DCA
s significantly below that of k-means. The adjustment
arameters in DCA are the initial values for the
hresholds governing cluster fusion and generation.
hese parameters relate more directly to the quantiza-
ion error than the parameter k in k-means analysis
Duda and Hart, 1973) and fuzzy k-means analysis that
irectly sets the reduction degree. Our initial threshold
etting where the integral over the distance histogram
n the data set assumed 90/80% corresonds to an
nalysis characteristic far away from small overall
uantization error (which would be provided by thresh-
lds at low values of the integral). The 90/80% setting
euristic could be uniformly applied to all examined

FIG. 3. Results in one subject determined by DCA vs standard c
OIs and overlay of activation obtained with standard cross-correl

lusters obtained with the DCA. Gray tones display inactive and c
asking a vicinity sphere around the general mean signal time cour

luster centers. The time courses are marked with membership cou
ourses show the application phases of the external trigger. (e) The cen
ata sets. Since the tradeoff between reduction degree
nd quantization error varies from data set to data set
he k value in k-means analysis must often be opti-
ized iteratively by a result driven search for each data

et (cluster validity problem).
The dynamical process of cluster generation and

usion does not necessarily converge for fixed thresh-
lds. In a phase where the total number of cluster has
ettled—what we always observed—the thresholds in
CA are adapted so that a successive relaxation to the
-means algorithm is performed. The termination of
CA is therefore ensured by the provable convergence
f the k-means algorithm (Duda and Hart, 1973);
owever, convergence time might vary for different

nitial threshold settings. Generally, CA is a computa-
ionally expensive analysis method for fMRI data:
-means CA takes about 1.5–2 times and DCA takes
bout 5–7 times the CPU time of standard cross-
orrelation analysis. Of course, this comparison does
ot take into account that CA provides richer informa-
ion about the data than cross-correlation analysis.

There are a variety of ways for the further use of the
CA results. The prototypes (cluster centers) allow a

TABLE 2

Comparison between Activation Maps Obtained
with k-Means CA and DCA

enters Mean active Max. active Active hull P (active)

k-means

10 32.4 (67.75) 50 51 0.635 (60.15)
20 36.8 (613.68) 69 69 0.533 (60.15)
31 31.7 (612.29) 65 67 0.473 (60.16)
40 39.1 (617.11) 74 91 0.43 (60.13)
50 35.4 (610.7) 56 75 0.47 (60.13)
60 35.6 (612.4) 59 70 0.5 (60.12)

DCA

31 71.1 (64.73) 78 80 0.88 (60.06)

Note. Each line of the table expresses results after 10 repeated runs
ith the same parameters. The columns of the table display the
umber of cluster centers; the mean number of activated voxels; the
aximal number of activated voxels in a single run; the size of the
ull of activated voxels in all runs; i.e., the superset of activation
aps; and the mean probability that a single run classifies a voxels in

he hull as active—i.e., a low probability means a high variability in
he activation detection. Standard deviations of the mean values are
iven in parentheses.

lation and vicinity filtering. (a) The anatomical image with defined
n (white). (b) Distributions of voxels corresponding to the various
s active clusters. (c) Spatial distribution of voxels remaining after

of all voxels. (d) Representative signal time course of selected active
of voxels and corresponding colors in b. Small bars below the time
of a cluster located in the sagittalis sinus (top) and two other centers
orre
atio
olor
se
nts
ter

f cluster located outside the defined ROIs (two bottom rows).
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FIG. 4. Comparison of DCA results using the different sets of filtered data of one subject. The colors code different onset times of the
emodynamic response in active clusters. Colors from red, orange, yellow, and green to blue correspond to response times from early to late.

a,b,d,e) DCA activation maps for the data sets AVG A–AVG D. (c) Result of the DCA after OD filtering. (f) Result of the DCA on the equal

mplitude normalized data set AVG E. (g,h) The DCA results on the concatenated data sets CAT B1CAT D.
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aluable survey about the predominating shape charac-
eristics in the data set. Clusters with dominating
omponents of changes due to the BOLD effect, physi-
logical components, and sometimes also measurement
rtifacts are easily recognizable (for instance, we discov-

FIG. 5. Typical time courses of clusters obtained with amplitude n
cluster located in the sagittalis sinus (top) and two other centers of c

TABLE 3

Mean Time Shifts in Seconds, and Standard Deviation
in Parentheses, between the Examined

Brain Regions in All Subjects

DSMA-M1 DM1-S1 DS1-SIN DSMA-S1 DSMA-M1/S1

.35 (60.96) 0.12 (60.66) 0.73 (60.54) 0.47 (60.36) 0.41 (60.65)

Note. DSMA-M1, DM1-S1, DS1-SIN, and DSMA-S1 denote the time shifts
etween SMA and M1, M1 and S1, S1 and SIN, and SMA and S1,
espectively. DSMA-M1/S1 is the time shift between activated voxels
tontributing to SMA and active voxels in M1 and S1 together.
red a signal component presumably caused by the AC
eating of the VHF transmitter tube in the Siemens
ision). The spatial distribution of clusters can be
isplayed as an overlay of the corresponding maps onto
he anatomical image. Cluster centers can be selected
ith respect to interesting features salient in time

hape and spatial distribution and can be further
nalyzed on a voxel-by-voxel basis. It would be highly
nlikely to find these voxel sets with single-voxel tests.
We applied our approach to analyze signal courses by
CA with the Euclidean distance measure on the

oncrete example of movement-induced hemodynamic
hanges. For the well-studied voluntary movement
ask, correlation analysis on the cluster centers re-
ealed the expected activation maps (Figs. 3a and 3b)
nd active clusters were already visually salient in the
rovided data survey (Figs. 3d and 3e). Beyond correla-

alization. (a) Time courses of active cluster centers. (b) The center of
ter located outside the defined ROIs (two bottom rows).
orm
ion analysis the clustering methods are capable of
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iscriminating between different levels of activation
Baumgartner et al., 1997, 1998; Jarmasz and Somor-
ai, 1998; Moser et al., 1997), even if the temporal
attern is indistinguishable. However, the interpreta-
ion of such different levels of activation is not straight-
orward because of the partial volume effect. We inves-
igated this question by clustering after amplitude
ormalization. This increased the similarity of the time
urves (Fig. 5) and led to a lower number of activated
luster centers found by DCA. Comparison of twofold
ltering (Fig. 4e) and twofold filtering plus amplitude
ormalization (Fig. 4f) showed additional activated
oxels in the neighborhood of previously activated
oxels. Comparison of Fig. 4f with Figs. 3b and 3d
hows that the additional activated voxels after ampli-
ude normalization were mostly voxels with a lower
mplitude of activation (green voxels in Fig. 3b). Be-
ause of the distribution of activated voxels with a low
mplitude (green voxels in Fig. 3b) in the neighborhood
f voxels with higher activation amplitudes (red and
range voxels in Fig. 3b), we interpret the variation of
mplitudes as an effect of the partial volumes. How-
ver, the partial volume effect cannot be appropriately
orrected by amplitude normalization because of the
ow signal-to-noise ratio in time courses with small
OLD changes. Amplitude normalization yields only
easonable activity maps after previous data filtering
see Methods). In a forthcoming paper we will consider
ow the partial volume effect can be reduced if the
natomical structure and geometrical neighborship is
sed for a location-dependent amplitude renormaliza-
ion. Hard clustering with DCA with such a preprocess-
ng must then be compared with methods separating
ntrinsically several superimposed signal components
n single voxels like true fuzzy clustering techniques,
CA, ICA, or the recently proposed blind separation
nalysis (McKeown et al., 1998). The full exploitation of
he membership function as well as blind source separa-
ion also require additional assumptions about the
patial distribution of activation.
The 2D visualization showed a remarkably even

istribution of the centers reflecting an almost regular
ypertetrahedron configuration of the centers (of course,
here is no exact distance preserving projection of this
onfiguration in fewer dimensions). The hypertetrahe-
ron configuration of the centers might be a conse-
uence of the high dimension of our data (950 for data
et AVG; 4750 for data set CAT) that is of the same
rder or higher than the number of data points. It must
e emphasized that in this domain even most of the
ommon clustering algorithms are not well tested;
owever, our results indicate that DCA can be applied.
he 2D visualization further showed that always a

igh fraction of data is represented by a few clusters. m
hese findings suggest that for the fMRI data interest-
ng data points like activated voxels are in small
lusters of outliers in the data. This assumption was
onfirmed by our results with the simple OD filter.
Time courses of single voxels belonging to activated

lusters have been used to determine the mean re-
ponse times of the ROIs considered in the motor task.
n advantage of cluster methods is that they naturally
eveal temporal and spatial activation processes inde-
endent from ROIs (Ding et al., 1994). We observed that
ften a single activated cluster extented into different
OIs—signifying similar time courses at different loci.
his could be an indication of functional connectivity

Friston et al., 1993; Strother et al., 1995) between ROIs
hat are responsible for movement preparation and
xecution. Single cell recordings performed in monkeys
Okano and Tanji, 1987) and cats (Neafsey et al., 1978;
kano and Tanji, 1987) during voluntary movements

eported in each of the regions SMA and M1 cell
opulations with early and late neural response times.
hese results imply that there is no well-defined onset

ime of the whole ROI, which might also explain the
bserved high standard deviation of onset times within
he ROIs. Furthermore, the obtained time shifts might
ot necessarily reflect the time delays of neuronal
ctivation, in particular, if hemodynamic response char-
cteristics vary in the different ROIs (Binder et al.,
993; Buckner et al., 1996; Lee et al., 1995); however, a
ecent paper of Menon et al. (1998) reports that the
elative timing between the onset of the fMRI response
n different brain areas appears to be preserved.

In summary, we have examined cluster analysis on
he time courses of (fast) fMRI data using the Euclid-
an distance. DCA has been proposed as a new adaptive
lustering method. We have defined important require-
ents of a clustering algorithm for noisy data and have

hown that DCA meets them much better than the
-means method. We have checked the DCA results for
ifferent data preprocessing by comparing activated
lusters which are detected by the usual correlation
riterion and determined response delays of different
OIs involved in the motor task. However, onset times
ithin clusters show a high standard deviation and

herefore alternative distance measures and preprocess-
ng might be more appropriate for this feature. These
re matters of our further investigation.
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