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Spike-timing-dependent synaptic plasticity can
form “zero lag links” for cortical oscillations.�
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Abstract

We study the impact of spike-timing-dependent synaptic plasticity (STDP) on coherent gamma
activity between distant cortical regions with reciprocal projections. Our simulation network
consists of two areas and includes a STDP model re4ecting e5cacy suppression between pre/
postsynaptic spike pairs as found in recent experiments during stimulation with spike trains
(Nature 416 (2002) 433). We 8nd that STDP in conjunction with oscillatory common input
strengthens synapses with delays around multiples of the oscillation period. As a result, intrinsic
excitatory interactions between the areas express in gamma waves with zero lag synchrony
(instead of unphysiological anti-phase synchrony without STDP). We discuss the impact of
e5cacy suppression on learning convergence and robustness.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Neurophysiological experiments report that fast oscillatory activity (30–60 Hz) can
be synchronized in phase over distant cortical areas [3]. Synchronization of cortical
rhythms has been ascribed to reciprocal cortico-cortical connections and in4uential
cortex theories rest on the assumption that cortically mediated synchronization is the
essential mechanism for dynamic binding and integration of cortical representations
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Fig. 1. (A) Network model of two reciprocally connected areas, each consisting of three neuron populations
(cf. [5], → exc., � inh.). A third area C can deliver common input to areas L and R to force in-phase
synchronization during STDP. (B) Distribution of the inter-areal conduction delays in the model (solid)
and in rabbit inter-hemispheric connection of primary visual cortex (dashed) as measured from antidromic
latencies (modi8ed from [12]). (C) Modi8cation function of STDP with two exponentials, A+ exp(−Kt=�+)
for Kt ¡ 0 and A− exp(−Kt=�−) for Kt ¿ 0. Parameters as in [7,11] (thin line, A+ = 0:5%, �+ = 20 ms,
A− =0:525%, �− =20 ms) or [4] (thick line, A+ = 1:47%, �+ = 13:3 ms, A− =0:73%, �− =34:5 ms). (D)
Suppression of spike e5cacy according to [4] during oscillatory activity. A spike at time ts ¡ t leads to an
e5cacy recovery 
pre(t)=1−exp(−(t− ts)=�pre) at the presynaptic site and 
post(t)=1−exp(−(t− ts)=�post)
at the postsynaptic site. Parameters �pre = 28 ms and �post = 88 ms as estimated for the additive model
in [4].

[2]. However, since the transmission delays between hemispheres can reach many tens
of milliseconds ([12], Fig. 1B), nonlocal synchronization eNects in cortex have been
discussed controversially: modeling studies have indicated that in-phase synchronization
requires synaptic delays smaller than 1

3 or 1
4 of the oscillation period [6,9,10]. For 50 Hz

oscillations the zero-phase condition (delay ¡ 20
3 ms) is obviously not met.

In a recent paper [7] we have investigated the eNects of spike-timing-dependent
synaptic plasticity (STDP, [8,11]) in a pair of oscillating neuron pools with reciprocal
couplings. With a delay distribution in the reciprocal connections taken from exper-
iments [12], the pools in the model oscillated in anti-phase. But interestingly, STDP
turned out to stabilize zero-lag synchronization in the network because it modi8es
synaptic strength dependent on the transmission delay. Synapses with delays around
a multiple of the oscillation period become ampli8ed while other synapses become
weakened.
Simple models for STDP [11] were derived from neurophysiological experiments

employing single pre- and postsynaptic spike pairs to estimate the modi8cation function
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of synaptic strength (cf. Fig. 1C). However, for a neuronal network in oscillatory mode
the synapses are exposed to pre- and postsynaptic spike trains rather than isolated spike
pairs. Recent experiments assessed STDP induced by natural pre- and postsynaptic spike
trains [4]. Changes induced by an isolated spike pair turned out to become suppressed
by preceeding spikes in the same pair of neurons. Froemke and Dan have derived
from their data a more realistic model of STDP where each spike is assigned an
e5cacy which depends on the interval from the preceding spike. We use this model
in a simulation of two reciprocally connected neuron populations and characterize its
eNects on the synchronization of fast oscillatory activity.

2. Methods

In a simulation model we examine the interaction of two reciprocally connected
cortical areas (Fig. 1A) each consisting of three neuron populations of size 15 × 15
(cf. [5,7]). We use standard integrate-and-8re neurons [5]. All parameters are the same
as in our previous study [7], except the algorithm for STDP.
All connections are topographically organized (25× 25 kernels). The probability of

a synapse between two neurons is p = 0:5, and all synapses have initially the same
strength. We chose random synaptic delays s+ �d+ �N0;1 with base delay s, distance
d between the neurons and �2 the variance of a Gaussian N0;1 (local connections:
s = 0:8 ms, � = 0:2 ms and � = 0; inter-areal connections: bimodal delay distribution
restricted to 2–50 ms with s1=2 =5 ms=8 ms, �1=2 =0, �1=2 =4 ms=40 ms to approximate
data in [12]; see Fig. 1B). For the ratio between maximal local and inter-areal excitation
we assumed a value of 10 [1]. Long-range connections on inhibitory neurons were
modeled almost as strong as the connections on excitatory neurons (balanced regime
in [7]).
We implemented STDP in the inter-areal projections including the spike e5cacy

suppression mechanism proposed in [4]: synaptic modi8cation caused by the ith presy-
naptic and jth postsynaptic spike is Kwij= 


pre
i 


post
j F(Ktij) where F is the modi8cation

function (Fig. 1C), and 
prei =

post
j are the pre-/postsynaptic spike e5cacies. The spike

e5cacy of a neuron is zero immediately after a spike and subsequently relaxes expo-
nentially to 1 (Fig. 1D). In [4] two model variants are proposed both explaining the
neurophysiological data equally well. In the additive model the Kwij of each spike
pair are added, whereas in the multiplicative model factors 1 + Kwij are multiplied.
Here we focus on the additive model, however, we expect no major changes for the
multiplicative model. To compare the more realistic STDP model with common simple
STDP algorithms, we have also simulated STDP without suppression of spike e5cacy
using the same parameters as in previous studies [7,11].

3. Results

We have examined three diNerent models. (1) SMA: no spike e5cacy suppression,
modi8cation function (Fig. 1C) of [11]. (2) SMA-FD: modi8cation function of [11],
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Fig. 2. Impact of STDP on the synaptic strength distribution during oscillations for the three models (see
text): each row corresponds to one model and shows the synaptic strength distributions (vs. conduction delay)
after 1, 2, 5, 10, 20, 50, 100 s of STDP learning. Top row: model SMA (no spike e5cacy suppression).
Middle row: model SMA-FD (with spike e5cacy suppression). Bottom row: model FD (with spike e5cacy
suppression). Dash–dotted lines show initial distributions.

spike e5cacy suppression of [4]. (3) FD: modi8cation function and e5cacy suppression
of [4]. Before STDP we always observed anti-phase oscillations [7]. Fig. 2 shows
the temporal evolution of the synaptic strength distributions (vs. conduction delays)
during STDP and synchronized (forced by common input from area C, see Fig. 1A)
oscillatory activity. In all three models the synapses with delays around a multiple
of the oscillation period become ampli8ed, while other synapses are weakened so
that the “8nal” synaptic distributions (after 100 s of learning) supported autonomous
zero-phase synchronization (i.e., without common input). The duration of the learning
phases required, however, varied: in model SMA we observed autonomous zero-phase
synchronization already after 2–3 s [7], while the models with e5cacy suppression
required 20–50 s (SMA-FD) and 10–20 s (FD).
In Fig. 3 one can compare convergence rates and shape diNerences of the resulting

synaptic delay distributions. The distance measure used in the plots is the (non-delayed)
cross correlation (or inner-product) for the synaptic distribution at time t and a “8nal”
distribution after t=100 s of learning. One observes that spike e5cacy suppression can
reduce the convergence rate (Fig. 3A) without aNecting the 8nal synaptic distribution
(in Fig. 3B, the models SMA and SMA-FD converge to the same distribution). For a
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Fig. 3. Convergence of the distribution of synaptic strength (vs. conduction delay) during oscillatory activity
and STDP. Each line corresponds to the distance (vs. time) between two synaptic strength distributions
(cf. Fig. 2) measured as the inner-product normalized to [0; 1]. DiNerent line styles correspond to the
three models SMA (thick), SMA-FD (medium), and FD (thin). Models SMA-FD and FD include spike
e5cacy suppression parameters as estimated in [4]. (A) Distances measured relative to the respective “8nal”
distribution (after 100 s of learning). (B) Distances measured relative to the “8nal” distribution of model
SMA (after 100 s of learning).

given mechanism of spike e5cacy suppression, diNerent STDP curves (Fig. 1C) have
diNerent convergence rates (faster for higher amplitudes) and lead to diNerent 8nal
synaptic distributions (in Fig. 3B, the models SMA-FD and FD converge to diNerent
8nal distributions).

4. Conclusion

This study addressed the question whether spike-timing-dependent synaptic plasticity
(STDP) can account for zero-phase synchronization of fast oscillatory activity found
in distant cortical areas. Transmission delays for inter-areal cortical transmission can
be so large that they cause anti-phase synchronization in simulation models, con4icting
with the physiological observations of zero-lag [3,9,12]. In an earlier paper [7] we have
demonstrated that STDP, as found during stimulation with isolated spike pairs [8,11],
can establish zero-phase synchrony in networks with realistic transmission delays. In
recent experiments Froemke and Dan studied STDP induced by spike trains and found
interactions between spike pairs: preceeding spikes can suppress the e5cacy of spike
pairings. Clearly, for networks in oscillatory mode such eNects have to be taken into
account and called our earlier result [7] into question.
The simulation experiments in this paper show that a more realistic model of STDP—

including e5cacy suppression—can still explain the expression of zero-phase synchrony
between distant cortical areas. Oscillatory input in distant neuron populations strength-
ens synapses with delays close to multiples of the oscillation period, while others are
weakened. Thus, time-dependent plasticity form intrinsic excitatory interactions result-
ing in coherent gamma-band activity, so to say, “zero-lag links”. E5cacy suppression
slows the learning convergence down, but on the other hand, it may make zero lag
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links, once formed, less vulnerable with respect to incoherent network activity at high
rates.
The described function of STDP is important in the context of theories proposing

synchrony of fast oscillatory activity as a means for temporal binding [2]. In the light
of our model distributed gamma oscillations in the cortex indicate cooperative exci-
tatory in4uences between regions—links. Such long-range in4uences rely on previous
learning and they set in not immediately (since fast synapses are depressed). Links
become eNective depending on local coherence and are speci8c with respect to neural
populations as well as oscillation rhythms. Although a cooperation based on anti-phase
correlations would work between two remote regions, it leads to frustration (as the
interactions in spin glasses) as soon as more than two regions are involved.
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