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1 Introduction

The visual cortex is responsible for most of our con-
scious perception of the visual world, yet we remain
largely ignorant of the principles underlying its func-
tion despite progress on many fronts of neuroscience.
The principal reason for this is not a lack of data,
but rather the absence of a solid theoretical frame-
work for motivating experiments and interpreting
findings. The situation may be likened to trying
to understand how birds fly without knowledge of
the principles of aerodynamics: no amount of ex-
perimentation or measurements made on the bird
itself will reveal the secret. The key experiment—
measuring air pressure above and below the wing as
air is passed over it—would not seem obvious were it
not for a theory suggesting why the pressures might
be different.

But neuroscience can not simply turn to mathe-
matics or engineering for a set of principles that will
elucidate the function of the cortex. Indeed, engi-
neers and mathematicians themselves have had lit-
tle success in emulating even the most elementary
aspects of intelligence or perceptual capabilities, de-
spite much effort devoted to the problem over the
past 40 years. The lack of progress here is espe-
cially striking considering the fact that the past two
decades alone have seen a 1000-fold increase in com-
puter power (in terms of computer speed and mem-
ory capacity), while the actual “intelligence” of com-
puters has improved only moderately by comparison.

The problem: pattern analysis

Although seldom recognized by either side, both
neuroscientists and engineers are faced with a com-
mon problem—it is the problem of pattern analysis,
or how to extract structure contained in complex

data. Neuroscientists are interested in understand-
ing how the cortex extracts certain properties of the
visual environment—surfaces, objects, textures, mo-
tion, etc.—from the data stream coming from the
retina. Similarly, engineers are interested in design-
ing algorithms capable of extracting structure con-
tained in images or sound—for example, to identify
and label parts within the body from medical imag-
ing data. These problems at their core are one in the
same, and progress in one domain will likely lead to
new insights in the other.

The key difficulty faced by both sides is that the
core principles of pattern analysis are not well un-
derstood. No amount of experimentation or techno-
logical tinkering alone can overcome this obstacle.
Rather, it demands that we devote our efforts to
advancing new theories of pattern analysis, and in
directing experimental efforts toward testing these
theories.

In recent years, a theoretical framework for how
pattern analysis is done by the visual cortex has be-
gun to emerge. The theory has its roots in ideas pro-
posed more than 40 years ago by Attneave and Bar-
low, and it has been made more concrete in recent
years through a combination of efforts in engineer-
ing, mathematics, and computational neuroscience.
The essential idea is that the visual cortex contains
a probabilistic model of images, and that the activ-
ities of neurons are representing images in terms of
this model. Rather than focussing on what features
of “the stimulus” are represented by neurons, the
emphasis of this approach is on discovering a good
featural description of images of the natural environ-
ment, using probabilistic models, and then relating
this description to the response properties of visual
neurons.

In this chapter, I will focus on recent work that
has attempted to understand image representation



in area V1 in terms of a probabilistic model of natu-
ral scenes. Section 2 will first provide an overview of
the probabilistic approach and its relation to theo-
ries of redundancy reduction and sparse coding. Sec-
tion 3 will then describe how this framework has
been used to model the structure of natural images,
and section 4 will discuss the relation between these
models and the response properties of V1 neurons.
Finally, in section 5 I will discuss some of the exper-
imental implications of this framework, alternative
theories, and the prospects for extending this ap-
proach to higher cortical areas.

2 Probabilistic models

The job of visual perception is to infer properties of
the environment from data coming from the sensory
receptors. What makes this such a difficult problem
is that we are trying to recover information about
the three-dimensional world from a two-dimensional
sensor array. This process is loaded with uncertainty
due to the fact that the light intensity arriving at
any point on the retina arises from a combination
of lighting properties, surface reflectance properties,
and surface shape (Adelson & Pentland 1996). There
is no unique solution for determining these proper-
ties of the environment from photoreceptor activi-
ties; rather, some environments provide a more prob-
able explanation of the data than others based on
our knowledge of how the world is structured and
how images are formed. Visual perception is thus
essentially a problem of probabilistic inference.

In order to do probabilistic inference on images,
two things are needed:

1. A model for how a given state of the environ-
ment (E) gives rise to a particular state of ac-
tivity on the receptors (the observable data,
D). This model essentially describes the pro-
cess of image formation and can be character-
ized probabilistically (to account for uncertain-
ties such as noise) using the conditional distri-
bution P (D|E).

2. A model for the prior probability of the state of
the environment. This expresses our knowledge
of how the world is structured—which proper-
ties of the environment are more probable than

others—and is characterized by the distribution
P (E).

From these two quantities, one can make inferences
about the environment by computing the posterior
distribution, P (E|D), which specifies the relative
probabilities of different states of the environment
given the data. It is computed by combining P (E)
together with P (D|E) according to Bayes’ rule:

P (E|D) ∝ P (D|E)P (E) (1)

This simple equation provides a mathematical for-
mulation of the essential problem faced by the cor-
tex. By itself, it does not provide all the answers to
how the cortex works. But it does provide a guiding
principle from which we can begin to start filling in
details.

Redundancy reduction

The general idea of “perception as probabilistic in-
ference” is by no means new, and in fact it goes back
at least to Helmholtz (1867/1962). Attneave (1954)
later pointed out that there could be a formal rela-
tionship between the statistical properties of images
and certain aspects of visual perception. The no-
tion was then put into concrete mathematical and
neurobiological terms by Barlow (1961, 1989), who
proposed a self-organizing strategy for sensory ner-
vous systems based on the principle of redundancy
reduction—i.e., the idea that neurons should encode
information in such a way as to minimize statistical
dependencies among them. Barlow reasoned that a
statistically independent representation of the envi-
ronment would make it possible to store information
about prior probabilities, since the joint probability
distribution of a particular state x could be easily
calculated from the product of probabilities of each
component xi: P (x) = ΠiP (xi). It also has the ad-
vantage of making efficient use of neural resources in
transmitting information, since it does not duplicate
information in different neurons.

The first strides in quantitatively testing the the-
ory of redundancy reduction came from the work of
Simon Laughlin and M.V. Srinivasan. They mea-
sured both the histograms and spatial correlations
of image pixels in the natural visual environment of
flies, and then used this knowledge to make quan-
titative predictions about the response properties of
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neurons in early stages of the visual system (Laugh-
lin 1981; Srinivasan et al., 1982). They showed that
the constrast response function of bipolar cells in the
fly’s eye performs histogram equalization (so that all
output values are equally likely), and that lateral in-
hibition among these neurons serves to decorrelate
their responses for natural scenes, confirming two
predictions of the redundancy reduction hypothesis.

Another advance was made ten years later by At-
ick (1992) and van Hateren (1992; 1993), who for-
mulated a theory of coding in the retina based on
whitening the power spectrum of natural images in
space and time. Since it had been shown by Field
(1987) that natural scenes posses a characteristic
1/f2 spatial power spectrum, they reasoned that
the optimal decorrelating filter should attempt to
whiten the power spectrum up to the point where
noise power is low relative to the signal (since a
signal with flat power spectrum has no spatial cor-
relations). The optimal whitening filter thus has
a transfer function that rises linearly with spatial-
frequency and then falls off where the signal power
becomes equal to or less than the noise power. In-
terestingly, the inverse Fourier transform of such
a spatial-frequency response function has a spatial
profile similar to the center-surround antagonistic re-
ceptive fields of retinal ganglion cells and neurons in
the LGN. Some experimental evidence for temporal
whitening has also been found in the LGN of cats
(Dan et al., 1996).

Sparse, overcomplete representations

While the principle of redundancy reduction has
been fairly successful in accounting for response
properties of neurons in the retina and LGN, it
would seem that other considerations come into play
in the cortex. An important difference between the
retina and cortex is that the retina is faced with a
severe structural constraint, the optic nerve, which
limits the number of axon fibers leaving the eye.
Given the net convergence of approximately 100 mil-
lion photoreceptors onto 1 million ganglion cells, re-
dundancy reduction would appear to constitute a
sensible coding strategy for making the most use
of the limited resources of the optic nerve. V1, by
contrast, expands the image representation coming
from the LGN by having many more outputs than

inputs (approximately 25:1 in cat area 17—inferred
from Beaulieu & Colonnier (1983) and Peters & Yil-
maz (1993)). If the bandwidth per axon is about
the same, then the unavoidable conclusion is that
redundancy is being increased in the cortex, since
the total amount of information can not increase
(Field, 1994). The expansion here is especially strik-
ing given the evidence for wiring length being min-
imized in many parts of the nervous system (Cher-
niak, 1995; Koulakov & Chklovskii 2001). So what
is being gained by spending extra neural resources
in this way?

First, it must be recognized that the real goal
of sensory representation is to model the redun-
dancy in images, not necessarily to reduce it (Bar-
low, 2001). What we really want is a meaningful
representation—something that captures the causes
of images, or what’s “out there” in the environment.
Second, redundancy reduction provides a valid prob-
abilitic model of images only to the extent that the
world can meaningfully be described in terms of sta-
tistically independent components. While some as-
pects of the visual world do seem well described in
terms of independent components (e.g., surface re-
flectance is independent of illumination), most seem
awkward to describe in this framework (e.g., body
parts can move fairly independently but yet are also
oftentimes coordinated to accomplish certain tasks).
Thus, in order to understand how the cortex forms
useful representations of image structure we must
appeal to a principle other than redundancy reduc-
tion.

One way of potentially achieving a meaningful rep-
resentation of sensory information is by finding a way
to group things together so that the world can be de-
scribed in terms of a small number of events at any
given moment. In terms of a neural representation,
this would mean that activity is distributed among
a small fraction of neurons in the population at any
moment, forming a sparse code. Such a representa-
tion is actually highly redundant, since the activity
of any given unit is highly predictable (i.e., it spends
most of its time at zero). But so long as it can pro-
vide a meaningful description of images, then it is
more useful than a dense representation in which re-
dundancy has been reduced.

The first quantitative evidence for sparse coding
in the visual cortex was provided by Field (1987),
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who examined the histograms of model V1 neuron
activities in response to natural images. He mod-
eled the receptive fields of these neurons using a Ga-
bor function and showed that the settings of spatial-
frequency bandwidth and aspect ratio which max-
imize the concentration of activity into the fewest
number of units are roughly the same as those found
for most cortical neurons—i.e., around 1-1.5 octaves
and approximately 2:1 in length to width. In other
words, the particular shapes of V1 simple-cell recep-
tive fields appear well suited for achieving a sparse
representation of natural images.

In addition to these receptive field parameters,
though, the cortex must also choose how to tile
the entire joint space of position, orientation, and
spatial-frequency in order to provide a complete rep-
resentation of the image. Simoncelli, Freeman, Adel-
son & Heeger (1992) have argued that overcomplete-
ness is a desirable property for tiling the input space
in terms of these parameters, as it allows each output
to carry a specific interpretation—i.e., the amount
of structure occurring at a particular position, ori-
entation, and scale in the image. (An overcomplete
representation is one where the number of outputs
is greater than the dimensionality of the input.)
By contrast, in a critically sampled representation
(where there are just as many outputs as inputs),
it is difficult to ascribe meaning to any one output
value since it is corrupted by information from differ-
ent positions, scales, and orientations. By expand-
ing the representation, then, one achieves a better
description of the structure in images.

One can achieve the best of both worlds by com-
bining overcompleteness with sparseness. A tech-
nique now widely used in the field of signal analysis
is to combine different families of wavelets in order to
achieve the best combination of time and frequency
localization for describing a particular signal—so-
called “time-frequency atom dictionaries” (Mallat,
1999). Typically, one tries to obtain the spars-
est possible representation of a signal by selectively
drawing basis functions from different dictionaries
according to how well they match structure in the
signal. The result is a highly concise description
of the signal that reveals its true time-frequency
structure (Mallat & Zhang, 1993; Chen, Saunders
& Donoho, 2001).

Thus, by expanding the image representation and
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Figure 1: Sparse coding. By building oriented re-
ceptive fields, cortical neurons can represent image
structures such as edges using fewer active units than
in the retina or LGN. (Filled circles denote active
units; unfilled circles denote inactive units.)

making it sparse, neurons in V1 could achieve a
succinct description of images in terms of features
specifically tailored to the structures occurring in
natural scenes. For example, while an oriented edge
element would require several neurons to represent
in the retina or LGN, this structure would be ab-
sorbed by the activity of a single unit within a lo-
cal population in the cortex (figure 1). While noth-
ing has been gained in the ability to describe the
edge element per se—i.e., there has been no gain in
information—the description is now in a more con-
venient form. In other words, the activity of a single
cortical unit conveys more meaning about what is
going on in the image than does a single retinal or
LGN neuron. Note however that although the code
is sparse, it is still distributed in that multiple units
still need to take responsibility for coding any given
stimulus (Foldiak, 1995).

The conciseness offered by sparse, overcomplete
coding is also useful for subsequent stages of pro-
cessing. For example, once a scene is sparsely de-
scribed in terms of local edge elements, it would be
much easier to model the relationships among these
elements to represent contours, since the activities
of only a few neurons need to be taken into account.
If we were to model these dependencies directly in
terms of retinal ganglion cell activities, the number
of associations and hence neural connections needed
would be far greater. Sparseness is also desirable
for pattern matching, since it lowers the probability
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of false matches among elements of a pattern (Will-
shaw et al., 1969; Baum 1988; Jaeckel 1989; Zetzsche
1990).

As an aside, it is worth noting an example of where
sparse, overcomplete coding is used in abundance:
human communication. As pointed out by Zipf
(1950), efficient communication involves a tradeoff
between the size of the vocabulary and its ease of
use. One could have a small vocabulary where each
word has versatile meaning, but the correct use of
these words would rely heavily upon careful choice of
word order and establishing proper context. At the
other extreme, one could have an enormous vocabu-
lary where each word is endowed with highly specific
meaning, making its use very simple but requiring a
large memory capacity to store all the words. Hu-
man communication balances this tradeoff by having
a large but manageable vocabulary. Thoughts are
then conveyed by dynamically combining words into
sentences. The code is overcomplete since there are
many more words than phonemes used to form ut-
terances (or letters to form words), and it is sparse in
that any given sentence utilizes only a small fraction
of words in the vocabulary.

3 A simple probabilistic model of
images

This section will describe specifically how the prob-
abilistic approach has been used to model the struc-
ture of natural scenes, focusing on a sparse, overcom-
plete model of images. Section 4 will then discuss the
relation between this model and the response prop-
erties of neurons in area V1. Some proposed alter-
natives to sparseness will be discussed in section 5.

Linear superposition model

A number of probabilistic models described in the
literature have utilized a simple image model in
which each portion of a scene is described in terms
of a linear superposition of features (Olshausen &
Field, 1996a, 1997; Bell & Sejnowski, 1997; van
Hateren & van der Schaaf, 1998; Lewicki & Ol-
shausen, 1999). It should be noted from the out-
set, however, that such a linear model of images
can not possibly hope to capture the full richness

of the structures contained in natural scenes. The
reason is that the true causes of images—light re-
flecting off the surfaces of objects—combine by the
rules of occlusion, which are highly non-linear (Ru-
derman, 1997). In addition, the retinal projection of
an object will undergo shifts, rotations, and rescal-
ing due to changes in viewpoint, and these types of
variations also require more than a linear model to
properly describe. However, at the scale of a local
image patch (e.g., 12×12 pixels) it is possible that
these factors are not very significant. Also, because
the mathematics of linear systems are tractable, the
linear model provides us with a convenient starting
point for building a probabilistic model of images

In the linear model, an image patch, I(x), is de-
scribed by adding together a set of basis functions,
φi(x), with amplitudes ai:

I(x) =
∑

i

ai φi(x) + ν(x) (2)

(x denotes spatial position within the patch). The
basis functions may be thought of as a set of spatial
features for describing an image, and the coefficients
ai tell us how much of each feature is contained in
the image. The variable ν represents Gaussian noise
(i.i.d.) and is included to model structure in the im-
ages that is not well captured by the basis functions.
The model is illustrated schematically in figure 2.

Importantly, the basis set is assumed to be over-
complete, meaning that there are more basis func-
tions (and hence more ai’s) than effective dimen-
sions (number of pixels) in the images. For exam-
ple, in the instantiation described below, 200 basis
functions are used to describe a 12×12 image patch,
whereas 144 basis functions would suffice to form a
complete representation. Because the representation
is overcomplete, there are an infinite number of so-
lutions for the coefficients in equation 2 (even with
zero noise), all of which describe the image equally
well in terms of mean squared error. In other words,
there are multiple ways of explaining any given im-
age in terms of the basis functions.

The degeneracy in the solution caused by over-
completeness is analogous to the ill-posed nature of
visual perception discussed in the previous section.
As before, two things are needed to infer a solution:
a causal model for how the data is generated, and a
prior distribution over the causes (in this case, the
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Figure 2: Image model. a) An image patch, I(x), is
modeled as a linear superposition of basis functions,
φi(x). The image is thus represented, in terms of
the model, by the coefficient values ai. b) The prior
probability distribution over the coefficients, P (ai),
is peaked at zero with heavy tails relative to a Gaus-
sian of the same variance (shown as dotted line), so
as to encourage sparseness.

coefficients). The first we have already specified in
equation 2. Since the only uncertainty is the noise,
which is Gaussian, the probability of an image given
the coefficients is just a Gaussian distribution:

P (I|a, θ) =
1

ZλN

e−
λN
2

∑
x[I(x)−

∑
i
aiφi(x)]2 (3)

where 1/λN is the variance of the noise. The bold-
face notation is used to denote all elements of the
corresponding variable (pixels or coefficients), and
the symbol θ denotes all parameters of the model.

The prior probability distribution over the coef-
ficients, ai, is designed to enforce sparseness in the
representation, and it is also (for now) factorial:

P (a|θ) =
∏
i

1
ZS

e−S(ai) . (4)

S is a non-convex function that shapes P (ai) to
be peaked at zero with “heavy tails,” as shown
in figure 2(b)). For example, if S(x) = |x|, the
prior corresponds to a Laplacian distribution, and
if S(x) = log(1 + x2), the prior corresponds to a
Cauchy distribution. Note that although the joint
prior over the coefficients is factorial it need not stay
that way, and in fact there are good reasons for mak-
ing it non-factorial as discussed in the next section.

From the above two distributions (eqs. 3 and 4),
the relative probability of different explanations for

an image sequence is computed via Bayes’ rule, as
before (eq. 1):

P (a|I, θ) ∝ P (I|a, θ)P (a|θ) (5)

The posterior distribution, P (a|I, θ), rates the prob-
ability of each solution for the coefficients, but it
still does not tell us how to choose a particular solu-
tion for a given image. One possibility is to choose
the mean,

∫
P (a|I, θ)a da, but this is difficult to

compute because it requires sampling many values
from the posterior. The solution we adopt here is to
choose the coefficients that maximize the posterior
distribution (the so-called ‘MAP estimate’):

â = arg max
a

P (a|I, θ) . (6)

The MAP estimate â may be computed via gradi-
ent descent on − log P (a|I, θ). â is thus given by
the equilibrium solution to the following differential
equation:

τ ȧi = bi −
∑
j

Cij aj − S′(ai) (7)

bi = λN

∑
x

φi(x) I(x)

Cij = λN

∑
x

φi(x)φj(x)

The important thing to note here is that although
the image model is linear, the transformation from
images to coefficients is nonlinear. The reason why
is that the derivative of the “sparseness function,” S,
is nonlinear. It essentially serves to self-inhibit the
coefficients so that only those basis functions which
best match the image are used. Thus, inferring the
coefficients for an image sequence involves a process
of selection, or sparsification, rather than simply fil-
tering.

A neural circuit for sparsifying the cofficients ac-
cording to equation 7 is shown in figure 3. Each out-
put unit (coefficient) is driven by the combination of
a feedforward term (bi), a recurrent term (

∑
j Cijaj),

and a nonlinear self-inhibition term (−S′(ai)). The
feedforward contribution to each unit is computed
by taking the inner product between its basis func-
tion and the image, akin to a classical receptive field
model. The recurrent contribution is inhibitory and
is computed by weighting the activities of other units
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 S’Cij

Figure 3: Neural circuit for computing the coeffi-
cients. Each cofficient, ai, is driven by the combina-
tion of a feedforward term (inner product between
its basis function and the image), a recurrent term
(activities of other coefficients, weighted by the over-
lap of their basis functions), and a nonlinear self-
inhibition term (derivative of sparse cost function).

according to their inner product with this unit’s re-
ceptive field. Each unit is then subject to nonlinear
self-inhibition which discourages them from becom-
ing active, thus encouraging sparse representations.

Adapting the model to the statistics of
natural images

So far, we have formulated a probabilistic model for
describing images in terms of a sparse collection of
additive features (basis functions). But what ex-
actly should these features be? One could set them
by hand to match the aforementioned Gabor func-
tion parameters which yield sparse representations of
natural images (Field, 1987), but how do we know
there is not an even better, non-Gabor like way
to shape the basis functions that would lead to an
even sparser description of images? We can find out
by leaving the basis functions unparameterized and
adapting them to best match the structure of natural
images.

In general, any of the model parameters θ (which
includes the basis functions φi(x), the sparseness
function S, and the noise variance 1/λN ) may be
adapted to best match the statistics of natural
scenes by maximizing the average log-likelihood of

the model:

θ̂ = arg max
θ

〈log P (I|θ)〉 (8)

where the brackets 〈〉 mean “averaged over all im-
ages,” and the likelihood of the model is defined as

P (I|θ) =
∫

P (I|a, θ)P (a|θ) da . (9)

A learning rule for the basis functions may therefore
be obtained via gradient ascent on the average log-
likelihood:

∆φi(x) ∝ ∂ 〈log P (I|θ)〉
∂φi(x)

= λN

〈
〈ai e(x)〉P (a|I,θ)

〉
(10)

where e(x) is the residual image:

e(x) = I(x) −
∑

i

ai φi(x).

Looking at equation 10, we can see that adapt-
ing the basis functions amounts to a simple Hebbian
learning rule involving the coefficient activities and
the resulting residual image averaged under the pos-
terior distribution for each image. Instead of sam-
pling from the full posterior distribution, though, we
shall utilize a simpler approximation in which a sin-
gle sample is taken at the posterior maximum, and
so we have

∆φi(x) ∝ âi e(x) . (11)

In this case, however, we must rescale the basis func-
tions after each update in order to ensure that they
do not grow without bound (as described in Ol-
shausen & Field, 1997).

When this procedure is carried out on hundreds
of thousands of image patches extracted from nat-
ural scenes, the basis functions converge to a set
of spatially localized, oriented, bandpass functions,
as shown in Figure 4. Each of these functions
was initialized to random numbers, and they settled
upon this solution as a result of maximizing the log-
likelihood of the model. Indeed, it seems reasonable
that such functions would form a sparse description
of natural images, since only a few of them would be
needed to describe a line or contour passing through
this patch of space. Why they become bandpass is
less obvious, however, and some potential reasons are

7



Figure 4: Basis functions learned from natural images. Shown are a set of 200 basis functions, each 12×12
pixels in size. Most have become localized well within the image patch, and all have become oriented,
with the exception of one function which took on the D.C. component. The functions are also bandpass
in spatial-frequency, occupying different regions of the spatial-frequency domain.

given in Olshausen & Field (1996b) and Field (1993).
The learned basis functions are well fit by Gabor
functions, and the entire set of functions evenly tiles
the joint space of position, orientation, and scale, as
demonstrated in previous publications (Olshausen &
Field, 1996; 1997).

Time-varying images

The model may be extended to the time domain
by describing a sequence of images (i.e., a movie)
in terms of a linear superposition of spatiotemporal
functions, φi(x, t). Here, the basis functions are ap-
plied in a shift-invariant fashion over time, meaning
that the same function is assumed to be repeated at
each point in time. Thus, an image sequence is de-
scribed by convolving the spatiotemporal basis func-
tions with a set of time-varying coefficients, ai(t):

I(x, t) =
∑

i

∑
t′

ai(t′)φi(x, t − t′) + ν(x, t)

=
∑

i

ai(t) ∗ φi(x, t) + ν(x, t) (12)

The model is illustrated schematically in figure 5.

. . .

t

t

ai(t)

τ
x

y

x

y

t’

φi(x,y,t-t’)

I(x,y,t)

Figure 5: Spatiotemporal image model. A time-
varying image patch, I(x, t), is modeled as a lin-
ear superposition of spatio-temporal basis functions,
φi(x, t), each of which is localized in time but may
be applied at any point within the image sequence.
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Again, a sparse, factorial prior is imposed on the
coefficients over both space (i) and time (t), and the
coefficients for an image sequence are computed via
gradient descent on the negative log-posterior:

τ ȧi(t) = bi(t) −
∑
j

Cij(t) � aj(t) − S′(ai(t))(13)

bi(t) = λN

∑
x

φi(x, t) � I(x, t)

Cij(t) = λN

∑
x

φi(x, t) � φj(x, t)

where � denotes cross-correlation. Note however
that in order to be considered a causal system, the
value of a coefficient at time t′ must be determined
solely from image frames and other coefficient val-
ues prior to t′. For now though we shall not bother
imposing this restriction, and in the next section
we shall entertain some possibilities for making the
model causal.

A learning rule for the spatiotemporal basis func-
tions may be derived by maximizing the average
log-likelihood as before (for details see Olshausen,
2002). When the basis functions are adapted in this
manner, using time-varying natural images as train-
ing data (van Hateren, 2000), they converge to a
set of spatially localized, oriented, bandpass func-
tions that now translate over time. Shown in Fig-
ure 6 is a randomly chosen subset of the 200 basis
functions learned, each 12×12 pixels and 7 frames
in time. Again, it seems intuitively reasonable that
these functions would form a sparse representation
of time-varying natural images, since only a few of
them are needed to describe a contour segment mov-
ing through this patch of the image.

The tiling properties for velocity, as well as speed
vs. spatial-frequency, are shown in figure 7. The
majority of basis functions translate by less than one
pixel per frame. (The frame rate is 25 frames/sec.,
so a speed of one pixel per frame corresponds to 25
pixels/sec.) The high-spatial frequency basis func-
tions are biased towards slow speeds as expected,
because at higher speeds they would give rise to
temporal-frequencies beyond the Nyquist limit. This
limit is shown by the dashed line (for example, a
spatial-frequency of 0.25 cy/pixel moving at two pix-
els per frame, or 50 pixels/sec, would give rise to a
temporal-frequency of 12.5 Hz, which is equal to the
Nyquist rate in this case).

Figure 6: Space-time basis functions learned from
time-varying natural images. Shown are 30 basis
functions randomly selected from the entire set of
200 functions learned, arranged into two columns of
15. Each basis function is 12×12 pixels in space and
7 frames in time. Each row within a column shows
a different basis function, with time proceeding left
to right.
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Figure 7: Basis function tiling properties. Each data
point denotes a different basis function. In the po-
lar plot at left, radius denotes speed (in units of
frames/sec) and angle denotes the direction in which
the basis function translates. In the plot at right, the
dashed line denotes the limit imposed by the Nyquist
frequency (12.5 Hz). (The striated clustering is an
artifact due to decimation in the spatiotemporal fre-
quency domain.)
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4 Relation to V1 response proper-
ties

We now turn to the relation between the image
model and the response properties of neurons in area
V1. We shall first focus on the response properties
of simple cells and then discuss efforts to model the
response properties of complex cells, as well as de-
pendencies among them.

Simple cells

In the neural circuit implementation of the model,
the basis functions correspond to the feedforward
weighting functions that contribute to the final out-
put value of each unit (fig. 3). If we were to draw
an analogy between the coefficients ai of the model
and neurons in V1 then, it would seem most appro-
priate to compare the basis functions φi(x, t) to the
receptive fields of simple-cells. These neurons be-
have in a somewhat linear manner, in that in their
response to a stimulus can be fairly well predicted
from a weighted sum of inputs over space and time
(although see chapter 52 (Geisler) for a discussion of
the response nonlinearities of these neurons). Their
spatial receptive fields have been characterized as
spatially localized, oriented, and bandpass, similar in
form to the basis functions learned by the sparse cod-
ing model (spatial-frequency bandwidth of 1.1 oc-
taves, length/width ratio of 1.3—Olshausen & Field,
1996).

In terms of their temporal properties, simple-cells
tend to fall in two major categories—those that are
separable in space and time, and those that are in-
separable (McLean & Palmer, 1989; DeAngelis et
al., 1995). The latter tend to translate as a func-
tion of time, similar to the learned basis functions of
the model, and it is this property that is thought to
underly the direction-selectivity of V1 neurons (see
also chapters by DeAngelis and Freeman). If one
assumes a size of 0.15 degrees/pixel for the images
used in training, then a speed of 1 pixel/frame (see
fig. 7) corresponds to 4 deg./sec., which is within the
typical range of speed tuning found in simple-cells
(DeAngelis et al. 1993).

Given the similarities between the receptive field
properties of V1 simple-cells and the basis functions
of the sparse coding model, it would seem that these

neurons are well-suited to form a sparse representa-
tion of natural images. It is also possible that the
space-time separable simple-cells could be fit within
this framework, since one way to build neurons with
space-time inseparable receptive fields is by sum-
ming a population of space-time separable units with
different time-constants. Thus, if the basis functions
of the model were constrained such that they did not
have access to inputs with arbitrary time-delays, it
may be possible to obtain both types of receptive
field properties.

Ideally, one would like to compare not just the
form of individual basis functions, but also how the
population as a whole tiles the joint space of po-
sition, orientation, spatial-frequency, and velocity.
However, to do such a comparison properly would re-
quire exhaustively recording from all neurons within
a hypercolumn or so of visual cortex. From the par-
tial assays of parafoveal neurons currently available,
it would seem there is an over-abundance of neu-
rons tuned to low spatial-frequencies as compared to
the model (DeValois et al., 1982; Parker & Hawken,
1988; van Hateren and van der Schaaf, 1998). This
discrepancy could be due to biases in sampling, or
because the model is currently ignoring many other
stimulus dimensions that the cortex also cares about,
such as color, disparity, etc. (Olshausen & Ander-
son, 1995). In addition, real neurons have a certain
level of precision with which they can code informa-
tion in amplitude and time, whereas in the model
there is no limit in precision imposed upon the co-
efficient amplitudes (i.e., they have essentially infi-
nite precision in amplitude). It seems likely that
when such implementation details are taken into ac-
count, the bias towards low spatial-frequencies could
be explained since the low spatial-frequencies in nat-
ural scenes occupy a higher dynamic range than high
spatial-frequencies.

Beyond accounting for known receptive field prop-
erties, the model also makes a prediction about the
type of non-linearities and interactions among neu-
rons expected in response to natural images. In the
neural implementation of the model (fig. 3), each
output unit is subject to non-linear self-inhibition, in
addition to inhibition from neighbors whose recep-
tive fields overlap with its receptive field. Figure 8 il-
lustrates the effect of these output nonlinearities and
interactions by showing for one of the coefficients in
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Figure 8: Coefficient signal computed by sparsifica-
tion (top) vs. convolving its basis function with the
image sequence (bottom) for a 7.4 second image se-
quence (25 f/s).

the population the time-varying signal obtained by
maximizing the posterior (sparsification) to that ob-
tained by straightforward convolution (simply taking
a feeforward weighted sum of inputs over space and
time). The difference is striking in that the sparsified
representation is characterized by highly localized,
punctate events, as opposed to the more graded and
prolonged activations obtained with convolution. If
we take the coefficients to be analogous to neurons
in the cortex, then this would predict that the re-
sponses of neurons should be sparser than expected
from simply convolving their feedforward weighting
function with the image. Note also that the form
of non-linearity here is more complicated that the
pointwise contrast response non-linearity observed
in simple cells (Albrecht & Hamilton, 1982; Albrecht
& Geisler, 1991), as it involves interactions among
units with overlapping receptive fields.

A recent study by Vinje & Gallant (2000, 2002)
lends support to the idea of sparsification. They
recorded from V1 neurons in an awake behaving
monkey while natural image sequences obtained
from free-viewing were played both in and around
a neurons receptive field. They show that when
neurons are exposed to progressively more context
around their classical receptive field, the responses
become sparser. Importantly, the effect is not just an
overall supression of responses, but rather a combi-
nation of supression and selective enhancement, akin

to the sparsification seen in figure 8. In the model,
this is happening because units are effectively com-
peting to describe the image at any given moment.
With little or no context, there is more ambiguity
about which basis functions are best suited to de-
scribe structure within the image, and so the ac-
tivities would be expected to resemble more those
predicted from convolution.

Before the sparse coding model can be taken se-
riously as a model of neural coding, however, one
must address the issue of causality mentioned ear-
lier. As it stands, the value of a coefficient at time τ
is determined from image frames both prior to and
after τ . But of course real neurons can not work this
way. The model would thus need to be modified so
that the value of a coefficient at time τ is determined
only from image content prior to τ . This could be
done by simply truncating the basis functions so that
φ(x, t) = 0 for t > 0. However, it then becomes nec-
essary to modify the dynamics of equation 13 so that
the coefficients at time τ do not attempt to account
for everything that has happened up to time τ . Oth-
erwise there will be no way for the basis functions to
learn the continuity in images that exists from one
frame to the next. More generally, there is the need
to adopt a serious dynamical (differential equation)
model rather than using fixed time delays as cur-
rently formulated. These problems are the focus of
current research.

Complex cells

While the receptive field of a simple-cell can be
mapped out in terms of its excitatory and in-
hibitory subfields, the receptive field of a complex
cell can only be mapped out in terms of its fea-
ture selectivity—i.e., orientation, spatial-frequency,
direction of motion, etc. The reason is that complex
cells by definition exhibit the striking non-linearity
of being locally position- or phase-invariant. Since
these neurons are insensitive to the exact alignment
or polarity of an edge within their receptive fields, it
is impossible to describe their responses in terms of
a linear weighted sum of inputs.

Can these nonlinear response properties of com-
plex cells also be accounted for in terms of a sparse
coding model adapted to natural images? Hyvari-
nen & Hoyer (2000) have approached this ques-
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tion by assuming an architecture in which the ba-
sis function coefficients are grouped into local, non-
overlapping pools. Another set of units—putative
complex cells—then sums the squares of these units,
one unit for each non-overlapping pool. A sparse
prior is then imposed on these units, and a set of
basis functions is sought which best matches this
model to natural images. After training, the “sub-
units” take on simple-cell like receptive field prop-
erties (spatially localized, oriented, and bandpass),
and all the units within a pool share the same ori-
entation preference but have different phases or po-
sitions. Thus, the model seems to have learned the
same sort of invariance exhibited by complex cells.
On the other hand, the architecture of summing the
squared outputs of subunits was assumed, and it is
unclear what role this had in determining the out-
come.

Modeling horizontal connections and con-
textual effects

Even though independence is assumed in the prob-
abilistic models for both simple-cells and complex-
cells above, there are still plenty of statistical depen-
dencies among these units after adapting to natural
images. Part of the reason for this is the existence
of contours and other more global forms of structure
in images which can not be captured by localized
receptive fields. Given that such dependencies exist
among V1 neurons, what should be done?

Schwartz & Simoncelli (2001) have argued that the
cortex should use its horizontal connections to re-
move dependencies via divisive normalization. They
examined the pairwise dependencies between ori-
ented, bandpass filters and showed that although the
outputs are decorrelated, they are heavily correlated
in their magnitudes. They have proposed a model
for reducing these magnitude correlations by divid-
ing each output by the sum of squares of neighboring
outputs. The resulting model seems to account well
for contextual effects measured in V1 neurons using
spatial frequency gratings.

An alternative approach is to use the horizontal
connections to directly model the dependencies that
exist, rather than removing them. In this scheme,
units with colinear basis functions would actually
reinforce each other’s activity rather than be suppre-

sive. The idea of reinforcement is consistent with a
substantial body of psychophysics (Field 1993; Po-
lat & Sagi, 1993) and physiology (Kapadia et al.,
2000). There are also a number of computational
models which have been proposed along these lines
for doing contour segmentation (Parent & Zucker,
1989; Shashua & Ullman, 1988; Yen & Finkel, 1998;
Li, 2001), but the association connections in these
models are usually set by hand and require substan-
tial tweaking to work properly on natural images.
Geisler et al (2001) and Sigman et al. (2001) have
measured the co-occurance statistics of oriented fil-
ters on natural images and shown that they follow a
co-circularity structure, meaning that oriented units
lying along the same circle are most correlated. It
should be possible to incorporate these sorts of de-
pendencies into the sparse, overcomplete model by
having a non-factorial prior for the coefficients and
adapting the model to images (Olshausen, 1997).

5 Discussion

Much of visual neuroscience has historically been
guided by the question, “how do neurons respond
to the stimulus?” But what constitutes “the stimu-
lus” in a natural scene is far from obvious. Indeed,
years of research in machine vision have shown that
the definition of a feature even as elementary as an
edge or contour is essentially an ill-posed problem, as
it depends heavily on context and high-level knowl-
edge. Nearly all of the properties of the world we ex-
perience are inferred from the data coming down the
optic nerve, and as we have seen, inference depends
on priors, and priors are built upon the statistics of
natural scenes. If we accept the fact that these priors
are embedded in the neural circuitry of the cortex,
then modeling the structure of natural images and
studying the response properties of neurons in terms
of these models becomes of tantamount importance
to visual neuroscience.

I have described a simple probabilistic model of
images based on sparse coding, and I have shown
how the response properties of V1 neurons may be
interpreted in terms of this model. Some support for
this interpretation is provided by existing data, but
the idea is still quite speculative and further tests are
needed to completely rule in favor of this hypothesis.
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The type of experiments needed, though, are those
which use natural scenes, or a reasonable facsimile
thereof, as stimuli (see also chapter 107 (Gallant)).

Probabilistic models as experimental tools

One of the objections to using natural images as
experimental stimuli, often leveled by neurophysi-
ologists, is that they constitute an “uncontrolled”
stimulus. But probabilistic models provide a princi-
pled way to describe the features contained in nat-
ural images, which we can then attempt to relate
to the responses of neurons. One way this could be
done, for example, is through the technique of “re-
verse correlation.” Rather than correlating neural
activity directly with pixel values, as is commonly
done, one could instead correlate activity with the
sparsified basis function coefficients ai that are used
to describe an image (i.e., the stimulus). Such an ap-
proach could potentially yield insights that could not
have been obtained through reverse correlation in
the pixel domain, because although the image model
is linear, the coefficients are a nonlinear function of
the image. Ringach et al. (2002) has recently uti-
lized an approach along similar lines, yielding some
novel findings about complex cell receptive fields.

It is also possible to run the probabilistic model
in a generative mode, in order to synthesize images
to be used as stimuli. This is done by drawing co-
efficient values at random, according to the prior,
and then generating either static or dynamic images
according to equations 2 or 12, respectively. Inter-
estingly, even though the images being generated
by this process are structured, the actual generative
variables ai are unstructured, and so there is no need
to correct for correlations in the stimulus (e.g., The-
unissen et al. 2001). And in contrast to white noise,
such structured images are more likely to be matched
to what neurons are “looking for,” thus making it
more likely that neurons will respond to a sufficient
degree that they may be characterized. Comparing
the results of reverse correlation obtained with syn-
thetic images to those obtained with natural images
would then enable one to determine which aspects of
the latter are due to higher-order structure in natu-
ral scenes (beyond that captured by the model).

Alternatives to sparseness

While sparseness has been the emphasis of this chap-
ter, it should be mentioned that there are alterna-
tive objectives for accounting for the response prop-
erties of visual neurons. For example, some have
emphasized the role of statistical independence over
sparseness and point to the fact that similar results
are obtained when independent component analy-
sis (ICA) is applied to natural images (Bell & Se-
jnowski, 1997; van Hateren & van der Schaaf, 1998;
van Hateren & Ruderman, 1998). However, the ICA
algorithms used in these cases are also searching for
a sparse description of data. For example, Bell &
Sejnowski’s (1995) algorithm maximizes the same
objective as equation 8, and they utilize a sparse
(Laplacian) distribution for the prior when training
on natural images (see Olshausen & Field, 1997, for
a formal derivation of the equivalence). The algo-
rithm used by van Hateren & van der Schaaf (1998)
and van Hateren & Ruderman (1998) does not as-
sume an explicit form for the prior but extremizes
kurtosis (Hyvarinen & Oja, 1997). When trained on
either static or dynamic natural images, the solution
found by the algorithm has positive kurtosis, mean-
ing that it is essentially maximizing kurtosis. Since
kurtosis is also a measure of sparsity, it would thus
be fair to interpret the algorithm as simply maxi-
mizing sparseness in this case.

Despite the fact that these previous applications
of ICA have confounded the contributions of spar-
sity and independence, it should still be possible to
ascertain whether independence alone is sufficient to
account for simple-cell receptive field properties. For
example, Saito (2000) has shown that when one con-
strains the basis functions to be orthonormal and
minimizes the sum of marginal entropies (to maxi-
mize independence), the solution obtained is similar
to that obtained by maximizing sparseness. How-
ever, the basis set was constrained here to be a
member of a particular family of modulated cosine
functions. When the bases are not constrained to
be orthonormal, then maxmizing independence can
lead to quite different solutions from those obtained
by maximizing sparsity (for a spike process) (Saito,
2002).

Another objective that has been proposed for cor-
tical neurons is “stability over time” (Foldiak, 1991;

13



Einhauser et al., 2002; Hurri & Hyvarinen, 2002), or
“slow feature analysis” (Wiskott & Sejnowski, 2002;
Wiskott 2003). The idea here is to impose stabil-
ity on the representation in the hope that neurons
will discover invariances in images. Einhauser et al.
(2002) have constructed a network architecture sim-
ilar to Hyvarinen & Hoyer’s and shown that when
the derivative of activity is minimized, the recep-
tive fields of subunits in the model resemble those
of simple-cells. Similarly, Hurri & Hyvarinen (2002)
have shown that when the correlation of absolute val-
ues or squared outputs is maximized over time, the
learned receptive fields also resemble simple cell re-
ceptive fields. These results would seem to support
the idea that simple-cell receptive fields also help
to achieve invariant representations of time-varying
natural images.

Finally, some have attempted to account for cor-
tical receptive field properties purely from second-
order statistics arising either from random activity
during development (Miller 1994) or in response to
natural images (Li & Atick 1994; Li 1996). However,
these approaches usually have to make some explicit
assumption about the receptive properties, such as
localization or scale-invariance (bandpass structure),
in order to achieve the receptive field properties sim-
ilar to simple-cells.

Beyond V1

Perhaps the greatest promise of the probabilistic
approach is its potential to be extended to multi-
stage, hierarchical models of image structure (e.g.,
Mumford, 1994; Dayan et al., 1995). Such models
could possibly provide insight into the coding strate-
gies used in higher visual areas such as V2 and V4.
However, for the linear image model described here,
nothing would be gained by simply stacking a num-
ber of such models together into a hierarchy, since
they would form just another linear model. In order
to gain descriptive power, some form of non-linearity
is needed. Hoyer & Hyvarinen (2002) have investi-
gated building a two-stage hierarchical model using
a complex-cell type nonlinearity. They showed that
when a sparse, overcomplete model is trained on the
outputs of model complex cells, the learned basis
functions become more elongated than those of units
in the layer below. Thus, the model would appear

to be grouping oriented Gabor-like elements together
into “contour units.”

Beyond predicting ever more complex receptive
fields, there is also the potential for hierarchical mod-
els to elucidate the role of two-way interactions that
occur between levels of the visual cortical hierarchy
via feedback pathways. For example, it has been
proposed that feedback pathways may carry predic-
tions from higher levels which are then subtracted
from representations at lower levels (Mumford, 1994;
Rao & Ballard, 1997). According to these models,
the activity in lower levels would be expected to de-
crease when higher levels can successfully “explain”
a stimulus. Recent fMRI studies lend support to this
general idea, showing that activity in V1 decreases
when local shape features are arranged so as to form
a global percept of an object (Kersten et al., 1999;
Murray et al., 2001).

Another proposed role for feedback pathways, also
consistent with these findings, is that they serve to
disambiguate representations at lower levels (Lewicki
& Sejnowski, 1996; Lee & Mumford, 2003). Accord-
ing to this model, neural activity that initially re-
sults from the feedforward pass tends to be broadly
distributed across a number of units. But as higher
level neurons provide context, activity in the lower
level becomes concentrated onto a smaller number
of units, similar to sparsification. Presumably, there
are yet other possibilities to entertain, and so there
is a strong need to develop hierarchical models that
could form concrete predictions about what to look
for in the cortex.

Summary

Understanding how the cortex performs pattern
analysis is a central goal of visual neuroscience. In
this chapter I have presented a probabilistic ap-
proach to pattern analysis, and I have shown how it
may help to explain a number of known properties of
V1 receptive fields in addition to predicting certain
nonlinearities (sparsification) in the responses of V1
neurons. The model described in this chapter should
be viewed only as a starting point though. The chal-
lenge ahead is to construct hierarchical models ca-
pable of describing higher-order structure in images
(e.g., 3D surfaces and occlusion), and to use these
models to elucidate the types of representations em-
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ployed in higher cortical areas, as well as the role of
feedback projections.
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