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Abstract.  Although the idea of thinking of perception as in inference problem goes back 
to Helmholtz, it is only recently that we have seen the emergence of neural models of 
perception that embrace this idea.  Here I describe why inferential computations are 
necessary for perception, and how they go beyond traditional computational approaches 
based on deductive processes such as feature detection and classification.  Neural 
models of perceptual inference rely heavily upon recurrent computation in which 
information propagates both within and between levels of representation in a bi-
directional manner.  The inferential framework shifts us away from thinking of ‘receptive 
fields’ and ‘tuning’ of individual neurons, and instead toward how populations of neurons 
interact via horizontal and top-down feedback connections to perform collective 
computations. 

Introduction

One of the vexing mysteries facing neuroscientists in the study of perception is the 
plethora of intermediate-level sensory areas that lie between low level and high level 
representations.  Why in visual cortex do we have a V2, V3, and V4, each containing a 
complete map of visual space, in addition to V1?  Why S2 in addition to S1 in 
somatosensory cortex?  Why the multiple belt fields surrounding A1 in auditory cortex? 

A common explanation for this organization is that multiple stages of processing are 
needed to build progressively more complex or abstract representations of sensory 
input, beginning with neurons signaling patterns of activation among sensory receptors 
in lower levels and culminating with representations of entire objects or properties of the 
environment in higher areas.  For example, numerous models of visual cortex propose 
that invariant representations of objects are built up through a hierarchical, feedforward 
processing architecture (Fukushima 1980; Riesenhuber & Poggio 1999; Wallis & Rolls 
1997).  Each stage is composed of separate populations of neurons that perform 
feature extraction and spatial pooling, with information flowing from one stage to the 
next, as shown in Figure 1.  The idea here is that each successive stage learns 
progressively more complex features of the input that are built upon the features 
extracted in the previous stage.  By pooling over spatial position at each stage, one also 
obtains progressively more tolerance to variations in the positions of features, 
culminating in object-selective responses at the top level that are invariant to variations 
in pose of an object.  Such networks now form the basis of 'Deep Learning' models in 
machine learning and have has achieved unprecedented success on both image and 
speech recognition benchmarks.   

Might such hierarchical, feedforward processing models provide insight into what is 
going on in the multiple areas of sensory cortex?  I shall argue here that despite the 
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strong parallels between these models and cortical anatomy and physiology, these 
models are still missing something fundamental.  The problem lies not just with their 
computational architecture, but also the class of problems they have been designed to 
solve.  Namely, benchmark tasks such as image or speech recognition - while 
appearing to capture human perceptual capabilities - define the problem of perception 
too narrowly.  Perception involves much more than a passive observer attaching labels 
to images or sounds.  Arriving at the right computational framework for modeling 
perception requires that we consider the wider range of tasks that sensory systems 
evolved to solve.

So, what are these tasks?  What do animals use their senses for?  Answering these 
questions is a research problem in its own right.  One thing we can say with certainty is 
that visual systems did not start out processing HD resolution images, and auditory 
systems did not start out with well-formed cochleas providing time-frequency analysis of 
sound.  Rather, sensory systems began with crude, coarse-grained sensors attached to 
organisms moving about in the world.  Visual systems for example began with simple 
light detectors situated in the epithelium.  Remarkably, over a relatively short period of 
time (estimated to be 500,000 years) they evolved into the wide variety of sophisticated 
eye designs we see today (Nilsson & Pelger 1994).  What was the fitness function 
driving this process?  Presumably it was the ability to plan useful actions and predict 
their outcomes in complex, 3D environments.  For this purpose, performance at tasks 
such as navigation or judging scene layout is crucially important.  From an evolutionary 
perspective, the problem of 'recognition' - especially when distilled down to one of 
classification - may not be as fundamental it seems introspectively to us humans.

The greater problem faced by all animals is one of scene analysis (Lewicki, Olshausen, 
Surlykke & Moss, 2013).  It is the problem of taking incoming sensory information and 
interpreting it in terms of what it conveys about the surrounding environment:  terrain, 
obstacles, and navigable surfaces or routes, in addition to specific objects of interest 
and their pose and position within the scene. In contrast to a simple feedforward 
processing pipeline in service to the single goal of classification, scene analysis involves 
multiple types of representation with different functions (Figure 2).  Most actions (the 
interesting ones we care about) are not simply reflexive behaviors in direct response to 
sensory messages.  Rather, they depend on goals, behavioral state, and the past 
history of what has occurred (memory).  In other words, meaningful behavior requires 
having a model of the world and one's place in it.  The model needn't be particularly 
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Figure 1:  Hierarchical feedforward processing model of visual cortex.  Each stage contains 
separate populations of neurons for feature extraction and pooling, resulting in object selective 
responses at the top stage that are invariant to variations in pose.



detailed - indeed what aspects of the environment are modeled and to what degree of 
accuracy is an important empirical question - but we may reasonably assume that it 
must be assimilated from diverse types of sensory input into a common format that 
mediates planning and execution of behavior.  

The goal of intermediate levels of representation then is to disentangle from the raw 
input stream aspects of the scene appropriate for driving behavior.  In contrast to 
classification which collapses over variability to make a discrete categorical assignment, 
the goal here is to describe the variability - such as the slope of terrain, or the pose of 
an object - in an analog manner that captures the components of a scene and how one 
might act upon them.  It is this intermediate level where inferential processes come into 
play. 

In this chapter, I shall describe why inference provides a suitable computational 
framework for perception, the basic computations it entails, and specific models that 
have been proposed for how it is instantiated in neural systems.  As we shall see, the 
inferential framework forces us to look at the neural mechanisms in a different way than 
the standard feedforward processing pipeline.  An open problem though is to better 
understand the relation between perception and action, and how inferential 
computations fit into the larger framework of sensorimotor systems.  

For other excellent reviews of ‘perception as inference’ from the perspective of 
psychophysics, see (Knill & Richards 1996; Kersten, Mamassian & Yuille 2004; Kersten 
& Yuille 2003; Yuille & Kersten 2006), in addition to the chapters by Kersten and Geisler 
in this volume.

Figure 2:  Components of scene analysis.  The scene itself contains not just a single target 
object, but other objects, terrain, and background, all of which may be important for behavior.  
The neural structures enabling scene analysis contain multiple levels of representation and 
analysis.  The level of “intermediate features” is where inferential processes come into play.  
(From Lewicki, Olshausen, Surlykke & Moss, 2013)



Why Inference?

The problem of disentangling

The properties of the world that we care about - which drive behavior - are not directly 
provided by sensory input.  There are no sensors that measure surface shape, motion 
of objects, material properties, or object identity.  Rather, these properties are entangled 
among multiple sensor values and must be disentangled to be made explicit (see also 
DiCarlo & Cox 2007).  In vision for example, the retinal image provides a set of 
measurements of how much light is impinging on the eye from each direction of space.  
The fact that we humans can look at 2D images and make sense of them unfortunately 
gives the misleading impression that an image tells you everything you need to know.  
But the image itself is simply a starting point and its 2D format is not well suited to drive 
behavior in a 3D world.  Similarly, the array of hair cell responses does not provide an 
explicit representation of sound sources, nor does the array of mechanoreceptor 
activities on the fingertip provide a representation of object shape.  These properties are 
entangled in spatio-temporal patterns of sensor activities.

Importantly, the nature of these disentangling problems is that they are often ill-posed, 
meaning that there is not enough information provided by the sensory data to uniquely 
recover the properties of interest.  In other words, the various aspects of a scene that 
are needed to drive behavior can not simply be deduced from sensory measurements.  
Rather, they must be inferred by combining sensory data together with prior knowledge.  
Moreover, the disentangling often requires that different aspects of scene structure be 
estimated simultaneously, so that the inference of one variable affects the other.  Thus, 
it would be impossible - or at least highly inefficient - to infer these things in a purely 
feedforward chain of processing.

To give a concrete example, consider the simple image of a block painted in two shades 
of gray, as shown in Figure 3 (Adelson 2000).  Computing a representation of the 2D 
edges in this image easy, but understanding what they mean is far more difficult.  Note 
that there are three different types of edges: 1) those due to a change in reflectance 
(the boundary between q and r), 2) those due to a change in 3D object shape (the 
boundary between p and q), and 3) those due to the boundary between the object and 
background.  Obviously it is impossible for any computation based on purely local 
image analysis to tell these different types of edges apart.  It is the context that informs 
us what they mean, but how exactly?  

In order to interpret this image, one must understand how illumination, 3D shape, and 
reflectance interact, and how an object combines with its background in projecting to a 
2D image (i.e., occlusion).  If an edge is ascribed to be due to a reflectance change, it 
can not also be due to a shape change (an edge could be due to both, but then the 
contribution of each of these causes would need to be reduced so that when combined 
they still match what is in the image).  Thus, the computation of reflectance depends on 
the computation of shape, and vice-versa.  And both of these require prior knowledge of 



what shapes and reflectance changes are likely in order to arrive at a plausible 
interpretation consistent with the data.

Early investigators such as Roberts and Waltz attempted to formally specify the logical 
operations needed to recover representations of 3D shape from such idealized “blocks 
world” scenes (Roberts 1965; Waltz 1975).  However, their methods assumed perfect 
knowledge of edge segments in the image and the X and Y junctions formed at their 
intersections, and they utilized the constraints of geometry to then deduce 3D shape 
from the 2D image.  Later, Marr (1982) proposed breaking this process into multiple 
stages:  a primal sketch in which features and tokens are extracted from the image, a 
2.5-D sketch that begins to make explicit aspects of depth and surface structure, and 
finally an object-centered, 3D model representation of objects.  His model proposed a 
feedforward chain of processing in which features are extracted from the image and 
progressively built up into representations of objects through a logical series of 
operations in which information flows from one stage to the next.  However, since these 
initial proposals, experience with real world images has shown us that such bottom-up, 
deductive processes rarely work in practice.

Consider for example the simple scene of a log against a background of rocks, as in 
Figure 4.  It takes little conscious effort to comprehend what is going on in this scene - 
the boundary of the log appears obvious to most observers.  But if we put ourselves in 
the position of a local population of neurons in V1 getting input from a local patch of this 
image, things are far less clear.  The right panel of Figure 4 shows the response of an 
array of model V1, orientation-selective units analyzing a local patch of the image, with 
the boundary of the log superimposed as a faint gray line.  As one can see, almost 
nowhere along this boundary are there neurons firing indicating the position and 
orientation of the boundary.  Instead, one finds neurons firing at many different positions 
and orientations that signal structure in the background and foreground, but with little 

Figure 3:  Image of a block painted in two shades of gray (from Adelson, 2000).  The edges in 
this image are easy to extract, but understanding what they mean is far more difficult and can 
not be discerned through local image analysis.  



relation to the boundary itself.  Thus, simply measuring oriented contrast in an image 
does not give us a direct measure of the boundaries or intersection of objects, which 
can then be fed into a reasoning engine about 3D shape.  The best that we will get from 
early levels of representation is a collection of ambiguous 2D shape cues which have 
aspects of illumination, shape, and reflectance intermingled.  These must then must be 
aggregated and refined by higher level processes to disambiguate these cues and what 
aspects of scene structure they correspond to.

‘Intrinsic images’

One of the first attempts to grapple with the computational aspects of the disentangling 
problem was Barrow and Tenenbaum’s work on ‘intrinsic images’ (Barrow & Tenenbaum 
1978).  They attempted to specify the rules by which scene components such as 
surface shape, reflectance, and illumination could be recovered from the raw intensity 
image.  They argued that these attributes should be separated at an early level of 
representation, and that by doing so it greatly facilitates the process of segmentation 
and object recognition.  Specifically, they proposed representing these attributes as a 
stack of two-dimensional maps, or ‘intrinsic images’, that are in register with the original 
intensity image, where each pixel location is labeled according to its shape, reflectance, 
or illumination properties.  Importantly, the computation of each of these maps involves 
propagating information between maps to obey photometric constraints and within maps 
to obey continuity and occlusion constraints.  That is, they can not be computed in 
independent streams in a purely feedforward fashion, but must cooperate to reach a 
solution.

Although Barrow and Tenenbaum appreciated the importance of disentangling and 
outlined some of the computational problems that need to be solved, they stopped short 
of proposing a specific algorithm and testing it on real images.  Somewhat surprisingly, 
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Figure 4.  The outlined region around the boundary of the log (left panel) is shown expanded in 
the middle panel.  The right panel shows how a hypothetical array of model V1 neurons (Gabor 
filters at four different orientations) would respond to the image subregion shown at left.  The 
length of each line segment indicates the magnitude of response of a neuron whose receptive is 
situated at that position and orientation.  An array of such neurons provides only weak or 
ambiguous cues about the presence of object boundaries in natural scenes.



the intervening years have seen only a handful of efforts to devoted to these problems 
(e.g., Jojic & Frey 2001; Wang & Adelson 1994) and as a result there has been little 
progress in developing practical solutions for dealing with real world images.  Recently 
however Barron and Malik (2012) have made an important advance by using priors over 
shape, reflectance, and illumination to recover intrinsic images for these quantities from 
photographs of real objects.  To date their method obtains the best performance on this 
challenging problem.  And notably, it is based on inferential computation in which 
representations of shape, reflectance and illumination interact in order to settle to a 
solution.

The intrinsic image approach takes an important step in introducing the idea of a 
structured or layered representation that moves away from a flat, monolithic 
representation of image properties (such as an array of Gabor filters) and towards a 
representation of properties of the scene.  But still, attributes of the scene are 
represented in 2D cartesian coordinates, in a retinotopic or camera-centric frame of 
reference, whereas animals must act in complex 3D environments.  Ultimately then it 
makes sense for scene attributes to be represented in a format that is more amenable 
to planning actions in the world. 

Surface representation

Nakayama and colleagues have argued based on psychophysical evidence that 
intermediate-level representations are organized around surfaces in the 3D 
environment, and that these representations serve as a basis for high-level processes 
such as visual search and attention (Nakayama, He & Shimojo 1995).  This view stands 
in contrast to previous theories of perceptual grouping, search and attention based on 
2D maps of image features such as local orientation and motion energy (Julesz 1981; 
Treisman & Gelade 1980).  Nakayama’s experiments suggest that representations of 
3D surface structure are formed at an early stage, and that perceptual grouping, search 
and attention operate primarily on inferred surface representations rather than 2D maps 
of image features.  For example, when colored items are arranged on surfaces in 
different depth planes, detection of an odd-colored target is facilitated when pre-cued to 
the depth plane containing the target;  but if the items are arranged so as to appear 
attached to a common surface receding in depth, then pre-cueing to a specific depth 
has little effect.  Thus, it would appear that attention spreads within inferred surfaces in 
3D coordinates in the environment, not by 2D proximity in the image or within a 
common depth plane (disparity).

Nakayama’s work also points to the importance of surface occlusion relationships in 
determining how features group within a scene.  Under natural viewing conditions the 
2D image arises from the projection of 3D surfaces in the environment.  When these 
surfaces overlap in the projection, the one nearest the observer “over-writes” or 
occludes the other.  Thus, a proper grouping of features would need to take this aspect 
of scene composition into account in determining what goes together with what, as 
shown in Figure 5.  By manipulating disparity cues so as to reverse figure-ground 
relationships in a scene, they show that the visual system groups features in a way that 



obeys the rules of 3D scene composition.  Features are grouped within surfaces, even 
when parts of the surface are not visible, but not beyond the boundary of a surface.  
Thus, the neural machinery mediating this grouping would seem to require an explicit 
representation of border ownership, such as described by Zhou, Friedman and von der 
Heydt (2000), or some other variable that expresses the boundaries and ordinal 
relationship of surfaces.  
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Figure 5:  Occlusion and border ownership.  When image regions corresponding to different 
surfaces meet in the projection of a scene, the region corresponding to the surface in front 
“owns” the border between them.  A region that does not own a border is essentially 
unbounded and can group together with other unbounded regions.  Here, surface x owns the 
borders �

xy

 and �
xz

.  Thus, regions y and z are unbounded at these borders and they are free 
to group with each other, but not with region x because it owns these borders and is therefore 
bounded by them.  (Adapted from Nakayama et al. 1995)

Although the discussion above has focussed mainly on visual inferential processes, the 
same ideas generalize to other sensory modalities such as audition or touch.  The 
central problem we face for all of these modalities is that the properties of the world that 
are needed to drive behavior are not given directly by the sensory receptors but instead 
must be inferred by combining sensory data together with prior knowledge.  Now we 
turn to the question of how this is actually done by neurons.

How do neurons perform inferential computations?

Helmholtz astutely observed long ago that perception is a process of ‘unconscious 
inferences.’  Only recently though have investigators pursued this idea in a quantitative 
manner in order to characterize inferential computations carried out in the nervous 
system.  Here I describe the mathematical framework for inference based on Bayes’s 
rule, and neural models that have been proposed for doing perceptual inference.

Bayes’s rule

The basic mathematical framework for inference begins with Bayes's rule, which uses 
the laws of conditional probability to calculate the probability of a hypothesis H given the 
data D:



﻿ ﻿

What this equation tells us is that if we have a model that specifies how probable the 
data would be under a certain hypothesis, i.e., the likelihood ﻿ ﻿, in addition to the 
prior (‘before data’) probability of the hypothesis, ﻿ ﻿, then we can calculate the 
posterior (‘after data’) probability of the hypothesis ﻿ ﻿.  (The term ﻿ ﻿ often plays 
the role of a normalization constant and may be ignored if we are mainly interested in 
the relative probability of different hypotheses for the same data.)  Simply speaking, 
Bayes’s rule provides a calculus for reasoning in the face of uncertainty.  It is a powerful 
conceptual and mathematical framework that tells us quantitatively how to make 
inferences in the face of noisy or incomplete data.  Not surprisingly one now finds it 
applied to a wide variety of problems, from the control of guided missiles to spam 
filtering.

In perception, we are interested in estimating properties of the external environment 
from sensory data.  For example, in vision we are given a set of photoreceptor 
activations or pixel intensities, ﻿ ﻿, and we wish to infer properties such as shape, ﻿ ﻿, and 
reflectance, ﻿ ﻿.  Using Bayes’s rule we can formulate this problem as follows:

﻿ ﻿

Here the likelihood term ﻿ ﻿ expresses the rendering model - i.e., how images are 
generated as a function of shape and reflectance.  This is a well-posed computation that 
is routinely solved by computer graphics algorithms.  However the problem of going the 
other direction - from the image to compute shape and reflectance - is highly ill-posed 
because there are multiple ways to set these parameters that would result in the same 
image (Adelson, 2000).  This degeneracy is resolved by the priors over shape and 
reflectance, ﻿ ﻿ and ﻿ ﻿, which favor certain settings of ﻿ ﻿ and ﻿ ﻿ over others.  In the 
work of Barron and Malik, these priors were obtained by measuring statistics of shape 
and reflectance on a large database of objects.  The resulting posterior distribution 
over ﻿ ﻿ and ﻿ ﻿, ﻿ ﻿ rates the different shape and reflectance values of the image in 
terms of their probability of being the correct interpretation.  It takes into account both 
how well image measurements are fit by these values and how consistent they are with 
prior knowledge.  With strong enough priors, the posterior may be peaked around a 
single value of s and r, which would make these settings an obvious choice (i.e., the 
maximum-a-posteriori or MAP estimate).

A model that shows how the above computations may be implemented in a neurally 
plausible manner in the circuits of visual cortex has yet to be fully developed.  In the 



meantime though, we can get a feel for the nature of such a solution by looking at a 
simpler neural model of inference called sparse coding.   

Sparse coding

The goal of sparse coding is to learn a set of basis patterns from the statistics of 
incoming sensory data and then infer a representation of the data in terms of these 
patterns.  Although these patterns may not correspond to the actual properties of a 
scene, the model nevertheless illustrates the principles of inferential computation in a 
neural system and how it can provide new insight into the response properties of 
neurons.

In a visual sparse coding model, we start with the assumption that the spatial 
distribution of light intensities within a local region of the image ﻿ ﻿ may be represented 
in terms of a superposition of some basis patterns ﻿ ﻿:

﻿ ﻿

The image is then represented in terms of the coefficients ﻿ ﻿ which tell us which basis 
patterns are contained in the image (Figure 6).  The term ﻿ ﻿ is a residual that is 
included to account for other structure such as noise that is not well described by the 
model.  The basis patterns themselves are learned from the statistics of images so as to 
provide a sparse or compact description of the image - that is, we desire a dictionary of 
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Figure 6:  Sparse coding model of images.  a. Images are represented in terms of a set of 
basis patterns  that are learned from the data.  Each coefficient  expresses how 
much of each basis pattern is needed to describe the image.  Sparsity is imposed through a 
prior that encourages coefficients to be zero.   b. Basis patterns learned from image patches 
extracted from natural images.  Each patch shows a different learned pattern .  The 
learned patterns are oriented, localized, and bandpass (selective to structure at different 
spatial scales), similar to the measured receptive fields of V1 neurons.



basis patterns ﻿ ﻿ that allows us to provide a good match to any given image using 
the fewest (sparse) number of non-zero coefficients ﻿ ﻿.  Sparsity is enforced by 
imposing a prior over the coefficients ﻿ ﻿ that encourages values to be zero.  The 
coefficients themselves are then computed by maximizing the posterior 
distribution ﻿ ﻿.  

The proposal here is that neurons in cortex (layer 4 of V1) are representing the 
coefficients ﻿ ﻿ (Olshausen & Field 1997).  But how should such a population of neurons 
compute their responses so as to maximize the posterior ﻿ ﻿?  Rozell, Johnson, 
Baraniuk and Olshausen (2008) have shown that a solution  may be computed 
according to the following equations:

﻿ ﻿

These equations are amenable to direct implementation in a neural network (in fact they 
are the same equations as for a Hopfield network).  Each neuron’s membrane 
voltage ﻿ ﻿ is driven by the combination of a feedforward (receptive field) term and a 
feedback (recurrent inhibition) term that depends on the overlap between basis 
patterns, 

﻿ ﻿
.  The output ﻿ ﻿ is then computed by simply thresholding 

the membrane voltage ﻿ ﻿ (the function ﻿ ﻿ passes values above a specified threshold and 
sets values below threshold to zero).  Thus, in order to arrive at a representation of the 
image, the population of neurons must interact.  Although the receptive field provides a 
driving input, the neuron’s actual response is determined by the context of which other 
neurons around it are also responding.  If the basis pattern of one unit is better matched 
to the image than another, it will attempt to cancel out or “explain away” the other unit’s 
activity.  Interestingly, Zhu and Rozell (2013) have shown that these explaining away 
interactions can account for a wide variety of non-classical receptive field effects such 
as end-stopping and contrast orientation tuning. 

The sparse coding model illustrates how a variety of neural response properties found 
in V1 - localized, oriented, bandpass receptive fields and contextual modulation - may 
be accounted for in terms of a model that attempts to infer a representation of the 
incoming sensory data in terms of its underlying features.  But the most we can hope for 
with this approach is a direct representation of the data per se (e.g., basis patterns of 
the image), whereas what we ultimately desire is a representation of the properties of a 
scene that these data tell us about.  As the simple example of the painted block in figure 
3 shows us, this can not be accomplished through local image analysis but rather 
involves aggregating information globally across the scene in order to infer properties 
such as shape and reflectance.  Thus, we turn now to the question we addressed at the 



outset:  how can we build up more complex or abstract representations of sensory input 
through hierarchy of multiple stages of analysis?

Hierarchical representation

Lee and Mumford (2003) have proposed a framework for hierarchical Bayesian 
inference that illustrates how the above inferential computations could be extended to 
multiple stages of representation.  The general idea is illustrated in Figure 7 which is 
adapted from their paper.  At each stage, the variables being represented are influenced 
by both bottom-up and top-down inputs.  At the first stage corresponding to V1, the 
variables a are inferred through a combination of the likelihood and prior as above, 
except now the prior over a is shaped by the variables b represented in the next higher 
level (‘V2’).  For example, if many weak signals among the a variables suggest the 
presence of a contour (as in the log and rocks image of figure 4), then the b variables in 
the next stage that explicitly represent the contour would become active, in turn 
encouraging the elements consistent with it to increase their activity by modulating the 
prior over a in this direction.  The variables b in turn are subject to influences from yet 
higher levels, such as objects or fragments of surfaces represented by variables c.  
Thus, the full representation of the scene involves variables at all levels, a, b, and c, and 
computing these variables relies upon bi-directional information flow between levels. 

This is admittedly just the sketch of a theory.  There are many details to be filled in here, 
and some efforts have already been made along these lines (Cadieu & Olshausen 
2012; Garrigues & Olshausen 2010; Karklin and Lewicki 2005, 2009).  What is most 
needed now is to incorporate layered representations, such as those proposed by 
Barrow and Tenenbaum, and Barron and Malik, that separate aspects of scene 
structure due to surface shape, reflectance, or other scene variables.  It will also be 
necessary to include in the generative model the ability to account for occlusion or 
figure-ground relationships (Le Roux, Heess, Shotton & Winn 2011; Lücke, Turner, 
Sahani & Henniges 2009) and geometric transformations due to variations in pose 
(Arathorn 2002, 2005; Olshausen, Anderson & Van Essen 1993).  

. . .

image data ‘V1’ ‘V2’

Figure 7.  Hierarchical Bayesian inference.  The variables represented at each level are inferred 
from a combination of bottom-up and top-down inputs.  Bottom-up inputs enter into the 
likelihood, while top-down inputs enter into the prior.  The two are combined to form the un-
normalized posterior, which guides the inference of variables at each level. (Adapted from Lee 
and Mumford, 2003.)



From a neurobiological perspective, the hierarchical inference model provides a clear 
role for feedback connections in the cortex and it suggests how to design experiments 
to reveal what they are doing.  Although there have already been numerous 
experimental attempts to uncover what feedback is doing - for example by cooling or 
disabling neurons in a higher area and characterizing how responses in lower areas 
change (Andolina, Jones, Wang & Sillito 2007; Angelucci & Bullier 2003; Hupé, James, 
Girard, Lomber, Payne & Buillier 2001) - the effects to date appear rather subtle.  
Indeed there is considerable doubt among neuroscientists as to whether feedback plays 
any role in dynamically shaping information processing (Lennie 1998).  If the 
hierarchical Bayesian inference model is correct, it suggests we would most see the 
greatest effects of feedback when the system is presented with scenes containing 
locally ambiguous cues which can only be properly interpreted at higher levels of 
analysis.  Indeed, fMRI experiments along these lines have revealed evidence for 
strong top-down effects: When subjects perceive a collection of features as an entire 3D 
object as opposed to its individual parts, activity in higher levels increases while activity 
in lower levels decreases, consistent with disambiguation (Murray, Kersten, Olshausen, 
Schrater & Woods 2002).

Another important neurobiological consideration is the speed with which such a 
hierarchical inference system can settle on a solution.  It has been argued based on the 
speed of object-selective neural responses (Thorpe, Fize & Marlot 1996; Hung, 
Kreiman, Poggio & DiCarlo 2005; Oram & Pettet 1992) that there is little time for the 
iterative type of processing that feedback loops would entail (Thorpe & Imbert 1989).  
But conduction velocities of feedforward and feedback axons between V1 and V2 are 
on the order of 2-4 ms (Angelucci & Bullier 2003).  Even between thalamus and V1 the 
round trip travel time can be as short as 9 ms (Briggs & Usrey 2007).  It also not clear 
whether “iterative processing” is an apt analogy to describe signal flow in the cortex, 
since there is no clock latching each cycle of feedback.  It could well be then that such a 
system can quickly settle to a solution within physiological time constraints.  More 
importantly, sensory processing does not work in terms of static snapshots of input that 
get churned away in the system one at a time.  Rather it operates as a dynamical 
system operating on a continuous, time-varying input stream.  Thus, the consequence 
of feedback arriving through axonal and synaptic delays is simply that sensory 
information arriving at the present moment is processed in the context of past 
information that has gone through a higher level of processing, which undoubtedly could 
be quite advantageous.

Finally, it should be noted that the hierarchical Bayesian inference framework is distinct 
from the ‘predictive coding’ model of Rao and Ballard (1999).  Though both models 
advocate an important role for top-down feedback signals, the proposed effect of these 
signals is very different.  Predictive coding proposes that feedback signals are largely 
inhibitory, as they carry the predictions of higher levels which attempt to cancel out 
signals coming from lower levels.  By contrast, Hierarchical Bayesian inference 
proposes that feedback serves to disambiguate representations in lower levels, 
meaning that it would facilitate, rather than cancel out, the activity of neurons at lower 



levels consistent with representations from higher levels, and it would suppress the 
activity of neurons that are inconsistent. 

Conclusions

Thinking of perception as an inference problem, as opposed to a deductive 
computational pipeline, leads us to ask a different set of questions about what neurons 
are doing.  Instead of asking about feature extraction, receptive fields, and tuning of 
individual neurons, we are led to ask how populations of neurons cooperate and interact 
to infer representations of scene properties.  Instead of looking for organized “maps” of 
sensory features varying along one or a small number of feature dimensions across the 
cortical surface, we are led to look for different layers of representation which 
disentangle different scene properties and which are likely to be intermingled on a much 
finer scale.  Instead of viewing the cortical hierarchy as a feedforward pipeline with 
classification as an end goal, we are led to ask how ill-posed problems are being solved 
at each level, and how feedback from higher levels disambiguates representations at 
lower levels.

While Bayes’s rule provides a computational framework for perceptual inference, it 
leaves many questions unanswered regarding its implementation.  If the brain is doing 
Bayesian inference, should we expect to find neurons representing probabilities and 
calculating Bayes’s rule when we look inside?  As we have seen in the case of the 
sparse coding model, not necessarily.  Here neurons represent hypotheses about what 
is contained in the scene, and Bayes’s rule acts as the ‘invisible hand’ that governs the 
dynamics of the circuit and leads the population to a mode of the posterior distribution.  
Other models have proposed ways that neurons might represent probabilities implicitly 
through a population code (Eliasmith & Anderson 2004; Ma, Beck, Latham & Pouget 
2006) or through stochastic sampling via spontaneous activity (Berkes, Orban, Lengyel 
& Fiser 2011).  The advantage of these latter approaches is that the entire distribution 
over a set of hypotheses may be represented which allows for uncertainty or multiple 
probable hypotheses to be taken into account during inference.

Finally, it will be necessary to think more seriously about the link between the perception 
and action in order to give these ideas a more solid footing.  Much has been said here 
about representing scene properties, but which properties need to be represented and 
how well depends on the manner in which they are used to guide actions.  As Guillery 
and Sherman (2011) point out, layer 5 neurons in all levels of visual cortex (or other 
sensory cortices) project to motor nuclei.  Thus it is not just the top box of the cortical 
hierarchy but also representations in V1, V2, V4, etc. that are used to guide actions.  
Figuring out how to incorporate these aspects of cortical architecture into the 
hierarchical inference framework - that is, understanding how inference feeds into action 
- will be an important goal for future work.
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