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An intrinsic limitation of linear, Hebbian networks is that they are 
capable of learning only from the linear pairwise correlations within 
an input stream. To explore what higher forms of structure could be 
learned with a nonlinear Hebbian network, we constructed a model 
network containing a simple form of nonlinearity and we applied it to 
the problem of learning to detect the disparities present in random-dot 
stereograms. The network consists of three layers, with nonlinear sig- 
moidal activation functions in the second-layer units. The nonlineari- 
ties allow the second layer to transform the pixel-based representation 
in the input layer into a new representation based on coupled pairs of 
left-right inputs. The third layer of the network then clusters patterns 
occurring on the second-layer outputs according to their disparity via a 
standard competitive learning rule. Analysis of the network dynamics 
shows that the second-layer units' nonlinearities interact with the Heb- 
bian learning rule to expand the region over which pairs of left-right 
inputs are stable. The learning rule is neurobiologically inspired and 
plausible, and the model may shed light on how the nervous system 
learns to use coincidence detection in general. 

1 Introduction 

In recent years, linear Hebbian learning rules have been used to model the 
development of receptive field properties in the central nervous system 
(e.g., Linsker 1988; Miller ef al. 1989; Sereno and Sereno 1991; Berm ef al. 
1993). These networks have many attractive features: they discover struc- 
ture in input data, reduce redundancy, and perform principal component 
analysis (Hertz et al. 1991, pp. 197-215). Significantly, these models have 
for the most part ignored the nonlinearities inherent in real neurons (for 
an exception see Miller 1990). It is important to develop sound theo- 
ries for the roles nonlinearities might play in such unsupervised neural 
networks. However, "good theories rarely develop outside the context 
of a background of well-understood real problems and special cases" 
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(Minsky and Papert 1988, p. 3). Thus, we have chosen to study in de- 
tail the problem of disparity detection for the extraction of surface depth 
from stereoscopic images. This problem is particularly appropriate be- 
cause (1) disparity has known behavioral and neurobiological relevance, 
(2) psychophysicists have shown that random-dot stereograms provide 
simple, mathematically well-defined stimuli that capture the essence of 
the disparity problem (Julesz 1971), and (3 )  disparity processing has been 
proven to require nonlinearity for its implementation (Minsky and Pa- 
pert 1988, pp. 48-54). For these reasons we created a network containing 
simple, nonlinear units that can learn to detect disparity in random-dot 
stereograms under biologically inspired, Hebbian learning rules. In this 
paper, we present a description of this network followed by an in-depth 
characterization of its learning and performance. 

2 Inspiration from Neurobiology 

Several basic characteristics of neural signaling shape our approach to 
modeling a nonlinear network. A first, simple form of nonlinearity is 
inherent in the neurobiology of synaptic transmission: a real synapse 
is either excitatory or inhibitory, whereas a model linear synapse may 
change from one to the other.’ Another nonlinear aspect of synaptic 
transmission is long-term potentiation (LTP). LTP is the increase in synap- 
tic efficacy that occurs between active pre- and postsynaptic neurons. 
The phenomenon expresses three basic properties in relating presynaptic 
activity to changes in synaptic strength: input specificity, associativity, 
and cooperativity. LTP is input specific in that nonactive synapses are 
not potentiated during induction of LTP. Associativity refers to the cell’s 
ability to potentiate a weak input if it is paired with a simultaneously 
active strong input. Finally, “cooperativity describes the existence of an 
intensity threshold for induction” (Bliss and Collingridge 1993); in other 
words, a critical number of afferents must be active for induction of LTP 
(McNaughton ef nl.  1978). 

By contrast, l iwnr  Hebbian rules are not cooperative in this sense. 
For a linear neuron, Hebb’s rule states only that the change in synaptic 
strength is proportional to the postsynaptic activity times the presynaptic 
activity. This rule is associative and input specific, but has no threshold 
for induction: a single weak input repeated twice achieves the same level 
of synaptic enhancement that coactive inputs would achieve in one step 
(cf. Holmes and Levy 1990). Thus, LTP is Hebbian, but not linear.2 

‘Here we consider only fast synaptic transmission. 
’Previously, Miller 11990) addressed some of these sources of nonlinearity by study- 

ing a system with two populations of on-off cells, developing an analytical framework 
based upon linearizing the difference between these two input sources. We have cho- 
sen a different approach by incorporating these properties of synaptic rectification and 
cooperativity directly into a neural unit. 
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Figure 1: Form of the nonlinear function 0. Shown are graphs of U ( X )  for typical 
values used in our simulation, p = 5,  10, and 20. Dotted lines indicate the 
activation levels given by one or two synapses with maximal synaptic weights. 

3 Mathematical Formalism 

We incorporate the above properties into a neural unit based upon one of 
the standard model units commonly used in neural network models: the 
summing unit with sigmoid-shaped activation function. We define this 
sigmoid unit by its input-output relation and learning rule. Let y, denote 
the unit output and let xl denote the set of inputs to the unit. Then, if 
each connection strength is represented by a weight, w,,, the output of 
the unit is given by 

(3.1) 

where a(x) is a sigmoid-shaped function with a bias of 1/2 so that for 
zero input the output is zero. Specifically, 

x > o  1 

c ( X )  = (3.2) 

where ,O determines the steepness of the slope at x = 1 /2 (see Fig. 1). We 
also assume that the inputs are normalized to take on values from zero 
to one. 

{ o  x < o  
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For our learning rule we use a standard form of Hebbian learning 
(Linsker 1988) with synaptic changes, Azu,,, given by 

h i , ,  x (output) x (input) (3.3) 

where o is a parameter describing the amount of heterosynaptic compe- 
tition among synapses (0 < o < l). 

To ensure consistency with the one-sided nature of (excitatory) synap- 
tic transmission, the weights are allowed to take on values only greater 
than or equal to zero. Cooperativity in the learning rule comes from the 
sigmoidal nonlinearity. To maintain a “threshold” for weight increases, 
a single active connection should not be able to affect the unit strongly. 
Therefore, we must set an upper limit, ~ L T , ~ , , ,  on the strength of any one 
connection. We choose zu,,,, so that two strong inputs can have a strong 
effect on the unit [r7(2zun,,,) = 11, but a single input can only weakly affect 
the unit [t7(zum,, 1 << 11. Specifically, we set iu,,,, = 1/3. (The responses 
resulting from one or two inputs are superimposed on the graph of Fig- 
ure 1.) In effect, we set our threshold to discriminate between states with 
one active input and states with two or more active inputs. 

To get a feeling for how the weights will evolve, one can qualitatively 
describe the behavior of a single unit as follows: As a series of inputs 
is presented to the unit, the synapses will ”compete” among themselves 
to maximize their strengths due to the heterosynaptic depression term, 
0. Over time, some synapses will begin to win out and others will be 
suppressed. However, unlike the linear case, a single synapse will be 
much less likely to dominate all the others because a single input, acting 
alone, is not able to induce a substantial change in the unit’s response, 
and, hence, it is also unable to make a change in the unit’s synapses. 
Strong synaptic modulation requires at least two inputs, and two inputs 
that are active at the same time will, on average, strengthen their weights 
more than the competition between the two inputs weakens the weights. 
In other words, it ”pays” to cooperate, and so synaptic competition be- 
comes a competition between pairs of inputs. On average, the pairs 
whose inputs are statistically correlated will have an advantage in that 
competition. 

How much does it pay to cooperate? First, let us define the ratio, 
R = ~ ( ~ z L ~ , , , , ) / ( T ( z L ~ , , , ) .  Now, assuming that a pair of inputs with synaptic 
strengths (zumax. zo,,,) has already evolved, we can ask what it would take 
to destabilize the pair. On average, for each simultaneous, paired firing 
event, one synapse would have to fire without the other approximately 
R times to destabilize the pair. Note that the linear Hebb rule has R = 2, 
and thus shows a relatively small preference for pairings. 
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4 Simulation: ”Learning Disparity” 

We define our version of the problem of ”learning disparity” as fol- 
lows: Given a set of one-dimensional, random-dot stereograms, cre- 
ate a set of neural units that learns to become tuned selectively to the 
disparities present in the input. Random-dot stereograms have often 
been used as tests for disparity algorithms (e.g., Marr and Poggio 1975; 
Becker and Hinton 1992). This is, in part, because the lack of higher- 
level visual cues forces the algorithm to deal with the problem of false 
matches between left and right image elements. However, this lack of 
structure-specifically, the lack of correlations between pixel elements 
within each eye field-can simplify the learning process because it leaves 
only disparity-based structure in the input. 

We make use of the nonlinear units defined above in a three-stage 
network that learns to solve this problem (illustrated in Fig. 2). At the 
first layer, the inputs are assumed to be one-dimensional, binary images 
from the left and right eyes, which we denote xL and xR, respectively. The 
second stage consists of the sigmoid units, with outputs y, and connection 
weights w;, to the inputs XI, where e takes on values L and R. Following 
equation 3.1, the outputs, y,, are given by 

(4.1) 

Each unit has connections to an equal number of inputs from the left and 
right eyes corresponding to the same region in the visual field. For ease 
of analysis, the inputs to each unit are chosen so they do not overlap.3 
In the third layer, we use a variant of a standard clustering network 
whose properties have been well characterized (Rumelhart and Zipser 
1985; Hertz et al. 1991, pp. 217-219). Each unit, zk, receives inputs from 
all the y j  weighted by synaptic efficacies Vkj; then a winner-take-all com- 
petition takes place among the third layer units to determine their final 
output. Only the winning unit changes its synaptic weights via a Hebb 
rule while the other units’ outputs are set to zero. Thus, the third layer 
follows the equations: 

(4.3) 

avkj zk (y j -$ )  (4.4) 

After the winner adjusts its weight vector in the direction of the current 
input vector, the weights are renormalized so that cj Vkj = 1. The sub- 

3We have also shown that overlapping starting receptive fields can be used in con- 
junction with lateral inhibition to achieve a similar result (unpublished data). 
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Figure 2: Model network. (a) A sigmoid unit y,, receives a small number of 
inputs from the left and right eye first-layer units (xL and xR, respectively). 
The input units are arranged with the left eye units stacked on top of the right 
eye units so that the two images are in register. (b) The architecture of the 
model network. The sigmoid units in the second layer have nonoverlapping 
input fields. A third layer of units, zk, is connected to the sigmoid units, y, 
though weights Vk,. The third layer units compete in a winner-take-all manner. 
The weights from the input to second layer and from the second to third layer 
evolve according to Hebbian equations 3.4 and 4.4. 

tractive term, v, is added to help sharpen the competition within the 
weight vector (see also Goodhill a n d  Barrow 1994). 

We train the network o n  a sequence of random-dot stereograms at 
three different disparities. On each trial, the bits in the left eye image are 
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set randomly with bit probability p .  The right eye image is then copied 
from the left eye image, shifted by an amount d: 

where the disparity, d, is a randomly chosen integer from the set { - 1 , O .  l}, 
We simulated the model using a second layer composed of 18 sigmoid 
units, with each unit connecting to five inputs from each eye. The inputs 
to each of these units corresponded to a separate field within the input ar- 
ray, and a one-pixel border was used to separate each input field from the 
next. The third layer of the network consisted of three units, each having 
connections to all of the first-layer units. The weights to the second and 
third layer were set to random values, and both sets of connections were 
allowed to evolve simultaneously according to equations 3.4 and 4.4. 

5 Results 

After training, the output-layer units had each learned to respond se- 
lectively to stereograms with different disparities. Results were similar 
for parameter values in the ranges: 5 5 ,8 5 20, 0.65 5 q5 5 0.85, and 
0.0 5 1c, 5 0.25, and the results appeared insensitive to the type of initial 
conditions. Figure 3a shows a snapshot of the initial state of the network 
before learning. Figure 4a and b shows snapshots of the network at pro- 
gressive stages of learning. In Figure 4a, the sigmoid units are beginning 
to become tuned to specific coincidences between left and right image 
pixels. In Figure 4b, this process has completed and the third Iayer neu- 
rons have become tuned to specific disparities over the entire input space. 
These examples represent typical results for these parameters. Because 
each second-layer unit has an approximately equal chance of becoming 
tuned to a disparity of either +1, 0, or -1, the number of units in the 
second layer tuned to a specific disparity varies from one simulation run 
to the next. 

To illustrate the overall performance of the converged state of the 
network, we arranged the yp so that their 18 first-layer receptive fields 
for each eye were stacked in two adjacent columns of nine. Thus, for 
each eye, the network's kernel has a rectangular domain of size 10 x 9 
[(5 x 2) x 91 pixels that represents the 18 component receptive fields of 
5 pixels apiece. We then convolved the network, thus arranged, with a 
random-dot stereogram. The result is shown in Figure 5. The output of 
the third layer is represented by plotting a different color pixel depending 
on which third-layer unit won. The network segregates a 0 disparity 
square (green) from a -1 disparity background (blue). 
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6 Analysis 

Here we examine how each part of the network contributes toward the 
ability to extract disparities. The network relies upon the second layer 
units’ ability to develop weights corresponding to disparity pairs. Each 
sigmoid unit acts as a coincidence detector; its output essentially com- 
putes a logical AND, or pseudo-multiplication, of two inputs (xJ,) when 

is large. (In the analysis that follows, we will always assume that 11 is 
large enough to be in this regime.) The second layer therefore consists 
of an array of primitive, location-specific disparity detectors. The third 

Figure 3: Initial state of the simulation. (a) A snapshot of the initial state 
of the network is shown with random connection strengths, zo;; t [0.0.1] and 
Vk, E [0.01.1]. The architecture is the same as in Figure 2. Connection strengths 
Vkl between the second and third layer units are indicated by line thickness. 
Connection strengths 111); are indicated by the size of the filled rectangle in the 
small boxes beneath each second layer unit, with a completely filled box indi- 
cating a connection of maximum strength. Activities of the units are indicated 
by shades of gray. The gradient bar shows the scale from zero (white) to one 
(black) of the unit activities. The input layer, labeled by xL and xR,  shows a +I 
disparity image. (b) A detailed illustration of how the connection strengths zo,; 
are represented showing the correspondence between the depiction of weights 
in this and the previous figure. 
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Figure 4: Simulation evolution. (a) The state of the network after a few hundred 
iterations. The nonlinear units in the second layer begin dropping their inputs. 
Some have already settled on two inputs, while others are still converging. 
(b) The final state of the network after several thousand iterations. All the 
sigmoid units in the second layer have eliminated all but two inputs-one 
from each image-making the unit crudely selective for disparity. The units in 
the third layer have successfully learned to group together the first-layer units 
signaling the same disparity. Weights values, wY,, and activities are indicated by 
filled boxes and grayscale as in Figure 3: white = 0.0, black = 1.0. The strengths 
of the weights, vkl, are denoted by the line thickness. The parameters used 
were /3 = 10, 4 = 0.70, and $ = 0.25. 

layer integrates across this array, effectively performing a cluster analysis 
on the variables yo = (xjaxja) ,  where the y0s are the result of a selective 
sampling of the space of all multiplicative pairs of inputs. The network 
as  a whole performs a generalized form of clustering, analogous to tech- 
niques used in statistics in which a set of variables is transformed before 
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Figure 5:  Performance of the network on a random-dot stereogram. The net- 
work’s input fields were arranged as  described in the text, then convolved with 
a random-dot stereogram (top) containing a square of U disparity upon a -1 
disparity background. (below) The output of the network at  each position is 
shown coded by color. Legend: blue, green, and red indicate -1, 0, and +1 
disparities, respectively. 

applying a standard procedure such as principal component or  cluster 
analysis. 

6.1 Evolution of the Second-Layer Units. Coincidence detection in 
the second-layer units depends upon the evolution of a weight vector 
with two nonzero components that are matched to one  of the disparities 
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Figure 6: The effect of @ on the stable fixed points of the system. The number 
of nonzero components, r ,  in the stable points of (a) a three-dimensional linear 
system with y = ,8w.x, and (b) a three-dimensional nonlinear system for ,8 = 10. 
Note that the nonlinearity has enlarged the r = 2 region. These values are based 
upon computer simulations with random initial conditions and presentations 
as described previously, with the exception of the value of yDC in the three- 
dimensional linear system that was solved for directly (see Appendix). 

in the input, i.e., a vector with wf = w $ ~  = wmax, for d = - l , O ,  or 1, 
with all other w, = 0. (We will refer to this weight configuration as 
a "disparity pair.") Strictly speaking, a nonlinear activation function is 
not required for development of this weight configuration. A modified 
linear system can develop disparity pairs when equipped with synaptic 
positivity (0 5 w, 5 wmax) and subtractive constraints (the 4 term in 
our nonlinear system, see Miller and MacKay 1993 for an analysis of this 
form of constraint). For example, if instead of equation 3.1, we substitute 
for the unit output y = pw x + b, then under the same Hebb rule as 
equation 3.4, the system will evolve disparity pairs for b = 0, p = 5, and 
q5 = 0.7. Other combinations of p, b, and 4 will also suffice. 

We observed that a nonlinear activation function offers one advantage 
over a linear function in the process of developing disparity pairs: the 
nonlinear system converges to paired weights for a larger range of the 
parameters p and 4 than the linear system. This occurs because the linear 
system must balance these parameters carefully. q5 must be large enough 
to eliminate synapses while not so large that it eliminates one member 
of a disparity pair. By contrast, the cooperativity inherent in the sigmoid 
function selectively stabilizes pairs. Therefore may be larger than for 
a similar linear system while still converging to a pair. An illustration 
of this enlargement is shown in Figure 6. In the limit as /3 + oc), single 
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synaptic inputs produce no activation whatsoever, so that any weight 
vector that begins with greater than one component can never have less 
than two components. It is possible to estimate the critical value (tc above 
which d must be set to develop pairs in our system. For a system, with 
probability, p ,  of an input pixel being active, this is given by 

2 + 3p 
4 c  GZ 5 (6.1) 

(see Appendix for a derivation). Note that the potential for enlargement 
of the 4 parameter regime as compared to the linear system increases as 
the inputs become sparser. 

An upper bound for q5 is harder to define for reasons that bring us 
to the last issue concerning weight evolution: why the sigmoid units 
develop disparity pairs preferentially over nondisparity pairs. With the 
proper parameters, the sigmoid units pick out disparity pairs exclusively; 
that is, they become sensitive to shifts of $1.0, and -1, but not +2 
or -3, for example, since these disparities do not appear in the input. 
Members of a disparity pair fire together more often than the members 
of nondisparity pairs, but only slightly: for p = 1/2, the probability of 
a disparity pair of inputs firing together is 1/3 while the probability for 
a nondisparity pair is 1/4.4 From our simulations we see that this is 
enough to allow the sigmoid units to select disparity pairs exclusively 
for values of 4 near to 4‘; but as 4 is increased the units begin to pick 
out nondisparity pairs occasionally. For example, in simulations with 
4 = 0.7 the sigmoid units always pick out disparity pairs, while for 
4 = 0.85,9% of the units (eight out of ninety) converged to nondisparity 
pairs. (Other parameters were kept equal to those used in Fig. 3.) This 
may occur because with the greater rate of weight reduction for higher 4, 
the system does not have as much time to sample the input ensemble- 
allowing fluctuations in the input or in the initial weight configuration 
to have a greater effect in picking out an otherwise unfavored pair. 

6.2 Clustering. Following the analysis of Rumelhart and Zipser 
(1985) for the ri/ = 0 case, the third layer acts as a clustering mech- 
anism that partitions the outputs from the second layer into compact 
regions. This relationship can be expressed graphically by projecting the 
input to the clustering layer onto the surface of a sphere: as shown in 
Figure 7. Clusters are formed based upon the distance between points 
on the sphere, and the weight vectors Vk describe the cluster midpoints. 
The axes for this three-dimensional subspace are defined so that each 

general, the ratio of these quantities, P(disparity pair)/P(nondisparity pair), 
equals (I + 2p)/3y, indicating that learning is facilitated by sparse inputs (cf. equation 
6.1; see also Field 1994). 

“he constraint C, V ,  = 1 actually defines a plane, but we project to a sphere for 
consistency with the geometric analogy used in Rumelhart and Zipser (1985). Either 
projection leads to the same conclusions in what follows. 
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Figure 7: Distribution of first-layer outputs projected onto the sphere. Each 
symbol on the sphere represents the output of the second layer in response 
to one of the 200 stereograms presented to the network. The symbol shape 
corresponds to the actual disparity of the stereogram used to generate that 
point: open triangles, filled triangles, and gray circles represent dispari- 
ties of +1, 0, and -1, respectively. The vector y was projected onto a 
sphere by reordering the basis used for the y, into three groups. The first 
group corresponded to y,s that tune for +1 disparity, the second group cor- 
responded to those that tuned for 0 disparity, while the last group cor- 
responded to -1 disparity. A three-dimensional subspace was defined by 
axis directions (1,1, . . . ,1; 0. . . . , 0; 0, . . . , 0),  (0, . . . , 0; 1 , l ~  . . . , 1; 0. . . . .O) ,  and 
(0,. . . ,O; 0,. . . .O; 1.1.. . . ,1) where semicolons indicate the division between 
groups. The sphere corresponds to the unit sphere embedded into this sub- 
space. Small xs mark the predicted center of mass for each symbol. 
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corresponds to a different disparity, and the unit sphere is embedded 
into this subspace as explained in the caption to Figure 7. If we project 
the output of the second layer of our network over 200 presentations 
onto the surface of this sphere, the points distribute to form a triangle 
(Fig. 7). The natural clusters for data distributed evenly over a triangle 
are the three corner regions. (To see this, create the Voronoi diagram 
that divides up the points equally for the triangular region using three 
polyhedrons.) Thus, for .c'I = 0 the Vk, will stably align with the three 
corner regions of the triangle (in the vicinity of the Xs in Fig. 7) because 
these directions minimize cluster size. The q become disparity selective 
because the corners of this triangle also correspond to the different dis- 
parities. This structure can be seen by looking once again at Figure 7 
where each point is labeled according to the disparity of the stereogram 
that generated it with either a filled triangle, open triangle, or gray circle. 
The center of mass of each symbol is strongly biased toward one of the 
corners of the output distribution, reflecting the different expectations in 
the y, given the disparity of the input. That is, for p = 1/2: 

given D = d ,  
given D # d, (6.2) 

where d, is the disparity for which yl is best tuned. In this way, position- 
independent disparity tuning results from the geometry of the second- 
layer responses to stereograms.6 

Allowing $1 > 0 has little effect on the clustering actually performed 
by the network, though it makes it easier to see and analyze the clusters 
by "extremizing" the weight vectors-i.e., the weight vectors are moved 
away from the interior of the triangle and toward the corner vertices. 

These spherical plots also illustrate why a linear second layer is inad- 
equate for producing disparity selectivity. Figure 8 shows the output of 
a second layer using the same 200 input patterns and identical weights 
as in Figure 7, but with a linear activation function. Note that there is no 
structured shape to the distribution and that the different disparities are 
completely intermixed. Correspondingly, for the linear case, the average 
activities of the y, do not differentiate between disparities, that is, for 
yj = pw . x, 

pw,,, given D = d, 
given D # d, (yJ) = { pw,,, (6.3) 

Thus in this case, the vk, can never reach a stable equilibrium. Instead, 
as might be predicted from Figure 8, the vkj cycle continuously. 

6Note, this geometry is contingent upon having spatially separate receptive fields. 
The clusters that confer position-independent disparity would be disrupted by the 
strong correlation in firing between the two units with overlapping fields. Thus, for 
this form of model to be effective, some mechanism-such as lateral inhibition or, as in 
the model described in this paper, direct subdivision of the input array-must exist to 
keep the units spatially decorrelated. 
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Figure 8: Distribution of linear first-layer outputs. Spherical plot generated in 
a manner identical to Figure 7, using the same 200 stereograms, except that the 
output of the second layer was based upon a linear activation function rather 
than a sigmoidal one. 

6.3 Network Performance. We can calculate the accuracy of the net- 
work in classifying stereograms. Consider the y, as binary random vari- 
ables, with, for example, p = 112, P(y, = 1 1 D = dy,) = 1/2, and 
P(y, = 1 I D # dy,) = 1/4. Let GZ,} denote the set of indices into the 
second layer units to which z k  connects strongly, and let Nk equal the 
number of elements in this set. At equilibrium with $5 > 0, we observe 
that z i  = C, vk,y, = 1/Nk y,. For convenience, define the integer 
random variable Sk = (Nk.2;). These Sk are conditionally independent, bi- 
nomially distributed random variables, and their values on a given trial 
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determine the winner among the third-layer units. When an image with 
disparity D is presented, the performance of a ZA in signaling the correct 
disparity is given by 

P(zk = winner I D = d Z A )  

For symmetrically distributed y, (i.e., N, = N,. Vi. j )  this simplifies to 

P(zk = winner I D = d z A )  = c P ( S k  = 1 I D = dzL)  
I 

x n P(S,,,  < I 1 D = d z k )  (6.5) 

P(Sr  = 1 I D = dz, , , )  = B N ~  /9'(1 - 9)N"' (6.6) 

where dZ, is the disparity that zk is tuned to, denotes the binomial 
coefficient, and 9 = P(y,-, = 1 I D = d,,,,). This formula indicates that this 
type of network can classify stereograms with arbitrarily good accuracy 
by adding enough units. For p = 1/2 and a network with 18 first-layer 
units divided symmetrically among the zk, P(correct) = P(zk = winner I 
D = d z A )  = 0.61 (versus 0.33 for chance). Accuracy improves gradually 
as the number of second-layer units increases, with the number of nodes 
scaling exponentially with increasing P(correct) for accuracies from 50 to 
95%. (Ninety units are needed for a 95% accuracy level in our example 
network.) Likewise, to maintain fixed accuracy with an increasing num- 
ber of disparities, ID(, the number of units must scale (approximately) as 

rn#h 

O(lDll0g PI). 

7 Discussion 

Our model demonstrates that a simple Hebbian network can learn to 
detect disparity. This is in contrast to all previous unsupervised mod- 
els that have employed more complex and less biologically plausible 
learning schemes. In particular, it is instructive to compare our work 
with the work of Sanger (1989) and Becker and Hinton (1992). Sanger's 
network learns under a nonlinear extension of a "Generalized Hebbian 
Algorithm," which maximizes an observer's ability to reconstruct the net- 
work's input from its output. When presented with images derived from 
random-dot stereograms containing two disparities, the network learns 
to discriminate between these two disparities. Like our model, Sanger's 
network has a three-layer structure with simple (rectifying) nonlinearities 
in the second layer to generate the initial disparity sensitivity. However, 
learning occurs quite differently from our model in that once the second 
layer has converged, the disparity-sensitive units are identified and the 
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remaining units are discarded. The third layer is then trained solely on 
the outputs of these hand-picked units. In addition, Sanger’s network 
cannot be implemented to simultaneously allow for a simple feedfor- 
ward network architecture and a local learning rule. Finally, though 
learning can be made local, Generalized Hebbian Learning requires that 
synapses on different neurons be constrained to maintain the same synap- 
tic strengths (Hertz et al. 1991, pp. 206-209). A biological mechanism 
capable of enforcing this constraint has yet to be demonstrated. 

Becker and Hinton (1992) address a more complex version of the dis- 
parity problem in that their network learns to discriminate a continuous 
range of disparities and is also capable of representing spatial variations 
in disparity (i.e., curved surfaces). Their network is correspondingly 
more elaborate than ours. Learning is based upon the principle of maxi- 
mizing the mutual information between groups of units viewing adjacent 
regions of visual space. In contrast with the simple Hebbian mechanisms 
used in our model, the weight update rule involves nonlocal backprop- 
agation of the information signal. 

Both Sanger’s and Becker and Hinton’s approaches involve powerful 
learning algorithms that can be more easily generalized to other problem 
domains than our own because they are derived from well-defined op- 
timality principles. Our network embodies a complementary approach, 
emphasizing the ease of analysis and simplicity of the learning rule in 
the context of a specific task. 

7.1 Computational Issues and Neurobiological Relevance. A criti- 
cism of much work involving “toy problem” networks is that by failing 
to characterize their scaling properties, they tend to leave the impression 
that a problem has been ”solved” once and for all, leading investigators 
to neglect other approaches. In light of this, we point out that our net- 
work is computationally expensive to scale up to detect more disparities 
because network size scales as O(IDIlog(D(). For example, a network 
that detects 20 disparity levels at 95% accuracy would require approxi- 
mately 1000 second-layer units, a large number to require for even the 
most massively parallel devices. One of the reasons for this scaling inef- 
ficiency is that the steep sigmoid activation function on the subunits in 
the intermediate layer and the winner-take-all at the output layer effec- 
tively ”binarize” the unit’s responses, throwing out the information to 
be gained from a unit’s continuous output. In addition, the input layer’s 
pixel-based representation is far from optimal for the task. In the primate 
visual system, for example, the first stage of binocular image processing 
uses a monocular, spatially distributed input representation akin to a 
difference-of-gaussian (DOG), or possibly even orientation-tuned, set of 
filters. Disparity algorithms based upon this sort of representation both 
perform more robustly and scale more nicely for increasing disparity 
ranges than algorithms that use pixel representations alone (Qian 1994; 
Fleet ef al. 1991). 



562 Christopher W. Lee and Bruno A. Olshausen 

While our emphasis in this paper has been to keep the network simple 
to highlight the essential aspects of nonlinear Hebbian learning, we are 
currently working to extend the model defined here to use continuous- 
valued units and a spatially distributed representation. Our preliminary 
results indicate that it is difficult for a single layer of a Hebbian network 
to develop a DOG-like or Gabor-like representation while simultaneously 
developing binocular disparity sensitivity (see also Erwin i'f rrl. 1995). One 
Lvay around this difficulty appears to be the use of multiple network lay- 
ers, with each layer learning one stage of the transformation. The brain 
uses such a multistage architecture to produce its representation, even 
though one layer would theoretically be adequate to implement the trans- 
formation. These observations, coupled with the scaling results set forth 
above, suggest that a multistage architecture may be a way o f  dealing 
with one of the general problems in designing a neural computer: that, 
for a given task, there is a tradeoff between network fan-in, depth, and 
number of nodes that can affect both the networks ability to represent a 
given function and its ability to learn that function (cf. Minsky and Papert 
1988). From this point of view, the brain's hierarchy of visual processing 
(Felleman and Van Essen 1991) embodies a workable compromise that 
balances the costs of adding more connections, more neurons, or more 
stages, so as to effectively mix parallel and serial modes of computation. 

Besides the lack of preprocessing mentioned previously, our network 
neglects the complexities of neural processing in the visual system in a 
number of respects. Real neurons in visual cortex receive input from 
thousands of synapses, have extensive and overlapping receptive  field^,^ 
and are regulated by sophisticated adaptive gain control mechanisms 
(Carandini and Heeger 1994) when presented with realistic images. In 
addition, while our learning rule captures the early aspects of synap- 
tic plasticity (Levy r f  01. 1990), more sophisticated learning rules (e.g., 
Bienenstock ef n l .  1982) are required to better approximate the neurobiol- 
ogy. Nevertheless, we believe that our model may capture some of the 
essential, nonlinear aspects of synaptic learning, and it serves to illustrate 
a general strategy available to the nervous system: how a layer of units 
may be used to nonlinearly transform an input so that a downstream 
layer can learn to discriminate higher-order features in the environment. 
Evidence for this computational strategy can be seen across species and 
across sensory modalities. In the monkey visual system (Poggio et a / .  
19881, the bat echolocation system (Olsen and Suga 19911, and the sound 
localization system of the barn owl (Carr and Konishi 1990; Konishi 1992), 
nonlinear units act to transform sensory information into a format that 
explicitly represents coincidences within the input stream. Our results 

'For an interesting model that deals with some of these issues and that is more 
closely related to the developmental neurobiology, see Berm ~t nl .  (1993). Though their 
model does not possess the requisite nonlinearities to perform disparity detection, they 
generate the primitives of disparity tuning via a Hebbian-type mechanism that relies 
upon the use o f  critical periods for development. 
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indicate that in addition to their function in processing signals, such co- 
incidence detectors may also play a role in learning. 

Appendix: Calculation of oC 

To estimate &, we rely upon a heuristic argument based upon a combi- 
nation of observation, assumption, and approximation. The argument, 
while not completely rigorous, has given us useful rules of thumb for 
understanding the system, and it appears to be supported by our sim- 
ulations. We begin by stating a few features of the system of equations 
defining the weights for a second layer unit. 

Characteristics of the System. Perhaps the most important aspect 
we observe of the dynamical system, S,  as defined by equation 3.4, is 
that, like related linear systems (Linsker 1988; MacKay and Miller 1990; 
Miller and MacKay 19941, it has no equilibrium points within the inte- 
rior of hypercube domain of wI, as defined by 0 5 w, 5 wmax. All the 
stable points lie at the corners of the hypercube, which means that ul- 
timately a w, becomes either 0 or w,,,. A corollary to this fact is that 
the dimensionality of S effectively decreases as various w, become zero. 
For the values of 4 that we are interested in, we can view the evolution 
of S as a passage through a family of dynamic systems, S,, where the 
subscript denotes the effective dimension of the system. Over time, the 
dimension is steadily reduced until a final stable point is reached, that 
is, Sinitla1 + Sznitial-I + . . . + Sfin,,. In this framework, our problem is 
reduced to finding that value of 4 which makes Sflnal = Sz. 

Stability Analysis. Let Y denote the effective dimension of a given 
system, i.e., for Si, r = i. Let w(')(t) denote the vector of weights w, that 
are not zero, and let n(') denote the r-dimensional vector, n:" = 1. An S,  
can be the final system in the chain only when the point w(')(t) = wmaXn(") 
is a stable point of the system S,. 

To analyze the stability of this point, we resort to a piecewise linear 
approximation of 0. 

where c1 = (m  - 1)/2m and c2 = c1 + m-I, and rn is the slope of the line 
chosen to match the sigmoid. We can motivate this approximation by ob- 
serving that the sigmoid has an approximately linear region around input 
levels of one half, and by noting that, in simulations using this piecewise 



564 Christopher W. Lee and Bruno A. Olshausen 

function instead of 0, we saw similar behavior to those simulations using 
a smooth sigmoid.8 

If we substitute this approximation for the linear regime into equa- 
tion 3.4 and set the constant of proportionality to one, we get 

23 = m(Cwjxi - c,) (XI - 4)  
dt (A.2) 

Following MacKay and Miller (1990), we write the equations for the linear 
region of the activation function, average over the input, and write the 
result in matrix form [while suppressing the superscript ( Y)]: 

(W) = (mQ+k2J)w+kln (A.3) 

k2 = "ZP(P - 4) (A.5) 

Q is the covariance matrix ((x, - (x))(x, - (x))), J is the matrix J j j  = 1, 
and n is defined by n, = 1 in the synaptic basis. Numerical solution for 
the fixed points of these systems, wFP, shows that it generally lies out- 
side the hypercube [O,w,,,]' close to the axis defined by n. Given this, 
the stability of the hypercube vertex w,,,n is largely determined by the 
eigenvector (and its associated eigenvalue) of mQ + k2J, which has the 
largest component along the direction n. Call this eigenvector, ziDC and 
denote its eigenvalue yDC. When yDc is close to zero, the point w,,,n is 
unstable because the other orthogonal eigenvectors with larger eigenval- 
ues dominate the trajectory, carrying w(f) away from that vertex.' 

We can solve directly for the value of 4 that makes yDc = 0 for Y = 3. 
For inputs consisting of a disparity pair and one non-correlated input, Q 
is given by 

(A.6) 1 P - p ?  v - P  0 
3 3  

Q =  e - P  [ 0 3  'iP2 
Let denote the value of q5 where yDc = 0. Then 4f) is given by 

RAn exception to this remark occurs for those units whose activation cannot rise 
above zero because of the absolute threshold of our approximation. These units become 
"dead units." In the nonlinear case, the smooth lower leg of the sigmoid allows such 
unit's weights to increase. 

'Note, these other, non-zlDC, eigenvectors are orthogonal because the matrix is sym- 
metric. MacKay and Miller (1990) show these eigenvectors and eigenvalues are less 
affected by changes in 4. The stability of vertices comes from the shape of the hyper- 
cube: at the boundary trajectories tend to be projected toward the corners. 
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We use this value as our estimate for &. One might worry that while this 
value for dC might destabilize S3 it  might not destabilize other, higher 
dimensioned systems. Direct calculation shows that 4r) > & + I ) ,  for 
r = 2 . 3 . 4 , .  . . .9. In addition, for r > 4 or so, S ,  is usually in the saturated 
region of the activation function, for which any 4 > p implies instability. 
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