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A wide variety of papers have reviewed what is known about the function
of primary visual cortex. In this review, rather than stating what is known,
we attempt to estimate how much is still unknown about V1 function. In
particular, we identify five problems with the current view of V1 that
stem largely from experimental and theoretical biases, in addition to the
contributions of nonlinearities in the cortex that are not well understood.
Our purpose is to open the door to new theories, a number of which we
describe, along with some proposals for testing them.

1 Introduction

The primary visual cortex (area V1) of mammals has been the subject of
intense study for at least four decades. Hubel and Wiesel’s original studies in
the early 1960s created a paradigm shift by demonstrating that the responses
of single neurons in the cortex could be tied to distinct image properties such
as the local orientation of contrast (Hubel & Wiesel, 1959, 1968). Since that
time, the study of V1 has become something of a miniature industry, to the
point where the annual Society for Neuroscience meeting now routinely
devotes multiple sessions entirely to V1 anatomy and physiology. Without
doubt, much has been learned from these efforts. However, as we shall argue
here, there remains a great deal that is still unknown about how V1 works
and its role in visual system function. We believe it is quite probable that the
correct theory of V1 is still far afield from the currently proposed theories.

It may seem surprising to some that we should take such a stance. V1
does, after all, have a seemingly ordered appearance: a clear topographic
map and an orderly arrangement of ocular dominance and orientation
columns. Many neurons are demonstrably tuned for stimulus features such
as orientation, spatial frequency, color, direction of motion, and disparity.
And there has even emerged a fairly well-agreed-on “standard model” for
V1 in which simple cells compute a linearly weighted sum of the input over
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a
weighted sum of the image over space and time, and this result is normalized by
the responses of neighboring units and passed through a pointwise nonlinearity
(see e.g., Carandini, Heeger, & Movshon, 1997).

space and time (usually a Gabor-like function), which is then normalized
by the responses of neighboring neurons and passed through a pointwise
nonlinearity (see Figure 1). Complex cells are similarly explained in terms
of a summation over the outputs of a local pool of simple cells with simi-
lar tuning properties but different positions or phases. A variety of models
have been proposed for the response normalization (Heeger, 1991; Geisler &
Albrecht, 1997; Schwartz & Simoncelli, 2001; Cavanaugh, Bair, & Movshon,
2002a), but the net result is often to think of V1 as a kind of “Gabor filter
bank.” There are numerous papers showing that this basic model fits much
of the existing data well, and many scientists have come to accept this as a
working model of V1 function (see, e.g., Lennie, 2003a for a discussion). In-
deed, such models are widely used to predict psychophysical performance
(Graham & Nachmias, 1971; Watson, Barlow, & Robson, 1983; Anderson,
Burr, & Morrone, 1991), and they have been shown to provide efficient rep-
resentations of natural scenes (Olshausen & Field, 1996; Bell & Sejnowski,
1997).

But behind this picture of apparent orderliness lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly
uncomfortable feeling among many about how the experiments that have
led to our current view of V1 were conducted in the first place. The main
problem stems from the fact that cortical neurons are highly nonlinear—that
is, they emit all-or-nothing action potentials, not analog values. They also
adapt, so their response properties depend on the history of activity. Most
important, cortical pyramidal cells have highly elaborate dendritic trees,
and realistic biophysical models that include voltage-gated channels sug-
gest that each thin branch could act as a nonlinear subunit, so that any one
neuron could be computing many different nonlinear combinations of its in-
puts (Hausser & Mel, 2003; Polsky, Mel, & Schiller, 2004), in addition to being
sensitive to coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003).

Everyone knows that neurons are nonlinear, but few have acknowledged
the implications for studying cortical function. Unlike linear systems, where
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there exist mathematically tractable textbook methods for system identifica-
tion, nonlinear systems cannot be teased apart using some straightforward,
structuralist approach. That is, there is no unique “basis set” with which one
can probe the system to characterize its behavior in general.1 Nevertheless,
the structuralist approach has formed the bedrock of V1 physiology for the
past four decades. Researchers have probed neurons with spots, edges, grat-
ings, and a variety of mathematically elegant functions in the hope that the
true behavior of neurons can be explained in terms of some simple function
of these components. However, the evidence that this approach has been
successful is lacking. We simply have no reason to believe that a population
of interacting neurons can be reduced in this way.

For any complex system, it seems reasonable to begin where the system
acts rationally: to study the behavior under conditions where one’s mod-
els are relatively effective. But for a neural system, that leaves the question
as to whether such behavior represents the relevant aspect of the neurons
activity: Does this help us understand how neurons operate under natural
conditions? Much of our understanding of V1 is derived from recording
from one neuron at a time using simple stimuli (edges, gratings, spots).
From this body of experiments has emerged the standard model that forms
the basis for our conceptual understanding of V1. In recent years, a number
of innovative studies have moved away from this basic approach, record-
ing from multiple neurons with complex, ecologically relevant stimuli. Are
these studies simply adding minor correction factors to our understand-
ing, or will they require us to completely revamp the current theories? Are
the current models close to accounting for the majority of responses in the
majority of neurons in V1? How close are we to understanding V1?

In this review, we present our reasons for believing that we may have far
to go in understanding V1. We identify five fundamental problems with the
current view of V1 function that stem largely from experimental and theo-
retical biases, in addition to the contributions of nonlinearities in the cortex
that are not well understood. Furthermore, we attempt to quantify the level
of our current understanding by considering two important factors: an es-
timate of the fraction of V1 neuron types that are typically characterized in
experimental studies and the fraction of variance explained in the responses
of these neurons under natural viewing conditions. Together, these two fac-
tors lead us to conclude that at present, we can rightfully claim to understand
only 10% to 20% of how V1 actually operates under normal conditions.

Our aim in pointing these things out is not simply to tear down the current
framework. We ourselves have attempted to account for some aspects of the

1 The Volterra series expansion is often touted as a general approach for characterizing
nonlinear systems, but it has been of little practical value in analyzing neural systems
because it requires estimating many higher-order moments. In addition, it is an overly
general “black box” approach that does not easily allow one to incorporate prior knowl-
edge about the types of nonlinearities known to exist in the nervous system.
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standard model in terms of efficient coding principles (sparse coding), so
obviously we believe that we have made a good start. Rather, our goal is to
show how much room there is for new theories and where the weaknesses in
the current theories might lie. In the second half of the review, we describe a
few of our favorite alternatives to the standard theories. A central conclusion
that emerges from this exercise is that we need to begin seriously studying
how V1 behaves with natural scenes, using multiunit recording techniques,
in addition to explicitly describing any potential biases in the gathering of
data. We believe this approach can help to reveal not just how much we
know about neural coding in the visual pathway but also how much we do
not know.

2 Five Problems with the Current View

2.1 Biased Sampling of Neurons. The vast majority of our knowledge
about V1 function has been obtained from single unit recordings in which
a single microelectrode is brought into close proximity with a neuron in
cortex. Ideally, when doing this, one would like to obtain an unbiased sam-
ple from any given layer of cortex. But some biases are difficult to avoid.
For instance, neurons with large cell bodies will give rise to extracellular
action potentials that have larger amplitudes and propagate over larger dis-
tances than neurons with small cell bodies. Without careful spike sorting,
the smaller extracellular action potentials may easily become lost in the
background when in the vicinity of neurons with large extracellular action
potentials. This creates a bias in sampling that is not easy to dismiss.

Even when a neuron has been successfully isolated, detailed investiga-
tion of the neuron may be bypassed if it does not respond “rationally” to
standard test stimuli or fit the stereotype of what the investigator believes
the neuron should do. This is especially true for higher visual areas such as
V4, but it is also true for V1. Such neurons are commonly regarded as “visu-
ally unresponsive.” It is difficult to know how frequently such neurons are
encountered because often they simply go unreported, or else it is simply
stated that only visually responsive units were used for analysis.

While it is admittedly difficult to characterize the information process-
ing capabilities of a neuron that seems unresponsive, it is still important to
know in what way these neurons are unresponsive. What are the statistics of
activity? Do they tend to appear bursty or tonic? Do they tend to be encoun-
tered in particular layers of cortex? And most important, are they merely
unresponsive to bars and gratings, or are they also equally uninterpretable
in their responses to a wider variety of stimuli, such as natural images?
A seasoned experimentalist who has recorded from hundreds of neurons
would probably have some sense of these things. But for the many read-
ers not directly involved in collecting the data, there is no way of knowing
these unreported aspects of V1 physiology. It is possible that someone may
eventually come up with a theory that could account for some of these un-
responsive neurons, but this cannot happen if no one knows they are there.
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Figure 2: (A) Exponential firing rate distribution with a mean of 1 Hz (dashed
line denotes mean). (B) Resulting overall mean rate of the measured population
(top) and fraction of the population captured (bottom) as a result of recording
from neurons only above a given mean firing rate (threshold). A log-normal
distribution of mean firing rates was assumed, with rate r = 10u, u ∼ N (−0.55,
0.5).

A related bias that arises in sampling neurons is that the process of
hunting for neurons with a single microelectrode will typically steer one
toward neurons with higher firing rates. One line of evidence suggesting
that this is a significant bias comes from work estimating mean firing rates
in the cortex based on energy consumption. Attwell and Laughlin (2001)
and Lennie (2003b) calculate that the average activity must be relatively
low—less than 1 Hz in primate cortex. However, in the single-unit litera-
ture, one finds many studies in which even the spontaneous or background
rates are well above 1 Hz. This suggests that the more active neurons
are substantially overrepresented (Lennie, 2003b). What makes matters
worse is that if we assume V1 neurons exhibit a roughly exponential firing
rate distribution, as has been demonstrated for natural scenes and other
stimuli (Baddeley et al., 1997), then a mean firing rate of 1 Hz would
yield the distribution shown in Figure 2A.2 With such a distribution,
only a small fraction of neurons would exhibit the sorts of firing rates
normally associated with a robust response. For example, the total prob-
ability for firing rates of even 5 Hz and above is 0.007, meaning that

2 Our own analysis of the firing rate distribution, as measured from the PSTH in re-
sponse to repeated presentation of natural movies (measured from V1 of anaesthetized
cats—J. Baker, S. C. Yen, C. M. Gray, personal communication to the authors, 2004), sug-
gests that the distribution is actually power-law, which would mean that it is even more
heavily skewed toward zero.
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one would have to wait 1 to 2 minutes on average in order to observe
a 1-second interval containing five or more spikes. It seems possible
that such neurons could either be missed altogether or else purposely
bypassed because they do not yield enough spikes for data analysis. For
example, the overall mean firing rate of V1 neurons in the Baddeley et al.
study was 4.0 Hz (SD 3.6 Hz), suggesting that these neurons constitute
a subpopulation that were perhaps easier to find but not necessarily
representative of the population as a whole. Interestingly, the authors
point out that even this rate is considered low (which they attribute to
anaesthesia), as previous studies (Legendy & Salcman, 1985) report the
mean firing rate to be 8.9 Hz (SD 7.0 Hz).

Given the variety of neurons in V1, it seems reasonable to presume there
exists a heterogeneous population of neurons with different mean firing
rates. If we assume some distribution over these rates, then it is possible
to obtain an estimate of the fraction of the population characterized given
a particular criterion response. And from that, we can calculate what the
observed mean rate would be for that fraction. The result of such an analysis,
assuming a log-normal distribution of mean rates with an overall mean of
1 Hz, is shown in Figure 2B. As one can see, an overall mean of 4 Hz implies
that the selection criterion was somewhere between 1 and 2 Hz, which
would capture less than 20% of the population.

Neurophysiological studies of the hippocampus provide an interesting
lesson about the sorts of biases introduced by low firing rates. Prior to the
use of chronic implants, in which the activity of neurons could be monitored
for extended periods while a rat explored its environment, the granule cells
of the dentate gyrus were thought to be mostly high-rate “theta” cells (e.g.,
Rose, Diamond, & Lynch, 1983). But it eventually became clear that the
majority are actually very low-rate cells (Jung & McNaughton, 1993) and
that for technical reasons only high-rate interneurons were being detected
in the earlier studies (W. E. Skaggs, personal communication to the authors,
January 2004). In fact, Thompson and Best (1989) found that nearly two-
thirds of all hippocampal neurons that showed activity under anaesthesia
became silent in the awake, behaving rat. This overall pattern appears to
be upheld in macaque hippocampus, where the use of chronic implants
now routinely yields neurons with overall firing rates below 0.1 Hz (Barnes
et al., 2003), which differs by nearly two orders of magnitude from the
“low baseline rates” of 8.1 Hz reported by Wirth et al. (2003) using acutely
implanted electrodes.

The dramatic turn of events afforded by the application of chronic im-
plants combined with natural stimuli and behavior in the hippocampus can
only make one wonder what mysteries could be unraveled when similar
techniques are applied to visual cortex. What is the natural state of activity
during free viewing of natural scenes, where the animal is actively exploring
its environment? What are the actual average firing rates and other statistics
of activity among layer 2/3 pyramidal cells? What are the huge numbers
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of granule cells in macaque layer 4, which outnumber the geniculate fiber
inputs by 30 to 1, doing? Do they provide a sparser code than their genicu-
late counterparts? And what about the distribution of actual receptive field
sizes? Current estimates show that most parafoveal neurons in V1 have re-
ceptive field sizes on the order of 0.1 degree. But based on retinal anatomy
and psychophysical performance, one would expect to find a substantial
number of neurons with receptive fields an order of magnitude smaller, ca.
0.01 degree (Olshausen & Anderson, 1995). Such receptive field sizes are ex-
tremely rare, if not nonexistent, in the existing data on macaque V1 neurons
collected using acute recording techniques (De Valois, Albrecht, & Thorell,
1982; Parker & Hawken, 1988).

Overall, then, one can identify at least three different biases in the sam-
pling of neurons:

1. Preference for neurons with large cell bodies and large extracellular
action potentials

2. Preference for “visually responsive” neurons

3. Preference for neurons with high firing rates

So where does this leave us? Let us be conservative. If we assume that 5%
to 10% of neurons are missed because they have weak extracellular action
potentials, another 5% to 10% are discarded because they are not visually
unresponsive, and 50% to 60% are missed because of low firing rates (as-
suming a conservative threshold of 0.5 Hz in Figure 2), then even allowing
for some overlap among these populations would yield the generous esti-
mate that 40% of the population has actually been characterized (although
we would not be surprised if that number is as low as 20%).

2.2 Biased Stimuli. Much of our current knowledge of V1 neural re-
sponse properties is derived from experiments using reduced stimuli.
Often these stimuli are ideal for characterizing linear systems—spots, white
noise, or sine wave gratings—or else they are designed around preexisting
notions of how neurons should respond. The hope is that the insights gained
from studying neurons using these reduced stimuli will generalize to more
complex situations, such as natural scenes. But of course there is no guar-
antee that this is the case. And given the nonlinearities inherent in neural
responses, we have every reason to be skeptical.

Sine wave gratings are ubiquitous tools in visual system neurophysiol-
ogy and psychophysics. In fact, the demand for using these stimuli is so high
that some companies produce lab equipment with specialized routines de-
signed for this purpose (e.g., Cambridge Research Systems). But sine waves
are special only because they are eigenfunctions of linear, time- or space-
invariant systems. For nonlinear systems, they bear no particular meaning
and occupy no special status. In the auditory domain, sine waves could be
justified from the standpoint that many natural sounds are produced by
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oscillating membranes. However, in the visual world, there are few things
that naturally oscillate either spatially or temporally. The Fourier basis set
is just one of many possible basis sets, and if the system is nonlinear, no one
basis set will necessarily provide a proper account of the system.

Bars of light, Gabor functions, Walsh patterns, or any other basis set will
suffer from similar problems requiring assumptions of the types of nonlin-
earities that are present. The Gabor function has been argued to provide
a good model of cortical receptive fields (Field & Tolhurst, 1986; Jones &
Palmer, 1987). However, the methods used to measure the receptive field in
the first place generally search for the best-fitting linear model. They are not
tests of how well the receptive field model actually describes the response of
the neuron. Not until recent work by Gallant and colleagues (David, Vinje,
& Gallant, 2004) have these models been tested in ecological conditions.
And as we discuss below, the results demonstrate that these models often
fail to adequately capture the actual behavior of neurons.

The use of white noise and m-sequences can provide some advantage
over the traditional linear systems approach, as they can provide a wider
range of stimuli than a simple basis set and are thus capable of mapping out
the nonlinearity of a system if the nonlinearities take on particular forms
(e.g., Nykamp & Ringach, 2002). In addition, by analyzing the eigenvectors
of the spike-triggered covariance matrix, one can recover fairly complex
nonlinear models, such as the hypothetical subunits composing a complex
cell, or suppressive dimensions in the stimulus space (Touryan, Lau, & Dan,
2002; Rust, Schwartz, Movshon, & Simoncelli, 2004).

However, there is only one way to map a nonlinear system with complete
confidence: present the neuron with all possible stimuli. The scope of this
task is truly breathtaking. Even an 8 × 8 pixel patch with 6 bits of gray
level requires searching 2384 > 10100 possible combinations (a google of
combinations). If we allow for temporal sensitivity and include a sequence
of 10 such patches, we are exceeding 101000. With the estimated number of
particles in the universe estimated to be in the range of 1080, it should be
clear that this is far beyond what any experimental method could explore.
In theory, a nonlinear neuron could behave quite rationally for all but a
handful of these stimuli, so unless this handful has been measured, there
is no way to be certain the neuron has been adequately characterized. The
use of independent white noise can theoretically present a neuron with all
possible stimuli. However, 10 hours of recording from a single neuron with
a patch like that above at 30 frames per second will present just 106 out of
the 101000 possible stimuli. Using such a tiny fraction of the possible stimuli
allows mapping of the nonlinearities only if the nonlinearities are quite
smooth.

The deeper question is whether one can predict the responses of neurons
from some combinatorial rule of the responses derived from a reduced set
of stimuli. The response of the system to any reduced set of stimuli cannot
be guaranteed to provide the information needed to predict the response to
an arbitrary combination of those stimuli. Of course, we will never know
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this until it is tested, and that is precisely the problem: the central assumption
of the elementwise, reductionist approach has yet to be thoroughly tested.

We believe that the solution to these problems is to turn to natural scenes.
Our intuitions for how to reduce stimuli should be guided by the sorts
of structure that occur in natural scenes, not arbitrary (or even elegant)
mathematical functions or stimuli that are conceptually simple or happen
to be easy to generate on a monitor. Since it is impossible to map out the
response to all possible stimuli, some assumptions about the nature of the
nonlinearity and the stimulus space must be made. The assumption we
believe is appropriate is that the nonlinearities relevant to visual processing
are most likely to be revealed when the system is presented with ecologically
relevant stimuli.

Traditionally, experimentalists have been reluctant to use natural scenes
as stimuli because they seem highly variable and uncontrolled. But in recent
years there has been significant progress in modeling the structure of natu-
ral images (Simoncelli & Olshausen, 2001), and already a number of studies
have used some of the basic properties of natural scenes (1/ f 2 power spec-
trum, contrast distributions, texture statistics, etc.) to develop parametric
descriptions of natural images that can be used to generate experimental
stimuli (e.g., Knill, Field, & Kersten, 1990; Heeger & Bergen, 1995). In ad-
dition, there have been some recent attempts to map out the nonlinearities
in response to natural images (Sharpee, Rust, & Bialek, 2004). And the de-
velopment of several adaptive stimulus techniques looks to be a promising
avenue for determining the relevant stimulus for sensory neurons (Foldiak,
Xiao, Keysers, Edwards, & Perrett, 2004; Edin, Machens, Schutze, & Herz,
2004; O’Connor, Petkov, & Sutter, 2004).

In summary, then, there are two main reasons for using natural scenes as
stimuli: (1) by devoting resources to relevant ecological stimuli, the exper-
imentalist has a greater chance of finding and mapping the nonlinearities
relevant to the function of neurons, and (2) the responses to natural scenes
provide an ecologically meaningful test of any neural model. Even if none-
cological stimuli are used to map a neuron’s behavior, the true test that the
characterization is correct is to demonstrate that one can predict the neurons
behavior in ecological conditions.

2.3 Biased Theories. Currently in neuroscience, there is an emphasis on
telling a simple story. This often encourages investigators to demonstrate
when a theory explains data, not when a theory provides a poor model. In
addition, editorial pressures can encourage one to make a tidy picture out of
data that may actually be quite messy. This, of course, runs the risk of forcing
a picture that does not actually exist. Theories then emerge that are centered
around explaining a particular subset of published data, or which can be
conveniently proven rather than being motivated by functional considera-
tions: How does this help the brain to solve the real problems of vision?

For instance, early work demonstrating the spatial frequency selectivity
of neurons (e.g., Blakemore & Campbell, 1969) led a number of investigators
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toward a Fourier view of the cortex. Such work led to thousands of studies
devoted to questions regarding frequency tuning and the relevance of this
tuning to the human detection and discrimination of sinusoidal gratings.
This left us with complex theories for how we detect gratings, but with little
understanding of how such a system would function in the natural world.

Another example is the classification of V1 neurons into the categories of
simple, complex, and hypercomplex or end-stopped. Simple cells are noted
for having oriented receptive fields organized into explicit excitatory and
inhibitory subfields, whereas complex cells are tuned for orientation but are
relatively insensitive to position and the sign of contrast (black-white edge
versus white-black edge). Hypercomplex cells display more complex shape
selectivity, and some appear most responsive to short bars or the termina-
tions of bars of light (so-called end-stopping). Are these categories real, or a
result of the particular way neurons were stimulated and the data analyzed?

A widely accepted theory that accounts for the distinction between sim-
ple and complex cells is that simple cells compute a (mostly linear) weighted
sum of image pixels, whereas complex cells compute a sum of the squared
and half-rectified outputs of simple cells of the same orientation—the so-
called energy model (Adelson & Bergen, 1985). This theory is consistent with
measurements of response modulation in response to drifting sine wave
gratings, otherwise known as the F1/F0 ratio (Skottun et al., 1991). From
this measure, one finds clear evidence for a bimodal distribution of neurons,
with simple cells having ratios greater than one and complex cells having
ratios less than one. Recently, however, it has been argued that this partic-
ular nonlinear measure tends to exaggerate or even introduce bimodality
rather than reflecting an actual intrinsic property of the data (Mechler &
Ringach, 2002). When receptive fields are instead characterized by the de-
gree of overlap between zones activated by increments or decrements in
contrast, one obtains a continuous, unimodal distribution when the overlap
is expressed as the normalized distance between the zones, but a bimodal
distribution when expressed as an overlap index (sum of widths minus the
separation divided by sum of widths plus the separation) (Mata & Ringach,
2005; Kagan, Gur, & Snodderly, 2002). In addition, the energy model of com-
plex cells does a poor job accounting for complex cells with a partial overlap
of activating zones. Thus, the way in which response properties are charac-
terized can have a profound effect on the resulting theoretical framework
that is adopted to explain the results. The notion of two classes of neurons,
simple and complex, has been firmly planted in the minds of modelers and
experimentalists alike, but a closer examination of the data reveals that this
classification scheme may actually be an artifact of the lens through which
we view the data.

The notion of end-stopped neurons introduces even more questions
when one considers the structure of natural images. Most natural scenes
are not littered with line terminations or short bars (see Figure 3, middle).
Indeed, at the scale of a V1 receptive field, the structures in this image are
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Figure 3: A natural scene (left) and an expanded section of it (middle). Far right
shows the information conveyed by an array of complex cells at four different
orientations. The length of each line indicates the strength of response of a
complex cell at that location and orientation. The solid black line shows the
location of the boundary of the log in the original image. Note that very few
complex cells of the appropriate orientation are responding along this contour.

quite complex and defy the simple line-drawing-like characterization of a
“blocks world.” Where in such an image would one expect an end-stopped
neuron to fire? By asking this question, one could possibly be led to a more
ecologically relevant theory of these neurons than suggested by simple lab-
oratory stimuli.

Another theory bias often embedded in investigations of V1 function is
the notion that simple cells, complex cells, and hypercomplex cells are ac-
tually coding for the presence of edges, corners, or other two-dimensional
(2D) shape features in images. However, much of this thinking is derived
from a rather cartoon view of images. Computer vision studies provide
clear evidence of the fallacy of the purely bottom-up approach. One cannot
compute the presence even of simple edges of an object purely from the
luminance discontinuities (i.e., using a filter such as a simple or complex
cell model). As an example, Figure 3 demonstrates the result of processing
a natural scene with the standard energy model of a complex cell. Far from
making contours explicit, this representation creates a cluttered array of
orientation signals that make it difficult to discern what is actually going
on in the scene. Our perception of crisp contours, corners, and junctions in
images is largely a post hoc phenomenon that is the result of massive infer-
ential computations performed by the cortex, which are heavily informed
by context and high-level knowledge. It could well be that our initial intro-
spections about scene structure are a poor guide as to the actual problems
faced by the cortex.

In order to properly understand V1 function, our theories will need to be
guided by functional considerations and an appreciation for the ambiguities
contained in natural images rather than being biased by simplistic notions of
feature detection that are suggested by the responses of a select population
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of neurons recorded using simplified stimuli. One of the most challenging
problems facing the cortex is that of inferring a representation of 3D surfaces
from the 2D image (Nakayama, He, & Shimojo, 1995; see also section 3.4).
This is not an easy problem to solve and still lies beyond the abilities of
modern computer vision. It seems quite likely that V1 plays a role in solving
this problem, but understanding how it does so will require going beyond
bottom-up filtering models to consider how top-down information is used
in the interpretation of images (Olshausen, 2003; Lee & Mumford, 2003; see
also section 3.5 below).

2.4 Interdependence and Contextual Effects. It has been estimated that
roughly 5% of the excitatory input in layer 4 of V1 arises from the lateral
geniculate nucleus (LGN), with the majority resulting from intracortical
inputs (Peters & Payne, 1993; Peters, Payne, & Budd, 1994). Thalamocorti-
cal synapses have been found to be stronger, making them more likely to
be effective physiologically (Ahmed, Anderson, Douglas, Martin, & Nelson,
1994). Nevertheless, based on visually evoked membrane potentials, Chung
and Ferster (1998) have argued that the geniculate input is responsible for
just 35% of a layer 4 neuron’s response. This leaves 65% of the response
determined by factors outside the direct feedforward input. Using optical
imaging methods, Arieli, Sterkin, Grinvald, and Aertsen (1996) showed that
the ongoing population activity can account for 80% of an individual V1 neu-
ron’s response variance, and recent work using multielectrode arrays has
shown that the ongoing activity V1 neurons is only slightly modified by vi-
sual input (Fiser, Chiu, & Weliky, 2004). Thus, we are left with the real possi-
bility that somewhere between 60% and 80% of the response of a V1 neuron is
a function of other V1 neurons, or inputs other than those arising from LGN.

It should also be noted that recent evidence from the early blind has
demonstrated that primary visual cortex has the potential for a wide range
of multimodal input. Sadato et al. (1996) and Amedi, Raz, Pianka, Malach,
and Zohary (2003) demonstrated that both tactile braille reading and verbal
material can activate visual cortex in those who have been blind from an
early age, even though no such activation occurs in those with normal sight.
This implies that in the normal visual system, primary visual cortex has the
potential for interactions with quite high-level sources of information.

That V1 neurons are influenced by context—the spatiotemporal structure
outside the classical receptive field (CRF)—is by now well known and has
been the subject of many investigations over the past decade. Knierim and
Van Essen (1992) showed that many V1 neurons are suppressed by a field
of oriented bars outside the classical receptive field of the same orientation,
and Sillito, Grieve, Jones, Cudeiro, and Davis (1995) have shown that one can
introduce quite dramatic changes in orientation tuning based on the orienta-
tion of gratings outside the CRF. Other investigators have probed the spatial
specificity of the surround using grating patches and demonstrated fairly
specific zones of suppression (Walker, Ohzawa, & Freeman, 1999; Cavanagh,
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Bair, & Movshan, 2002b). And these studies, in addition to others (see Series,
Lorenceau, & Frégnac, 2003, for a review), have likely tapped only a portion
of the interdependencies and contextual effects that actually exist.

The problem in teasing apart contextual effects in such a piecemeal fash-
ion is that one faces a combinatorial explosion in the number of possible
spatial and featural configurations of surrounding stimuli such as bars or
gratings. What we really want to know is how neurons respond within
the sorts of context encountered in natural scenes. For example, given the
results of Knierim and Van Essen (1992) using bar stimuli, or Sillito et al.
(1995) using gratings, what should we reasonably expect to result from the
sorts of context seen in the natural scene of Figure 3? Indeed, it is not even
clear whether one can answer the question since the contextual structure
here is so much richer and more diverse than that which has been explored
experimentally. Some of the initial studies exploring the role of context in
natural scenes have demonstrated pronounced nonlinear effects that tend
to sparsify activity in a way that would have been hard to predict from
the existing reductionist studies (Vinje & Gallant, 2000). More studies along
these lines are needed, and most important, we need to understand how
and why the context in natural scenes produces such effects.

Another striking form of interdependence exhibited by V1 neurons is in
the synchrony of activity. Indeed, the fact that one can even measure large-
scale signals such as the local field potential or electroencephalogram (EEG)
implies that large numbers of neurons must be acting together. Gray, König,
Engel, and Singer (1989) demonstrated gamma band synchronization be-
tween neurons in cat V1 when bars moved through their receptive fields
in similar directions, suggesting that synchrony is connected to a binding
or segmentation process. More recently, Wörgötter et al. (1998) have shown
that receptive field sizes change significantly with the degree of synchrony
exhibited in the EEG, and Maldonado, Babul, Singer, Rodriguez, and Grün
(2004) have shown that periods of synchronization preferentially occur dur-
ing periods of fixation as opposed to during saccades or drifts. However,
what role synchrony plays in the normal operation of V1 neurons is entirely
unclear, and it is fair to say that this aspect of response variance remains a
mystery.

2.5 Ecological Deviance. We have argued above for experiments that
measure the responses of neurons in ecological conditions even when no
model is capable of predicting the results—or, we should say, especially
if no model can predict the results. Publishing findings only in conditions
when a particular model works would be poor science. It is important to
know not only where the current models can successfully predict neural
behavior, but also under what conditions they break down and why. And
as we have emphasized above, it is most important to know how they fare
under ecological conditions. If the current models fail to predict neural
responses under such conditions, then the literature should reflect this.
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In the past few years, a number of labs have begun using natural scenes as
stimuli when recording from neurons in the visual pathway (Dan, Atick, &
Reid, 1996; Baddeley et al., 1996; Keysers, Xiao, Foldiak, & Perrett, 2001; Vinje
& Gallant, 2002; Ringach, Hawken, & Shapley, 2002; Smyth, Willmore, Baker,
Thompson, & Tolhurst, 2003; David et al., 2004). In particular, the Gallant
lab at UC Berkeley has taken the approach of attempting to determine how
well one can predict the responses of V1 neurons to natural stimuli using
a variety of different models. However, assessing how well these models
fare, and what it implies about our current understanding of V1, is difficult
for at least three reasons.

First, one must make several assumptions (either implicitly or explic-
itly) regarding what aspects of the response are relevant to the model.
Spike counts will show significant variability over repeated trials (Tolhurst,
Movshon, & Dean, 1983). One can take the average over a number of
presentations, but this implicitly assumes that the variability can be at-
tributed to noise. This can be questioned, especially considering that in
many cases, individual spikes have been shown to have relatively high
reliability (Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997).
The trial-to-trial variability could well be due to internally generated dy-
namics that plays an important role in information processing that we
simply do not as yet understand (Arieli et al., 1996; Fiser et al., 2004;
see also section 3.1). Furthermore, to take averages, one must make as-
sumptions regarding the temporal window over which the average is
computed.

Second, these studies are best performed with an awake, behaving an-
imal. In such conditions, there are limitations to the spatial and temporal
accuracy with which the gaze can be measured. When averaging across pre-
sentations of stimuli, one must ascertain whether or not the same stimulus
was actually presented. Again, one must make an assumption as to what
spatiotemporal window to use.

The third problem is that whatever model is chosen, one is always subject
to the criticism that the model is not sufficiently elaborate. Thus, any inability
to predict the neuron’s response might be argued to be simply due to some
missing element in the model.

For example, David et al. (2004) have explored two different types of
models: a linearized spatiotemporal receptive field model, in which the
neuron’s response is essentially a weighted sum of the image pixels over
space and time, and a phase-separated Fourier model, which allows one
to capture the phase invariance nonlinearity of a complex cell. These mod-
els can typically explain between 20% and 40% of the response variance.
Correcting for intertrial variability improves matters somewhat and it is
possible that with more trials and the addition of other nonlinearities such
as contrast normalization, adaptation, and response saturation, the fraction
of variance explained could rise even more above these levels (and this is a
current direction of these studies).



How Close Are We to Understanding V1? 1679

(A).

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

time (sec)

sp
ik

e 
co

un
t (

35
 m

se
c 

bi
ns

)
PSTH
model

(B).

18 ms 53 ms 88 ms 123 ms 158 ms 193 ms

Figure 4: Activity of a V1 neuron in anesthetized cat in response to a natural
movie. (A) The PSTH of the neuron’s response (dashed line), together with the
predicted response (solid line) generated from the model: r (t) = α h(

∑
x k(x, t) ∗

I (x, t) + θ )p + r0. The function h( ) is a half-wave rectifying function, and the
parameters α, p, θ , and r0 are fit to minimize the squared error with the data.
The resulting correlation coefficient in this case is 0.36. Average spike counts
were obtained by averaging across 100 trials in 35 ms bins (corresponding to the
frame rate). (B) The kernel k(x, t) was measured via reverse correlation with an
m-sequence and is shown here as a series of frames in 35 ms intervals, with the
center time of the interval displayed above each frame.

We believe such reports are critically important for several reasons. First,
such results create a benchmark for showing how well the standard or
basic models actually predict ecologically relevant data. Second, these are
well-established models that have been given a fair run for their money.
One could imagine any number of improvements to these models, and
it will be interesting to see if they fare better, but in the meantime, these
results provide a useful baseline for comparison. Furthermore, these are the
data that represent the ultimate goal of any computational model, and so
they are crucial to presenting a complete picture of V1 function. Given the
nature of the errors, we do not believe that the addition of simple response
nonlinearities such as contrast normalization is likely to improve matters
much. Given these results with both linear and Fourier power models, our
conjecture is that the best-case scenario is that the percentage of variance
explained is likely to asymptote at 30% to 40% with the standard model.

One of the reasons for our pessimism is due to the way in which these
models fail. For example, Figure 4 shows data collected from the laboratory
of Charles Gray at Montana State University, Bozeman, in which the activ-
ities of V1 neurons in anesthetized cat are recorded in response to repeated
presentations of a natural movie (C. M. Gray, J. Baker, & S. C. Yen personal
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communication to the authors, 2004). Figure 4A shows the peristimulus
time histogram (PSTH) of a typical V1 simple cell, whose receptive field
as measured from an M-sequence kernel is similar to those found in the
literature—a Gabor-like function that translates over time (i.e., space-time
inseparable). Superimposed on this is the predicted response generated by
convolving the neuron’s space-time receptive field (see Figure 4B) with the
movie, and putting the result through a point-wise nonlinearity (including
a gain factor and offset term). The neuron tends to exhibit sparse, punc-
tate responses, some of which are predicted by the receptive field model
and others not. In most cases, the model response undershoots the PSTH,
and this cannot simply be addressed by increasing the gain or narrowing
the response of the model, because there are many other episodes where
the model predicts responses of equal magnitude in which there is little
or no response from the neuron. One could possibly obtain a better fit to
the data by including additional terms modeling suppression (Rust et al.,
2004) and temporal adaptation (Lesica, Boloori, & Stanley, 2003), or even a
spiking mechanism (Paninski, Pillow, & Simoncelli, 2004), but we believe
it is useful to see how much the linear, driving term of the model alone
fares under these circumstances. Moreover, these additions are essentially
single-neuron mechanisms. What seems to be suggested by our initial infor-
mal observations of multiple simultaneously recorded units is that a more
complex network nonlinearity is at work here, and that describing any one
neuron’s behavior will require including the influence of other simultane-
ously recorded neurons.

An important lesson of these findings is that simply mapping out re-
ceptive fields does not provide a complete understanding of V1 response
properties. For example, Ringach et al. (2002) have shown that it is possible
to map out receptive fields using natural scenes, and they show that it is
even possible to recover some nonlinear effects such as cross-orientation
inhibition with this technique. However, the resulting receptive field mod-
els were not tested by comparing their predictions to the actual activity of
neurons in response to natural movies. Without doing so, it is difficult to
assess how well such models capture the function of the neuron.

Unfortunately, journals are often unprepared to publish results when a
study demonstrates the failure of a model, unless the study also presents
a competing model that works well. Part of this may seem understandable
since a model might fail for a variety of reasons. However, until a benchmark
is placed in the literature, it is impossible to determine how good a model
actually is. And given the magnitude of the task before us, it could take
years before a good model emerges. In the meantime, what would be most
helpful is to accumulate a database of single-unit or multiunit data (stimuli
and neural responses) that would allow modelers to test their best theory
under ecological conditions.

Finally, it should be noted that better success has been obtained in using
receptive field models to predict the responses of neurons to natural scenes
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in the LGN (Dan et al., 1996), or the response of cortical neurons to purely
static images (Smyth et al., 2003), although they are still far from making
perfect predictions. This would seem to suggest that much of the difficulty
in predicting responses in cortex has to do with the effects of the massive,
recurrent intracortical circuitry that is engaged during natural vision.

2.6 Summary. Table 1 presents a summary of the five problems we have
identified with the current view of V1 that has emerged from the data col-
lected to date, along with some of the solutions that we have suggested
could possibly help in obtaining a more complete picture of V1 function.

Given the limitations described above, is it possible to quantify how
well we currently understand V1 function? We attempt to estimate this as
follows:

[Fraction understood] =
[
Fraction of variance explained
from neurons recorded

]

× [Fraction of population recorded] .

If we consider that roughly 40% of the population of neurons in V1 has
actually been recorded from and characterized, together with our conjecture
that 30% to 40% of the response variance of these neurons can be explained
under natural conditions using the currently established models, then we
are left to conclude that we can currently account for 12% to 16% of V1
function. Thus, approximately 85% of V1 function has yet to be explained
(see Figure 5).3

3 New theories

Given the above observations, it becomes clear that there is so much un-
explored territory that it is very difficult to rule out theories at this point
(although there are some obvious bounds dictated by neural architecture,
such as fan-in/fan-out and the spatial extent of axonal and dendritic arbors).
In the sections below, we discuss some of the theories that are plausible given
our current data. The goal here is not to provide a detailed review of the
theories currently in the literature. Rather, it is to provide a few examples of
the range of theories that are consistent with the experimental data. It must
be emphasized that considering that there may exist a large family of neu-
rons with unknown properties and given the low level of prediction for the
neurons studied, there is still considerable room for theories dramatically
different from those theories presented here.

3 We have primarily drawn on the Gallant lab’s data for obtaining the percentage of
variance explained, and so we are assuming that their methods for isolating neurons are
subject to the same biases in sampling discussed earlier.
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Figure 5: 85% of V1 function remains to be understood.

3.1 Dynamical Systems and the Limits of Prediction. Imagine track-
ing a single molecule within a hot gas as it interacts with the surrounding
molecules. The particular trajectory of one molecule will be erratic and fun-
damentally unpredictable without knowledge of all other molecules with
potential influence. Even if we presumed that the trajectory of the particu-
lar molecule was completely deterministic and following simple laws, in a
gas with large numbers of interacting molecules, one could never provide a
prediction of the path of a single molecule except over very short distances.

In theory, the behavior of single neurons may have similar limitations.
To make predictions of what a single neuron will do in the presence of a
natural scene may be fundamentally impossible without knowledge of the
surrounding neurons. The nonlinear dynamics of interacting neurons may
put bounds on how accurately the behavior of any neuron can be predicted.
And at this time, we cannot say where that limit may be.

What is fascinating in many ways, then, is that neurons are as predictable
as they are. For example, work from the Gallant lab has shown that under
conditions where a particular natural scene sequence is repeated to a fixat-
ing macaque monkey, a neuron’s response from trial to trial is fairly reliable
(e.g., Vinje & Gallant, 2000). This clearly suggests that the response is de-
pendent in large part on the stimulus, certainly more than a molecule in
the gas model. So how do we treat the variability that is not explained by
the stimulus? We may find that the reliability of a local group of neurons
is more predictable than a single neuron, which would then require mul-
tielectrode recording to attempt to account for the remaining variance. For
example, Arieli et al. (1996) have shown that much of the intertrial variabil-
ity may be explained in terms of large-scale fluctuations in ongoing activity
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of the surrounding population of neurons measured using optical record-
ing, and Fiser et al. (2004) have similarly shown that ongoing population
activity as measured with multielectrode arrays is only loosely modulated
by visual input. However, what role these large-scale fluctuations play in
the normal processing of natural scenes has yet to be investigated.

3.2 Sparse, Overcomplete Representations. One effort to explain many
of the nonlinearities found in V1 is based on the idea that neurons are
attempting to achieve some degree of gain control (Geisler & Albrecht 1992).
Because any single neuron lacks the dynamic range to handle the range
of contrasts in natural scenes, it is argued, the contrast response must be
normalized. Here we provide a different line of reasoning to explain the
observed response nonlinearities of V1 neurons (further details are provided
by Olshausen & Field, 1997, and Field & Wu, 2004). We argue that the spatial
nonlinearities serve primarily to reduce the linear dependencies that exist
in an overcomplete code, and as we shall see, this leads to a fundamentally
different set of predictions about the population activity.

Consider the number of vectors needed to represent a particular set of
data with dimensionality D (e.g., an 8 × 8 pixel image patch would have
D = 64). No matter what form the data take, such data never require more
than D linearly independent vectors to represent it. A system where data
with dimensionality D are spanned by D vectors is described as critically
sampled. Such critically sampled systems (e.g., orthonormal bases) are pop-
ular in the image coding community as they allow any input pattern to be
represented uniquely, and the transform and its inverse are easily computed.
The wavelet code, for example, has seen widespread use, and wavelet-like
codes similar to that of the visual system have been shown to provide very
high efficiency in terms of sparsity when coding natural scenes (e.g., Field,
1987). Some basic versions of independent component analysis (ICA) also
attempt to find a critically sampled basis that minimizes the dependencies
among the vectors, and the result is a wavelet-like code with tuning much
like the neurons in V1 (Bell & Sejnowski, 1997; van Hateren & van der Schaaf,
1998).

However, the visual system is not using a critically sampled code. In cat
V1, for example, there are 25 times as many output fibers as there are input
fibers from the LGN, and in macaque V1, the ratio is on the order of 50
to 1. Such overcomplete codes have one potential problem: the vectors are
not linearly independent. Thus, if neurons were to compute their output
simply from the inner product between their weight vector and the input,
their responses will be correlated.

Figure 6A shows an example of a two-dimensional data space repre-
sented by three neurons with linearly dependent weight vectors. Even as-
suming the outputs of these units are half-rectified so they produce only
positive values, the data are redundantly represented by such a code. The
only way to remove this linear dependence is through a nonlinear transform.
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Figure 6: Overcomplete representation. (A) The iso-response contours of three
linear neurons (with half-wave rectification) having linearly dependent weight
vectors. A stimulus falling anywhere along a given contour will result in the
same response from the neuron. A stimulus falling in the upper half-plane will
result in responses on all three neurons, even though only two would be re-
quired to uniquely determine its position in the space. (B) Curving the response
contours removes redundancy among these neurons. Now only two neurons
will code for a stimulus anywhere in this space. (C) A full tiling of the 2D stimu-
lus space now requires eight neurons, which would be overcomplete as a linear
code, but critically sampled given this form of nonlinear response.

One of the nonlinear transforms that will serve this goal is shown in Fig-
ure 6B. Here, we show the iso-response curves for the same three neurons.
This curvature represents an unusual nonlinearity. For example, consider
the responses of a unit to two different stimuli: the first stimulus aligned
with the neuron’s weight vector and a second stimulus separated by 90
degrees. The second stimulus will have no effect on the neuron on its own
since its vector is orthogonal to that of the neuron. However, when added to
the first vector, the combined stimulus will be on a lower iso-response curve
(i.e., the neuron will have reduced its activity). In other words, the response
curvature of the neuron results in a nonlinearity with the characteristic non-
classical, suppressive behavior: stimuli that on their own have no effect on
the neuron (stimuli orthogonal to the principal direction of the neuron)
can modulate the behavior of an active neuron. This general nonlinearity
comes in several forms and includes end-stopping and cross-orientation
inhibition, and is what is typically meant by the term nonclassical surround.
Indeed, as Zetzsche, Krieger, and Wegmann (1999) note, this curvature is
simply a geometrical interpretation of such behaviors. With the addition of
a compressive nonlinearity, this curvature results in the behavior described
as contrast normalization.

In contrast to the gain control or divisive normalization theory, we argue
that the nonlinearities observed in V1 neurons are present primarily to allow
a large (overcomplete) population of neurons to represent data using a small
number of active units, a process we refer to as sparsification. The goal
is not to develop complete independence, as the activity of any neuron
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partially predicts the lack of activity in neighboring neurons. However, the
code allows for expanding the dimensionality of the representation without
incurring the linear dependencies that would be present in a nonorthogonal
code.

Importantly, this model predicts that the nonlinearities are a function
of the angle between the neuron’s weight vector and those surrounding it.
Future multielectrode recordings may provide the possibility to test this
theory. From the computational end, we have found that our sparse coding
network (Olshausen & Field, 1996, 1997) produces nonlinearities much like
those proposed. Our hope, then, is that many of the nonlinearities that
have been observed in V1 can eventually be explained within one general
framework of efficient coding.

3.3 Contour Integration. There is now considerable physiological and
anatomical evidence showing that V1 neurons have a rather selective con-
nection pattern both within and between layers. For example, research in-
vestigating the lateral projections of pyramidal neurons in V1 has shown
that the long-range lateral connections project primarily to regions of the
cortex with similar orientation columns, as well as to similar ocular dom-
inance columns and cytochrome oxidase blobs (Malach, Amir, Harel, &
Grinvald, 1993; Yoshioka, Blasdel, Levitt, & Lund, 1996). Early studies ex-
ploring the horizontal connections in V1 discovered that selective long-
range connections extend laterally for 2 to 5 mm parallel to the surface
(Gilbert & Wiesel, 1979), and studies on the tree shrew (Rockland & Lund,
1983; Bosking, Zhang, Schofield, & Fitzpatrick, 1997), primate (e.g., Malach
et al., 1993; Sincich & Blasdel, 2001), ferret (Ruthazer & Stryker, 1996), and
cat (e.g., Gilbert & Weisel, 1989) have all demonstrated significant specificity
in the projection of these lateral connections. A number of neurophysiolog-
ical studies also show that colinearly oriented stimuli presented outside
the classical receptive field have a facilitatory effect (Kapadia, Ito, Gilbert,
& Westheimer, 1995; Kapadia, Westheimer, & Gilbert, 2000; Polat, Mizobe,
Pettet, Kasamatsu, & Norcia, 1998). The results demonstrate that when a
neuron is presented with an oriented stimulus within its receptive field, a
second collinear stimulus will sometimes increase the response rate of the
neuron while the same oriented stimulus presented orthogonal to the main
axis of orientation (displaced laterally) will produce inhibition, or at least
less facilitation.

These results suggest that V1 neurons have an orientation- and position-
specific connectivity structure beyond what is usually included in the stan-
dard model. One line of research suggests that this connectivity helps resolve
the ambiguity of contours in scenes and is involved in the process of con-
tour integration (e.g., Field, Hayes, & Hess, 1993). This follows from work
showing that the amplification of locally coaligned, oriented elements pro-
vides an effective means of identifying contours in natural scenes (Parent &
Zucker, 1989; Sha’ashua & Ullman, 1988; Ben-Shahar & Zucker, 2004). This
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type of mechanism could work in concert with the sparsification nonlinear-
ities mentioned above, since the facilitatory interactions would primarily
occur among elements that are nonoverlapping—that is, receptive fields
whose weight vectors are orthogonal.

An alternative theoretical perspective is that the effect of these
orientation- and position-specific connections should be mainly suppres-
sive, with the goal of removing dependencies among neurons that arise
due to the structure in natural images (Schwartz & Simoncelli, 2001). In
contrast to the contour integration hypothesis, which proposes that the role
of horizontal connections is to amplify the structure of contours, this model
would attempt to attenuate the presence of such structure in the V1 repre-
sentation. Although this may be a desirable outcome in terms of redundancy
reduction, we would argue that the cortex has objectives other than redun-
dancy reduction per se (Barlow, 2001). Chief among these is to provide a
meaningful representation of image structure that can be easily read out
and interpreted by higher-level areas.

Finally, it is important to note, with respect to the discussion in the
previous section, that the type of redundancy we are talking about here
is due to long-range structure in images beyond the size of a receptive
field, not that which is simply due to the overlap among receptive fields.
Thus, we propose that the latter should be removed via sparsification, while
the former should be amplified by the long-range horizontal connections
in V1.

3.4 Surface Representation. We live in a three-dimensional world, and
the fundamental causes of images that are of behavioral relevance are sur-
faces, not two-dimensional features such as spots, bars, edges, or gratings.
Moreover, we rarely see the surface of an object in its entirety. Occlusion
is the rule, not the exception, in natural scenes. It thus seems quite reason-
able to think that the visual cortex has evolved effective means to parse
images in terms of the three-dimensional structure of the environment: sur-
face structure, foreground-background relationships, and so forth. Indeed,
there is now a strong body of psychophysical evidence showing that 3D
surfaces and figure-ground relationships constitute a fundamental aspect
of intermediate-level representation in the visual system (Nakayama et al.,
1995; see also Figure 7).

Nevertheless, it is surprising how little V1 physiology has actually been
devoted to the subject of three-dimensional surface representation. Some
recent studies in extrastriate cortex have begun to yield interesting findings
(Nguyenkim & DeAngelis, 2003; Zhou, Friedman, & von der Heydt, 2000;
Bakin, Nakayama, & Gilbert, 2000), but V1’s involvement in surface rep-
resentation remains a mystery. Although many V1 neurons are disparity
selective, this by itself does not tell us how surface structure is represented
or how figure-ground relationships of the sort depicted in Figure 7 are re-
solved.
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Figure 7: The three line strokes at left are interpreted as different objects de-
pending on the arrangement of occluders. Thus, pattern completion depends
on resolving figure-ground relationships. At what level of processing is this
form of completion taking place? Since it would seem to demand access to
high-resolution detail in the image, it cannot simply be relegated to high-level
areas.

At first sight, it may seem preposterous to suppose that V1 is involved
in computing three-dimensional surface representations. But again, given
how little we actually know about V1, combined with the importance of
3D surface representations for guiding behavior, it is a plausible hypothe-
sis to consider. In addition, problems such as occlusion demand resolving
figure-ground relationships in a relatively high-level representation where
topography is preserved (Lee & Mumford, 2003). There is now beginning
to emerge physiological evidence supporting this idea. Neurons in V1 have
been shown to produce a differential response to the figure versus back-
ground in a scene of texture elements (Lamme, 1995; Zipser, Lamme, &
Schiller, 1996), and a substantial fraction of neurons in V1 are selective to
border ownership (Zhou et al., 2000). In addition, Lee, Mumford, Romero,
and Lamme (1998) have demonstrated evidence for a medial axis represen-
tation of surfaces in which V1 neurons become most active along the skeletal
axis of an object. It seems quite possible that such findings are just the tip
of the iceberg.

3.5 Top-Down Feedback and Disambiguation. Although our percep-
tion of the visual world is usually quite clear and unambiguous, the raw
image data that we start out with is not. Looking back at Figure 3, one can
see that even the presence of a simple contour can be ambiguous in a nat-
ural scene. The problem is that information at the local level is insufficient
to determine whether a change in luminance is due to an object boundary,
simply part of a texture, or a change in reflectance. Although boundary
junctions are also quite crucial to the interpretation of a scene, a number
of studies have shown that human observers are poor judges of what con-
stitutes a boundary or junction when these features are shown in isolation
(Elder, Beniaminov, & Pintilie, 1999; McDermott, 2004). Thus, the calcula-
tion of what forms a boundary is dependent on the context, which provides
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information about the assignment of figure and ground, surface layout, and
so forth.

Arriving at the correct interpretation of an image, then, constitutes some-
thing of a chicken- and-egg problem between lower and higher levels of
image analysis. The low-level shape features that are useful for identifying
an object—edges, contours, surface curvature, and the like—are typically
ambiguous in natural scenes, so they cannot be computed directly based
on a local analysis of the image. Rather, they must be inferred based on
global context and higher-level knowledge. However, the global context
itself will not be clear until there is some degree of certainty about the
presence of low-level shape features. A number of theorists have thus ar-
gued that recognition depends on information circulating through cortico-
cortical feedback loops in order to disambiguate representations at both
lower and higher levels in parallel (Mumford, 1994; Ullman, 1995; Lewicki
& Sejnowski, 1996; Rao & Ballard, 1999; Young, 2000; Lee & Mumford, 2003;
Hawkins & Blakeslee, 2004).

An example of disambiguation at work in the visual cortex can be seen in
the resolution of the aperture problem in computing the direction of motion.
Because receptive fields limit the field of view of a neuron to just a portion
of an object, it is not possible for any one neuron to signal with certainty the
true direction of the object in a purely bottom-up fashion. Pack, Berezovskii,
and Born (2001) have shown that the initial phase of response of neurons in
MT signals the direction of motion directly orthogonal to a contour and that
the latter phase of the response reflects the actual direction of the object that
the contour is part of, presumably from the interaction with other neurons
viewing other parts of the object. Interestingly, this effect does not occur
under anesthesia. A similar delayed-response effect has been demonstrated
in end-stopped V1 neurons as well (Pack, Livingstone, Duffy, & Born, 2003).

Recent evidence from fMRI points to a disambiguation process occur-
ring in V1 during shape perception (Murray, Kersten, Olshausen, Schrater,
& Woods, 2002). Subjects viewed a translating diamond that was partially
occluded so that the vertices are invisible, resulting in a bistable percept in
which the line segments forming the diamond are seen moving indepen-
dently in one case, and coherently in the direction of the object motion in
the other case. When subjects experience the coherent motion and shape
percept, activity in lateral occipital cortex (LOC) increases while activity in
V1 decreases. This is consistent with the idea that when neurons in LOC
are representing the diamond, they feed back this information to V1 so as
to refine the otherwise ambiguous representations of contour motion. If the
refinement of activity attenuates the many incorrect responses while ampli-
fying the few that are consistent with the global percept, the net effect could
be a reduction as seen in the BOLD signal measured by fMRI. An alterna-
tive interpretation for the reduction in V1 is based on the idea of predictive
coding (Rao & Ballard, 1999), in which higher areas actually subtract their
predictions from lower areas.
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There exists a rich set of feedback connections from higher levels into
V1, but little is known about the computational role of these connections.
Recent experiments in which higher areas are cooled to look at the effect on
activity in lower areas seem to suggest that these connections play a role in
enhancing the salience of stimuli (Hupe et al., 1998), and Shapley (2004) has
concluded that top-down feedback is necessary to account for the spatial
extent of surround inhibition. But we would argue that feedback has a far
more important role to play in disambiguation, and as far as we know, no
one has yet investigated the effect of feedback using such cooling techniques
under normal conditions that would require disambiguation (e.g., natural
scenes).

3.6 Dynamic Routing. A challenging problem faced by any visual sys-
tem is that of forming object representations that are invariant to position,
scale, rotation, and other common deformations of the image data. The cur-
rently accepted, traditional view is that complex cells constitute the first
stage of invariant representation by summing over the outputs of simple
cells whose outputs are half-rectified and squared—the classical “energy
model” (Adelson & Bergen 1985). In this way, the neuron’s response changes
only gradually as an edge is passed over its receptive field. This idea forms
the basis of so-called Pandemonium models, in which a similar feature ex-
traction and pooling process is essentially repeated at each stage of visual
cortex (see Tarr, 1999, for a review).

However, the Pandemonium model cannot provide a complete account
of perception because it does not preserve information about relative phase
or the spatial relationships among features. Clearly, though, we have con-
scious access to this information. The ability to navigate, grasp, and interact
with foreign objects implies that we have the ability to perceive spatial re-
lationships among features without ever doing “object recognition.” In ad-
dition, resolving figure-ground relationships and occlusion demands that
higher levels of analysis have access to information about spatial relation-
ships as well.

One of us has proposed a model for forming invariant representations
that preserves relative spatial relationships by explicitly routing informa-
tion at each stage of processing (Olshausen, Anderson, & Van Essen, 1993).
Rather than passively pooling, information is dynamically linked from one
stage to the next by a set of control neurons that progressively remap in-
formation into an object-centered reference frame. It is thus proposed that
there are two distinct classes of neurons: those conveying image and fea-
ture information and those controlling the flow of information. The former
corresponds to the invariant part, the latter to the variant part. The two
are combined multiplicatively, so that mathematically it is equivalent to a
bilinear model (e.g., Tenenbaum & Freeman, 2000; Grimes & Rao, 2005).

Is it possible that dynamic routing occurs in V1 and underlies the ob-
served shift-invariant properties of complex cells? If so, there are at least
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two things we would expect to see: (1) that at any given moment, a complex
cell is effectively connected to only one or a small fraction of simple cells to
which it is physically connected, and (2) that there are control neurons that
dynamically gate these connections. Interestingly, the observed invariance
properties of complex cells are just as consistent with the idea of routing
as they are with pooling. What could possibly distinguish between these
models is to look at the population activity: if the complex cell outputs are
the result of passive pooling, then one would expect a dense, distributed
representation of contours among the population of complex cells. If infor-
mation is dynamically routed, though, the representation at the complex cell
level would remain sparse. The control neurons, on the other hand, would
look something like contrast normalized simple cells, which represent phase
independent of magnitude (Zetzsche & Rohrbein, 2001).

One of the main predictions of the dynamic routing model is that the
receptive fields of the invariant neurons would be expected to shift de-
pending on the state of the control neurons. Such effects have been seen in
V4, where some neurons shift their receptive fields depending on where the
animal is directing its attention (Moran & Desimone, 1985; Connor, Preddie,
Gallant, & Van Essen, 1997. And in V1, Brad Motter has shown that neurons
appear to shift their receptive fields in order to compensate for the small
eye movements that occur during fixation (Motter & Poggio, 1990; Motter,
1995), although Gur and Snodderly (1997) provide evidence to the contrary.
Thus, there exists some evidence for dynamic routing in visual cortex, but
further experiments are needed in order to characterize how and to what
extent this occurs in V1 under normal viewing conditions.

4 Conclusion

Our goal in this review has been to point out that there are still substantial
gaps in our knowledge of V1 function and, more important, that there is
more room for new theories to be considered than the current conventional
wisdom might allow. We have identified five specific problems with the
current view of V1, emphasizing the need for using natural scenes in ex-
periments, in addition to multiunit recording methods, in order to obtain
a more representative picture of V1 function. While the single-unit, struc-
turalist approach has been a useful enterprise for getting a handle on basic
response properties, we feel that its usefulness as a tool for investigating
V1 function has been nearly exhausted. It is now time to dig deeper, using
richer, ecologically relevant experimental paradigms, and developing theo-
ries that can help to elucidate how the cortex performs the computationally
challenging problems of vision.

As we explore the response properties of V1 neurons using natural scenes,
we are likely to uncover some interesting new phenomena that defy expla-
nation with current models. It is at this point that we should be prepared
to revisit the structuralist approach in order to tease apart what is going on.
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Reductionism does have its place, but it needs to be motivated by function-
ally and ecologically relevant questions, similar to the European tradition
in ethology (Tinbergen, 1972).

At what point will we actually understand V1? This is obviously a dif-
ficult question to answer, but we believe at least three ingredients are re-
quired: (1) an unbiased sample of neurons of all types, firing rates, and layers
of V1; (2) the ability to observe simultaneously the activities of hundreds
of neurons in a local population; and (3) the ability to predict, or at least
qualitatively model, the responses of the population under natural viewing
conditions. Given the extensive feedback connections into V1, in addition
to the projections from pulvinar and other sources, it seems unlikely that we
will ever understand V1 in isolation. Thus, our investigations must also be
guided by how V1 fits into the bigger picture of thalamo-cortical function.
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