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Why frequency analysis?

• Many signals in the natural environment are conveniently described in terms of a
superposition of wobbly functions (e.g., many sounds are produced by vibrating
membranes).

• Sines and cosines are eigenfunctions of linear, time-invariant systems. Thus,
they can be used to conveniently characterize the response of a linear system.
Also, convolution, which is a complicated signal transformation in the time or
space domain, is performed by simple multiplication in the frequency domain.

The Fourier series

• Joseph Fourier’s theorem, in its most general form, states that any function may
be described in terms of a superposition of odd and even functions. Specifically,
Fourier proposed that a signal s(t) may be decomposed into a summation of
sinewaves (or cosine-waves) of different frequencies, amplitudes and phases:

s(t) =
∞∑

f=0

A(f) cos(2π f t + φ(t))

• What is remarkable about this is that s(t) can be anything—the waveform
produced by a bird chirping, the sound of your dishwasher, electromagnetic
waves, etc.

• The amplitudes tell you how much of each frequency is present in the signal.
For example, a pure tone (e.g., the waveform emitted by a tuning fork) would
have equal to zero for all frequencies except for one. The sound produced when
you say “shhh” would have amplitudes distributed across many frequencies.

• The Fourier series tells us that a sound may be decomposed in terms of sinewaves,
but it doesn’t tell us how to do it - i.e., it doesn’t tell us what amplitudes A to
assign to each f . For this we need the Fourier transform.
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The Fourier transform

• The Fourier transform basically provides a way of representing a signal in a dif-
ferent space—i.e., in the frequency domain. You put into the Fourier transform
a function of time or space, s(t), and you get out a function of frequency, S(f).
The Fourier transform is formally defined as follows:

S(f) =
∫

s(t) e−i 2π f t

• Thus, the Fourier transform is essentially the inner-product of the signal s(t)
with the complex exponential e−i 2π f t, evaluated at different values of f .

• The complex exponential is just a real cosine-wave and an imaginary sine-wave:

e−i 2π f t = cos(2π f t) + i sin(2π f t)

Thus, the Fourier integral may be written alternatively as

S(f) =
∫

s(t) cos(2π f t) + i
∫

s(t) sin(2π f t)

• Here we can see that S(f) is a complex number. The real part tells us the result
of multiplying our signal together with a cosine-wave, the imaginary part tells
us the result of multiplying the signal together with a sine-wave.

• The amplitude A of each frequency component contained in is given by the
modulus of S, which is defined as

A(f) = |S(f)| ≡
√
<{S(f)}2 + ={S(f)}2

where < and = denote the “real part” and “imaginary part,” respectively.

• The phase φ can be extracted from the ratio of the real an imaginary components
of as follows:

φ(f) = tan−1 ={S(f)}
<{S(f)}

Convolution theorem

• The convolution of two functions,

y(t) = h(t) ∗ x(t)

may be performed in the frequency domain via multiplication:

Y (f) = H(f) X(f)

where Y (f), H(f), and X(f) are Fourier transforms of y(t), x(t), and h(t)
respectively.

• That this is so is due to the fact that 1) sines and cosines are eigenfunctions of
linear time-invariant systems, and 2) any function may be represented as a sum
of sines and cosines.
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