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Why frequency analysis?

Many signals in the natural environment are conveniently described in terms of a
superposition of wobbly functions (e.g., many sounds are produced by vibrating
membranes).

Sines and cosines are eigenfunctions of linear, time-invariant systems. Thus,
they can be used to conveniently characterize the response of a linear system.
Also, convolution, which is a complicated signal transformation in the time or
space domain, is performed by simple multiplication in the frequency domain.

The Fourier series

Joseph Fourier’s theorem, in its most general form, states that any function may
be described in terms of a superposition of odd and even functions. Specifically,
Fourier proposed that a signal s(¢) may be decomposed into a summation of
sinewaves (or cosine-waves) of different frequencies, amplitudes and phases:

() = Y- A(F) cos(2r [+ 6(0))
f=0

What is remarkable about this is that s(¢) can be anything—the waveform
produced by a bird chirping, the sound of your dishwasher, electromagnetic
waves, etc.

The amplitudes tell you how much of each frequency is present in the signal.
For example, a pure tone (e.g., the waveform emitted by a tuning fork) would
have equal to zero for all frequencies except for one. The sound produced when
you say “shhh” would have amplitudes distributed across many frequencies.

The Fourier series tells us that a sound may be decomposed in terms of sinewaves,
but it doesn’t tell us how to do it - i.e., it doesn’t tell us what amplitudes A to
assign to each f. For this we need the Fourier transform.



The

Fourier transform

The Fourier transform basically provides a way of representing a signal in a dif-
ferent space—i.e., in the frequency domain. You put into the Fourier transform
a function of time or space, s(t), and you get out a function of frequency, S(f).
The Fourier transform is formally defined as follows:

S() = [ stye e
Thus, the Fourier transform is essentially the inner-product of the signal s(t)
with the complex exponential e *?" /¢, evaluated at different values of f.
The complex exponential is just a real cosine-wave and an imaginary sine-wave:
e It = cos(2m ft) + i sin(27 f 1)

Thus, the Fourier integral may be written alternatively as
S(f) = /s(t) cos(2m ft) +i /s(t) sin(2m ft)

Here we can see that S(f) is a complex number. The real part tells us the result
of multiplying our signal together with a cosine-wave, the imaginary part tells
us the result of multiplying the signal together with a sine-wave.

The amplitude A of each frequency component contained in is given by the
modulus of S, which is defined as

A(f) = 1S(F)] = RIS(H)I2 + S{S(f))?

where R and & denote the “real part” and “imaginary part,” respectively.

The phase ¢ can be extracted from the ratio of the real an imaginary components
of as follows: S(S(1))
&
O(f) = tan™! o
R{S(F)}

Convolution theorem

The convolution of two functions,

y(t) = h(t) « x(t)

may be performed in the frequency domain via multiplication:

Y(f)=H(f)X(f)
where Y (f), H(f), and X(f) are Fourier transforms of y(t), x(t), and h(t)

respectively.

That this is so is due to the fact that 1) sines and cosines are eigenfunctions of
linear time-invariant systems, and 2) any function may be represented as a sum
of sines and cosines.



